• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    effects of Inhibitory Signal on Criticality in Excitatory-Inhibitory Networks?

    2019-07-16 12:29:48FanWang王帆andShengJunWang王圣軍
    Communications in Theoretical Physics 2019年6期

    Fan Wang(王帆)and Sheng-Jun Wang(王圣軍)

    Physics and Information Technology,Shaanxinormal University,Xi’an 710119,China

    AbstractWe study the criticality in excitatory-inhibitory networks consisting of excitable elements.We investigate the effects of the inhibitory strength using both numerical simulations and theoretical analysis.We show that the inhibitory strength cannot a ffect the critical point.The dynamic range is decreased as the inhibitory strength increases.To simulate of decreasing the efficacy of excitation and inhibition which was studied in experiments,we remove excitatory or inhibitory nodes,delete excitatory or inhibitory links,and weaken excitatory or inhibitory coupling strength in critical excitatory-inhibitory network.Decreasing the excitation,the change of the dynamic range is most dramatic as the same as previous experimental results.However,decreasing inhibition has no effect on the criticality in excitatory-inhibitory network.

    Key words:criticality,excitable network,dynamic range

    1 Introduction

    Self-organized critical states are found for many complex systems in nature,[1?2]from earthquakes to neuronal avalanches.[3?10]Several lines of evidence point to the existence of such critical states in brain activity.[11?22]The critical avalanches were observed by in vitro and in vivo experiments.[23?30]It was shown that neuronal avalanches may play an important role in cortical information processing and storage.[28,31?32]It was suggested that cortical networks that generate neuronal avalanches bene fit from a maximized dynamic range.[33?37]

    The excitable networks can be used as a simpli fi ed model to study the criticality in neural networks.[38?39]A model of an excitable network on Erd?s-R′enyi(ER)random graphs was proposed by Kinouchi and Copelli(KC model).[40]It is based on the branching process,which was used to understand the mean- field behavior of selforganized criticality.[41]It was shown that the criticality occurs at branching ratio is one and the dynamic range is maximized at critical point.

    In realistic neural systems,the excitatory and inhibitory neurons coexist in networks.[42?44]The behavior of excitatory-inhibitory(EI)network is critical for understanding how neural circuits produce cognitive function,[45]and inhibition is always included in neural models.[19,39,46]The balance of excitation and inhibition has been shown that it plays an important role in the neuron discharge rate,[47]dynamic range of response,[48]and temporal structure of the spontaneous avalanche activity.[19,49]Prominent examples of balance include the intracellular recordings performed by Ferster[50]in simple and complex cells of the visual cortex in the cat.The inhibitory elements can be studied in the framework of KC model.In Ref.[51]network consists of the excitatory layer and the inhibitory layer which have the same coupling strength.The critical point is determined by the fraction of the excitatory elements.

    The strength of inhibitory couplings is an attractive feature of neural networks.The inhibitory strength is several times larger than the excitatory strength.This is physiologically realistic,since inhibitory synapses are often closer to the cell body of postsynaptic neurons.[46]In Ref.[35]the criticality is changed dramatically by using antagonists to change the efficacy of synaptic couplings in experiment.It was shown that balanced excitation and inhibition establishes criticality,which maximizes the dynamic range.The change of the couplings was modeled by adjusting the branching ratio in an excitatory excitable network.However,little is known about the impact of changing the excitation and inhibition in Einetwork.

    In this paper,we consider a model of Einetwork on the ER graphs using the KC model.We investigate the effect of inhibitory signal’s strength on criticality and dynamic range.We show that the critical point is not affected by inhibitory signal’s strength,and stronger inhibitory signal decreases the dynamic range.Moreover,to simulate the efficacy of antagonists,we change the network in three ways:removing excitatory/inhibitory nodes,deleting excitatory/inhibitory links,and weakening excitatory/inhibitory coupling strength.We show that the inhibition does not a ffect network criticality and sensitivity.We also conduct an analytic study of Einetwork to explain the effect of inhibition.

    2 The Excitatory-Inhibitory Network Model

    The EI excitable network model includes both inhibitory elements and excitatory elements.[48]The signal transferred from an excitatory node increases the probability that the neighbors of this node are excited,while the signal from an inhibitory node decreases this probability.

    Each excitable element i=1,...,N has n states:si=0 is the resting state,si=1 corresponds to excitation and the remaining si=2,...,n?1 are refractory states.To be precise,at discrete times t=0,1,...(?t=1 ms)the states of the nodes siare updated as follows:

    (i)If node i is in the resting state,si=0,it can be respectively inhibited by inhibitory neighbor j with probability,when node j is in excited state sj=1.In this case,the state of node i will remain 0 in the next time step.Otherwise,it can be excited with probabilityby excitatory neighbor l which is in excited states,or independently by an external stimulus with probability λ(λ =1?exp(?η)).The maximum transfer probabilities of excitatory and inhibitory nodes are denoted by pemaxandThe probabilityoris a random variable with uniform distribution in the interval[0,pimax]or[0,pemax].Each element receives external signals independently,that is,we have a Poisson process for each element.

    (ii)After excitation the dynamics of nodes are deterministic:if si=1,then in the next time step its state changes to si=2,and so on until the state si=n?1 leads to the resting state si=0.So the node is a cyclic cellular automaton.

    The system consists of N elements,which are coupled by an ER random network.We randomly choose Ne=feN nodes as excitatory elements,0

    The local branching ratio of excitatory nodes

    corresponds to the average number of excitations created in the next time step by the excitatory node j,where each excitatory element j is randomly connected to Kjneighbors.The average branching ratio σ = ?σj?is the relevant control parameter.

    The network instantaneous activity is characterized by the density ρtof active nodes(s=1)at a given time t.The average activity is defined as

    where T is a large time window(of the order of 103step).As a function of the stimulus intensity η,networks have a minimum response F0and a maximum response Fmax.Variations in η can be robustly coded by variations in F,discarding stimuli that are too weak to be distinguished from F0or too close to saturation.The range[η0.1,η0.9]is found from its corresponding response interval[F0.1,F0.9],where

    The dynamic range?is defined as the range of stimuli(measured in dB)[40]

    This choice of a 10%?90%interval is arbitrary,but is standard in the literature and does not a ffect our results.[40]

    3 Simulations and Results

    We first study how the strength of inhibitory couplings changes the transition of the network’s average activity.The coupling strengths are determined by the values of pemaxand pimax.For excitatory couplings,we set pemax=2σ/K.Then the mean value of peis σ/K.To study the effects of the strength of inhibitory couplings in the model,we set the maximal inhibitory probability as=2mσ/K.To simulate that inhibitory coupling strength is larger than the excitatory coupling strength,we set m>1 in simulations.We input external stimulus for 1000 steps,then remove the stimulus and calculate the average activity Fη→0.

    Fig.1 (Color online)Response Fη→0versus σ on Einetworks for different m with N=105,K=10,n=5,fe=4/5.The inset shows the instantaneous density of active sites for subcritical(square),critical(circle),and supercritical(triangle)states as function of time.Three different runs for each case are presented.

    Subcritical states have a negligible average activity,while supercritical states have a large average activity.As can be seen in the inset of Fig.1,in subcritical state,the network becomes silent quickly.In supercritical state,network presents self-sustained activity.In the critical state,the duration of activity has a large variance.At this state,the average activity becomes into non-zero.We plot the response curves F versus σ for various inhibitory signal strength m.In Fig.1,one can see that all the curves of F show the transition at the same position.The critical value of the σ is 1.25 which is agree with the value obtained in networks with pemax=We obtained that the critical points are not changed as the strength of inhibitory couplings increases.

    We also investigate the effects of inhibitory strength on the response of Einetwork to stimulus.The average activity F is used as the response of networks to stimulus.Figure 2 shows the relation between the response of the network and the stimulus strength for m=5.The results show that the Einetworks can exhibit the same features of response curve as in excitatory networks.When σ < σc,the system is relatively insensitive.When σ =0.85< σc,the slope(k)of response curve is near to 1,when σ = σc,the slope comes to 0.5,sensitivity is enlarged because weak stimuli are ampli fi ed.As a result,the dynamic range increases monotonically with σ.When σ > σc,the spontaneous activity F0masks the presence of weak stimuli,the network maintains a large response in week stimuli.[40]Therefore dynamic range decreases.The response curves for different m in critical states are shown in the inset of Fig.2.The response curve is changed slightly.The effect of inhibitory strength m on average activity F may lead to slight change in the dynamic range.

    Fig.2(Color online)Response curves(mean fi ring rate versus stimulus rate)from σ=0.85 to 1.65(in intervals of 0.1)with m=5.Inset:response of the critical network with different m.fe=4/5,N=105,K=10,n=5.

    We obtain the dynamic range versus the branching ratio for different inhibitory strength.In the simulation,we approximate η0.9to 1.The curves are shown in Fig.3.As the same as excitatory networks,the dynamic range peaks at the critical point.One can see that,the dynamic range is decreased with the inhibitory strength m.As shown in inset,the error of dynamic does not overlap for different inhibitory coupling strength.We can conclude that increasing the inhibitory coupling strength do not a ffect the critical point,and causing slightly decrease of dynamic range.As the error of dynamic range is weak,it is not shown in later section.

    Fig.3 (Color online)Dynamic range versus branching ratio for different values of inhibitory coupling strength m.The points represent simulation results with m=1(square),m=5(circle),and m=10(triangle)on Einetworks.The lines correspond to theoretical results from Eqs.(20)and(21)with m=1(black),m=5(red),m=10(blue).The inset presents the error of dynamic range for different inhibitory coupling strength.

    Fig.4 (Color online)The effect of decreasing the excitation(square)and inhibition(circle)on dynamic range.The triangle points represent the network’s dynamic range in critical state.(a)Removing a fraction(r)of excitatory or inhibitory nodes.(b)Deleting a fraction(d)of excitatory or inhibitory links.(c)Weakening a fraction(w)of excitatory or inhibitory coupling strength in critical network.

    In order to modeling the experiments in Ref.[33]that using antagonists to change the excitation and inhibition,we change the network in three ways:removing a fraction(r)of excitatory or inhibitory nodes(0

    Figure 4 shows that when reducing the excitation by each of the three methods,the dynamic range?decreases.Each method of reducing the excitation can recover the phenomenon in experiments.[33]As excitatory elements are removed,the change of the dynamic range is most dramatic.The second and third method of reducing the excitation has the same result.

    Most interestingly,none of the three methods of reducing inhibition can change the dynamic range.Therefore the model of EI excitable network cannot recover the experimental phenomenon of changing the inhibition.In the following we present an analytic treatment of the effect of inhibition on the criticality.

    4 Analytical Results

    4.1 Increasing the Inhibitory Coupling Strength

    In the mean- fi led approximation,the average degree K is used to replace the degree Ki.[40,51?52]The excitatory probability peijas the average value σ/K,and the inhibitory probability piijas mσ/K.Therefore,the evolution of the response F is described by the following meanfield map,

    where

    is the approximate probability that a randomly selected site is in the resting state(s=0).(1?mσFt/K)fiKis the probability that a resting node at time t will not be inhibited at the next time step by any of its inhibitory neighbors,and[1?(1?σFt/K)feK]is the probability of being excited by at least one of its excitable neighbors.In the stationary state,Ft+1=Ft=F.When external stimuli η=0,the response function F is given by the solution of

    Then we linearize the terms(1? mσF/K)fiKand(1?σF/K)feKto the first order using binomial expansion,

    The order parameter behavior is

    In the right terms,the parameter associated with the inhibition(fi,m)are multiplied with the second or third order of response F,while the parameter associated with the excitation(fe)can be multiplied with the first,second and third order of F.One solution of Eq.(10)is F=0,when F>0,Up to the first order,more terms that associated with the excitation are retained:

    Then the response function F is given by the solution of

    When the control parameter σ → 1/fe,the activity F→0.Therefore,the critical point is

    and F=0 when σ<1/fe.The result does not depend on the average number of neighbours K.The parameter used in Fig.1 is fe=4/5,so the critical point is σc=1.25 for different values of m.

    The analytic results show that the critical point is independent of the strength of the inhibitory signal.The theoretical result agrees with the simulations.

    Next we analyze the effect of the inhibitory signal strength on the dynamic range.In the limit F→0,the response function in Eq.(5)can be approximated by

    Given response F=F0.1we can obtain the stimulus η0.1

    For η0.9,Eq.(14)is invalid because it applies only to F → 0.In order to simplify the analysis,we set η0.9to 1.It has been employed in Refs.[40,51].Using Eq.(4),we have

    We expand the terms exp(feσF0.1)and exp[(mfi+fe)σF0.1]in Eq.(16)to the second order

    In the limit of F→0,the dynamic range is

    Up to the first order,?follows the equation,

    For a system with refractory time n,the maximal response Fmax=1/n.According to Eqs.(3)and(12),we have

    When σ≤1/fe,

    We estimate the theoretical results of dynamic range using Eqs.(20)and(21).The inhibitory signal strength is in the term of F20.1which is relatively small in?as shown in Eq.(20).The theoretical results are shown as the curve in Fig.3.The curves are in agreement with the simulations,that the dynamic range is taken to the maximum value in the critical state,and the increase of inhibitory strength can decrease the dynamic range.

    Furthermore,the analytic treatment is more suitable for the regular random network.In the regular random network,nodes are connected randomly but each node has the same number of neighbors.[53]The simulation results are also in agreement with the theoretical predications,as shown in Fig.5.

    4.2 Reducing Excitation and Inhibition

    For analysis of simulate the experiment in Ref.[33],we first remove a fraction(r)of excitatory nodes.The evolution of the average response F is described by the following mean- field map,

    Removing the excitatory nodes decrease the probability of being excited by at least one of its remaining excitable neighbors.When external stimuli η=0,the response function F is given by the following solution in the stationary state(Ft+1=Ft=F),

    Following the method used in Subsec.4.1,the response function F is given by the solution of

    When the control parameter σ → 1/(1?r)fe,the activity F→0.Therefore,the critical point is

    σc<1/fe,so network becomes into subcritical state.

    Removing a fraction(r)of inhibitory nodes,the evolution of the average response F is described as,

    A slight change in the probability of inhibition,changing the critical point to σc=1/fe,which equal to original network’s branching ratio.The theoretical prediction fits the change of critical point.The response curves are presented in Fig.6(a).As can be seen,removing the excitatory nodes increases the critical point.Therefore,the critical state becomes a subcritical state.However,removing the inhibitory nodes does not change the critical branching ratio.

    Deleting a fraction d of excitatory/inhibitory links,leads to the following mean- fi led map respectively:

    Their critical point is similar to removing nodes.When deleting the excitatory links,the critical point is σc=1/(1 ? r)fe,when deleting the inhibitory links,the critical point is σc=1/fe.Figure 6(b)shows the network response curves as a function of branching ratio.The change of critical points is in agreement with predictions from our theoretical treatment.

    As the excitatory/inhibitory coupling strength are weakened by a fraction w,the excitatory/inhibitory coupling strength,their average response F is respectively given by the solution of:

    The corresponding critical points for them are σc=1/(1 ? r)fe,and σc=1/fe.This is consistent with the simulation results shown in Fig.6(c).

    Moreover,the dynamic range of Einetwork with reduced inhibition is given by the following solution

    where α=r,d,w for three methods of reducing inhibition respectively.The fraction of decreasing the inhibition is in the term of F02.1,which is relatively small in?.

    Fig.6(Color online)Response curves(mean fi ring rate versus stimulus rate)for different fraction of decreasing the excitation(square)and inhibition(circle).The triangle points represent the network’s mean fi ring rates in critical state.(a)In the case of removing a fraction(r)of excitatory nodes or inhibitory nodes,the r=0.1,0.2 are plotted separately.(b)In the case of deleting a fraction(d)of excitatory or inhibitory links,the d=0.1,0.2 are plotted separately.(c)In the case of weakening a fraction(w)of excitatory or inhibitory coupling strength,the w=0.1,0.2 are plotted separately.

    Through the analytic treatment of three methods of reducing the efficacy of excitation and inhibition,we show that reducing the excitation of the network increases the critical value of σ,and changes the network in the critical state into the subcritical state.So the dynamic range is reduced.However,decreasing inhibition has no influence on critical point on Einetwork.

    5 Discussions

    In summary,we studied the role of inhibition in the criticality of Einetwork of excitable elements.We show that the critical point is not a ffected by inhibitory signal strength,and the increase of inhibitory signal strength will decrease the dynamic range slightly.Moreover,we use three different methods of reducing excitation and inhibition in order to simulating the experiment in Ref.[33].Using a simulation and analysis,we show that reducing the excitation can make the critical state of the network into a subcritical state,thus dynamic range is decreased as the same as experiments.However reducing the inhibition cannot change network’s criticality and dynamic range.

    The results of the modeling study suggest that the experimental results in Ref.[33]cannot be understood by the change of the inhibition in excitable networks.We use the Poisson process to replace the dynamics of synapses,therefore time effect of spiking is ignored.Perhaps a better compromise between larger dynamic range and biological realism would be dynamics of synapses.Moreover,the process of stimulating nodes by neighbors causes the effect of inhibition is week.More sophisticated modeling studies are needed to enhance the effect of inhibition.The present model has the virtue of enabling analytical results that provide a benchmark for the performance of networks with other topologies.The scale-free small-world networks re fl ect important functional information about brain states.[54]The existence of functional hubs was observed by experiments,and perturbation of a single hub influenced the entire network dynamics.[55]In the future,verifying hypothesis that the inhibitory hubs may have an impact on criticality in a scale-free network would be a meaningful work.

    国产成人a区在线观看| 亚洲精品美女久久久久99蜜臀| 欧美激情久久久久久爽电影| 一个人观看的视频www高清免费观看| 亚洲成人精品中文字幕电影| 99精品在免费线老司机午夜| 久久久久久久精品吃奶| 丁香六月欧美| 午夜免费激情av| 国产伦精品一区二区三区视频9 | 国产av麻豆久久久久久久| 日本在线视频免费播放| 99精品久久久久人妻精品| 嫩草影院精品99| www.999成人在线观看| 日本黄色视频三级网站网址| 亚洲一区二区三区不卡视频| 国产激情欧美一区二区| 国产精品久久电影中文字幕| 久久久精品欧美日韩精品| 九九在线视频观看精品| 国产成人av教育| 午夜福利欧美成人| 国产亚洲精品av在线| 婷婷丁香在线五月| 欧美乱妇无乱码| 黄色视频,在线免费观看| 国产三级在线视频| 久久久久久九九精品二区国产| 婷婷丁香在线五月| 亚洲aⅴ乱码一区二区在线播放| 国产一区在线观看成人免费| 一个人看的www免费观看视频| 日韩欧美国产在线观看| 在线观看日韩欧美| 免费搜索国产男女视频| 搡女人真爽免费视频火全软件 | 成人高潮视频无遮挡免费网站| 一本久久中文字幕| 久久99热这里只有精品18| 99热这里只有是精品50| 国内精品久久久久久久电影| 51午夜福利影视在线观看| 九色成人免费人妻av| 亚洲精品色激情综合| 国产伦精品一区二区三区视频9 | 亚洲成av人片在线播放无| 蜜桃亚洲精品一区二区三区| 51国产日韩欧美| 精品欧美国产一区二区三| 亚洲内射少妇av| 在线视频色国产色| 日韩中文字幕欧美一区二区| 欧美极品一区二区三区四区| 国产亚洲欧美98| 两人在一起打扑克的视频| 亚洲国产精品成人综合色| 亚洲av免费在线观看| 国产精品久久久人人做人人爽| 国产精品影院久久| 国内少妇人妻偷人精品xxx网站| 精品一区二区三区视频在线观看免费| 欧美日韩瑟瑟在线播放| 麻豆国产av国片精品| 一个人免费在线观看电影| 国产老妇女一区| 好看av亚洲va欧美ⅴa在| 校园春色视频在线观看| 国产精品美女特级片免费视频播放器| 母亲3免费完整高清在线观看| 国产精品爽爽va在线观看网站| 一进一出好大好爽视频| 国产三级中文精品| 又紧又爽又黄一区二区| 免费av观看视频| 欧美最黄视频在线播放免费| 久久久久久久亚洲中文字幕 | 黄片大片在线免费观看| 琪琪午夜伦伦电影理论片6080| 国产三级中文精品| 小说图片视频综合网站| 一个人看视频在线观看www免费 | 精品国产三级普通话版| 无限看片的www在线观看| 亚洲久久久久久中文字幕| 熟女人妻精品中文字幕| 热99在线观看视频| 国产午夜福利久久久久久| 制服人妻中文乱码| 色视频www国产| 一本一本综合久久| 免费人成视频x8x8入口观看| 噜噜噜噜噜久久久久久91| 高清日韩中文字幕在线| 村上凉子中文字幕在线| 日本黄大片高清| 欧美不卡视频在线免费观看| 中文字幕高清在线视频| 欧美大码av| 午夜久久久久精精品| 国产欧美日韩一区二区精品| 51午夜福利影视在线观看| 欧美性猛交黑人性爽| 黄片小视频在线播放| 男女下面进入的视频免费午夜| 日本免费一区二区三区高清不卡| 国产一级毛片七仙女欲春2| 亚洲av二区三区四区| 欧美区成人在线视频| 精品一区二区三区av网在线观看| 亚洲天堂国产精品一区在线| 亚洲第一电影网av| 精品99又大又爽又粗少妇毛片 | 又爽又黄无遮挡网站| 男人和女人高潮做爰伦理| 欧美成人a在线观看| 午夜老司机福利剧场| 97超视频在线观看视频| 国产极品精品免费视频能看的| 国产色婷婷99| 亚洲第一电影网av| 亚洲男人的天堂狠狠| 久久伊人香网站| 在线播放国产精品三级| 精品久久久久久久久久久久久| 在线十欧美十亚洲十日本专区| 国产探花在线观看一区二区| 日韩大尺度精品在线看网址| 成人欧美大片| 看黄色毛片网站| 国产高清videossex| 国产成人欧美在线观看| 成年免费大片在线观看| 亚洲欧美精品综合久久99| 亚洲第一欧美日韩一区二区三区| 亚洲精品久久国产高清桃花| 在线观看午夜福利视频| 亚洲国产精品成人综合色| 啪啪无遮挡十八禁网站| 日日干狠狠操夜夜爽| 一夜夜www| 国产高清有码在线观看视频| 18禁在线播放成人免费| 丰满乱子伦码专区| 国产三级黄色录像| 超碰av人人做人人爽久久 | 99精品欧美一区二区三区四区| 他把我摸到了高潮在线观看| 3wmmmm亚洲av在线观看| 国产真实伦视频高清在线观看 | 毛片女人毛片| 久99久视频精品免费| 给我免费播放毛片高清在线观看| 五月玫瑰六月丁香| 中文字幕熟女人妻在线| 90打野战视频偷拍视频| 美女 人体艺术 gogo| 国产精品 国内视频| 成年女人永久免费观看视频| 免费高清视频大片| 欧美性猛交黑人性爽| 国产黄色小视频在线观看| 日本a在线网址| 亚洲av第一区精品v没综合| 亚洲欧美日韩卡通动漫| 亚洲成av人片免费观看| 在线观看日韩欧美| 性欧美人与动物交配| 高清毛片免费观看视频网站| 俺也久久电影网| 欧美日韩福利视频一区二区| 欧美丝袜亚洲另类 | 1000部很黄的大片| 国产精品1区2区在线观看.| 欧美最新免费一区二区三区 | 一级作爱视频免费观看| 欧美黄色淫秽网站| 观看免费一级毛片| 好看av亚洲va欧美ⅴa在| 一级毛片女人18水好多| 国产伦精品一区二区三区四那| 免费人成在线观看视频色| 日韩欧美在线乱码| 国语自产精品视频在线第100页| 人妻夜夜爽99麻豆av| 国产午夜精品久久久久久一区二区三区 | 国内少妇人妻偷人精品xxx网站| av专区在线播放| 亚洲人成网站高清观看| 国产欧美日韩精品一区二区| 免费av观看视频| 又黄又爽又免费观看的视频| 免费av不卡在线播放| 欧美日韩黄片免| 人人妻人人澡欧美一区二区| 日韩欧美一区二区三区在线观看| 亚洲精品色激情综合| 超碰av人人做人人爽久久 | 国产高清有码在线观看视频| 亚洲黑人精品在线| 成人无遮挡网站| 女警被强在线播放| 国产精品久久久久久久久免 | 亚洲av日韩精品久久久久久密| 亚洲熟妇熟女久久| 国产一区二区亚洲精品在线观看| 日韩欧美免费精品| 日韩欧美精品免费久久 | 久久性视频一级片| 可以在线观看的亚洲视频| 狂野欧美白嫩少妇大欣赏| 黄片大片在线免费观看| 在线免费观看不下载黄p国产 | 精品人妻偷拍中文字幕| 午夜影院日韩av| 色综合亚洲欧美另类图片| 在线免费观看的www视频| 亚洲熟妇熟女久久| 色精品久久人妻99蜜桃| 黄色片一级片一级黄色片| 色综合欧美亚洲国产小说| 丰满人妻熟妇乱又伦精品不卡| 天堂av国产一区二区熟女人妻| 日韩大尺度精品在线看网址| 亚洲最大成人中文| 国产精品影院久久| 五月伊人婷婷丁香| 亚洲狠狠婷婷综合久久图片| 免费观看人在逋| 母亲3免费完整高清在线观看| 美女 人体艺术 gogo| 日韩欧美国产在线观看| 韩国av一区二区三区四区| 黄色成人免费大全| 女人高潮潮喷娇喘18禁视频| 他把我摸到了高潮在线观看| 免费看美女性在线毛片视频| 成人午夜高清在线视频| 久久精品影院6| 中文字幕熟女人妻在线| 亚洲欧美一区二区三区黑人| 性色avwww在线观看| 久久伊人香网站| 日韩大尺度精品在线看网址| 韩国av一区二区三区四区| 国产精品国产高清国产av| 在线a可以看的网站| 欧美一区二区精品小视频在线| 国产真实伦视频高清在线观看 | 1024手机看黄色片| 精品久久久久久久久久久久久| 欧美另类亚洲清纯唯美| 可以在线观看毛片的网站| 欧美乱码精品一区二区三区| 一个人看视频在线观看www免费 | 欧美日韩乱码在线| 久久久久国内视频| x7x7x7水蜜桃| 日本三级黄在线观看| 精品久久久久久久人妻蜜臀av| 亚洲国产精品合色在线| 午夜福利在线观看免费完整高清在 | 精品电影一区二区在线| 亚洲精品一区av在线观看| 一级a爱片免费观看的视频| 国产三级在线视频| 午夜福利18| 极品教师在线免费播放| 最近在线观看免费完整版| 亚洲天堂国产精品一区在线| 国产精品亚洲美女久久久| 身体一侧抽搐| 亚洲激情在线av| 日本a在线网址| 97超级碰碰碰精品色视频在线观看| 国产成人av激情在线播放| 国产精品乱码一区二三区的特点| 欧美乱码精品一区二区三区| 三级男女做爰猛烈吃奶摸视频| 精品人妻1区二区| 男女下面进入的视频免费午夜| 免费观看人在逋| 好男人在线观看高清免费视频| 狂野欧美激情性xxxx| 亚洲男人的天堂狠狠| 9191精品国产免费久久| 变态另类成人亚洲欧美熟女| 日韩人妻高清精品专区| 少妇的逼好多水| 精品欧美国产一区二区三| 久久人妻av系列| 又紧又爽又黄一区二区| 少妇人妻一区二区三区视频| 欧美黄色片欧美黄色片| 午夜老司机福利剧场| 精品99又大又爽又粗少妇毛片 | 宅男免费午夜| 久久天躁狠狠躁夜夜2o2o| 亚洲人成网站在线播| 特大巨黑吊av在线直播| 欧美日韩福利视频一区二区| 法律面前人人平等表现在哪些方面| 搡老熟女国产l中国老女人| 国产精品影院久久| 90打野战视频偷拍视频| 久久久久国内视频| 亚洲精品影视一区二区三区av| 亚洲人成伊人成综合网2020| 亚洲av成人精品一区久久| 免费av不卡在线播放| 3wmmmm亚洲av在线观看| 18禁在线播放成人免费| 成人av在线播放网站| 国产aⅴ精品一区二区三区波| 欧美乱色亚洲激情| 午夜福利高清视频| 国产亚洲欧美在线一区二区| 欧美成狂野欧美在线观看| 国产又黄又爽又无遮挡在线| 一级毛片高清免费大全| 免费av不卡在线播放| 美女大奶头视频| 欧美性猛交黑人性爽| 亚洲成av人片免费观看| 国产久久久一区二区三区| netflix在线观看网站| 免费在线观看影片大全网站| 色综合亚洲欧美另类图片| 日本免费a在线| 三级毛片av免费| 国内精品久久久久精免费| 免费av不卡在线播放| 五月伊人婷婷丁香| 18禁在线播放成人免费| 女警被强在线播放| 国产色婷婷99| 亚洲人成网站在线播放欧美日韩| 一级a爱片免费观看的视频| 听说在线观看完整版免费高清| 欧美丝袜亚洲另类 | 亚洲美女黄片视频| 国产精品爽爽va在线观看网站| 18禁黄网站禁片午夜丰满| 久久国产精品人妻蜜桃| 免费看光身美女| 伊人久久大香线蕉亚洲五| 亚洲成人久久性| 久久精品综合一区二区三区| 桃色一区二区三区在线观看| 亚洲最大成人中文| 午夜福利欧美成人| 天天添夜夜摸| 成熟少妇高潮喷水视频| 女同久久另类99精品国产91| 国产高清视频在线观看网站| 日韩有码中文字幕| 看片在线看免费视频| 又粗又爽又猛毛片免费看| 天堂动漫精品| 男人的好看免费观看在线视频| 成人无遮挡网站| 男插女下体视频免费在线播放| 亚洲人成电影免费在线| 国产欧美日韩一区二区精品| 国产 一区 欧美 日韩| 日韩中文字幕欧美一区二区| 日韩欧美精品v在线| 亚洲av美国av| 最近最新免费中文字幕在线| 成年女人毛片免费观看观看9| 欧美高清成人免费视频www| 亚洲真实伦在线观看| 免费大片18禁| 日本撒尿小便嘘嘘汇集6| av专区在线播放| 国产三级中文精品| 天天添夜夜摸| 操出白浆在线播放| 欧美丝袜亚洲另类 | 国产高清videossex| 网址你懂的国产日韩在线| 18禁黄网站禁片免费观看直播| 日本a在线网址| 最新在线观看一区二区三区| 在线国产一区二区在线| 在线a可以看的网站| 国产精品一及| 最近最新免费中文字幕在线| 校园春色视频在线观看| 波野结衣二区三区在线 | 免费看a级黄色片| 五月玫瑰六月丁香| 国产精华一区二区三区| 国产精品永久免费网站| 国产精品1区2区在线观看.| www日本黄色视频网| 免费看美女性在线毛片视频| 中文字幕精品亚洲无线码一区| 国产高清三级在线| 国产精品亚洲一级av第二区| 999久久久精品免费观看国产| 九九久久精品国产亚洲av麻豆| 最近最新中文字幕大全免费视频| 欧美中文日本在线观看视频| 看黄色毛片网站| 三级国产精品欧美在线观看| 18禁国产床啪视频网站| 老鸭窝网址在线观看| 亚洲久久久久久中文字幕| 欧美+日韩+精品| 日本与韩国留学比较| 极品教师在线免费播放| 在线观看日韩欧美| 黑人欧美特级aaaaaa片| 麻豆成人av在线观看| 国内揄拍国产精品人妻在线| 久久久久久久精品吃奶| 亚洲第一欧美日韩一区二区三区| 一本综合久久免费| 村上凉子中文字幕在线| or卡值多少钱| 两人在一起打扑克的视频| 亚洲无线观看免费| 国产野战对白在线观看| 午夜亚洲福利在线播放| 99热这里只有精品一区| 成年女人看的毛片在线观看| 老汉色av国产亚洲站长工具| 少妇人妻精品综合一区二区 | 国产爱豆传媒在线观看| 青草久久国产| 91久久精品电影网| 久久精品影院6| 黄片大片在线免费观看| 欧美丝袜亚洲另类 | 国产精品久久久人人做人人爽| a在线观看视频网站| 亚洲人成网站高清观看| 身体一侧抽搐| 十八禁网站免费在线| 国产亚洲精品久久久com| 中文字幕高清在线视频| 久久久成人免费电影| 在线看三级毛片| 成人特级黄色片久久久久久久| 亚洲av电影在线进入| 日本撒尿小便嘘嘘汇集6| 国产探花极品一区二区| 一区福利在线观看| 免费搜索国产男女视频| 怎么达到女性高潮| 五月伊人婷婷丁香| 国产美女午夜福利| 婷婷亚洲欧美| 国产精品免费一区二区三区在线| 非洲黑人性xxxx精品又粗又长| 特级一级黄色大片| 18禁黄网站禁片免费观看直播| www.www免费av| 国产精品99久久久久久久久| 女生性感内裤真人,穿戴方法视频| 欧美另类亚洲清纯唯美| 久久久久久人人人人人| 少妇裸体淫交视频免费看高清| xxx96com| 亚洲自拍偷在线| 一本一本综合久久| 内射极品少妇av片p| 午夜免费观看网址| 黄片大片在线免费观看| 内射极品少妇av片p| 五月玫瑰六月丁香| 亚洲人成伊人成综合网2020| 欧美日韩综合久久久久久 | 亚洲国产欧洲综合997久久,| 国产中年淑女户外野战色| 久久久精品大字幕| 欧美又色又爽又黄视频| 久久精品91无色码中文字幕| 99久久精品一区二区三区| 午夜a级毛片| 可以在线观看的亚洲视频| 老熟妇乱子伦视频在线观看| 国产精品,欧美在线| 操出白浆在线播放| 国产毛片a区久久久久| 久久精品影院6| 欧美另类亚洲清纯唯美| 欧美一区二区精品小视频在线| 成人午夜高清在线视频| 国产精品电影一区二区三区| 久久精品国产自在天天线| 99精品久久久久人妻精品| 成人国产综合亚洲| 有码 亚洲区| 高清在线国产一区| 女人高潮潮喷娇喘18禁视频| 男插女下体视频免费在线播放| 久久精品亚洲精品国产色婷小说| 日本精品一区二区三区蜜桃| 成人鲁丝片一二三区免费| 日本黄大片高清| 久久久久久久精品吃奶| 看片在线看免费视频| 精品国产美女av久久久久小说| 少妇人妻精品综合一区二区 | 久久精品夜夜夜夜夜久久蜜豆| 国产麻豆成人av免费视频| www日本在线高清视频| 舔av片在线| 国产精品野战在线观看| 免费av毛片视频| 精品99又大又爽又粗少妇毛片 | 女人十人毛片免费观看3o分钟| 久久久久久久亚洲中文字幕 | www日本黄色视频网| bbb黄色大片| 午夜福利高清视频| 国产欧美日韩一区二区精品| 欧美最新免费一区二区三区 | 日韩免费av在线播放| 午夜免费激情av| 国产精品1区2区在线观看.| av视频在线观看入口| 国产熟女xx| 久久久久久国产a免费观看| 国产色爽女视频免费观看| avwww免费| 国产日本99.免费观看| 日本黄大片高清| 成人午夜高清在线视频| 国产aⅴ精品一区二区三区波| 国产不卡一卡二| 欧美丝袜亚洲另类 | 18美女黄网站色大片免费观看| 小蜜桃在线观看免费完整版高清| 波多野结衣高清作品| 亚洲av不卡在线观看| 国产乱人伦免费视频| 男女之事视频高清在线观看| 国产欧美日韩精品一区二区| 99精品欧美一区二区三区四区| 熟女少妇亚洲综合色aaa.| www日本黄色视频网| 国产69精品久久久久777片| 国产三级中文精品| 国产麻豆成人av免费视频| ponron亚洲| 精品欧美国产一区二区三| 全区人妻精品视频| 色精品久久人妻99蜜桃| 国产精品一区二区三区四区免费观看 | 国产探花在线观看一区二区| 国产精品,欧美在线| 亚洲不卡免费看| 国产真实伦视频高清在线观看 | 久久国产精品影院| 免费人成视频x8x8入口观看| 日韩精品中文字幕看吧| 精品免费久久久久久久清纯| netflix在线观看网站| 午夜福利免费观看在线| a级一级毛片免费在线观看| 久久精品影院6| 国产成人av激情在线播放| 精品乱码久久久久久99久播| 中文字幕人妻熟人妻熟丝袜美 | 色视频www国产| 欧美日本亚洲视频在线播放| 非洲黑人性xxxx精品又粗又长| 日韩人妻高清精品专区| 18禁黄网站禁片午夜丰满| 99久久久亚洲精品蜜臀av| 一本一本综合久久| 国产一级毛片七仙女欲春2| 天天躁日日操中文字幕| 亚洲国产日韩欧美精品在线观看 | 中文在线观看免费www的网站| 男人舔女人下体高潮全视频| 久久草成人影院| 日韩成人在线观看一区二区三区| 在线看三级毛片| 日本五十路高清| 免费在线观看成人毛片| 国产精品久久久久久亚洲av鲁大| 亚洲人与动物交配视频| 日韩免费av在线播放| 精品熟女少妇八av免费久了| 免费在线观看影片大全网站| 好男人在线观看高清免费视频| 久久精品91蜜桃| 久久性视频一级片| 国产99白浆流出| 国产精品嫩草影院av在线观看 | 99精品欧美一区二区三区四区| 国产aⅴ精品一区二区三区波| 免费电影在线观看免费观看| 国产久久久一区二区三区| 欧美av亚洲av综合av国产av| 国产v大片淫在线免费观看| 亚洲乱码一区二区免费版| 黄色片一级片一级黄色片| 伊人久久大香线蕉亚洲五| 女警被强在线播放| 亚洲真实伦在线观看| 久久久国产成人精品二区| 国产一区在线观看成人免费| 欧美另类亚洲清纯唯美| 欧美bdsm另类| 国产av一区在线观看免费| 99热只有精品国产| 蜜桃久久精品国产亚洲av| 神马国产精品三级电影在线观看| 在线观看日韩欧美| 免费在线观看影片大全网站|