• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Spinor Approach to the SU(2)Clebsch-Gordan Coefficients?

    2019-07-16 12:29:22LingDiYang楊靈迪andFaMinChen陳發(fā)敏
    Communications in Theoretical Physics 2019年6期

    Ling-Di Yang(楊靈迪)and Fa-Min Chen(陳發(fā)敏)

    Department of Physics,Beijing Jiaotong University,Beijing 100044,China

    AbstractWe review the irreducible representation of an angular momentum vector operator constructed in terms of spinor algebra.We generalize the idea of spinor approach to study the coupling of the eigenstates of two independent angular momentum vector operators.Utilizing the spinor algebra,we are able to develop a simple way for calculating the SU(2)Clebsch-Gordan(CG)coefficients.The explicit expression for the SU(2)CG coefficients is worked out,and some simple physical examples are presented to illustrate the spinor approach.

    Key words:Clebsch-Gordan coefficients,spinors,representations

    1 Introduction

    It is well known that the finite dimensional(irreducible)representation of an angular momentum vector operator can be constructed by employing a pair of spinors.[1?2]The CG coefficients1couple the individual eigenstates of two independent angular momentum operators J1and J2to form the eigenstates of the total angular momentum operator J=J1+J2.So,if we use two independent pairs of spinors to construct the individual states of J1and J2,and take care of the coupling of these two pairs of spinors,it is possible to work out the CG coefficients.Our goal is to derive all CG coefficients using this spinor approach.It seems that this approach is simpler than the conventional approaches[5?6]for calculating the CG coefficients.

    This paper is organized as follows.In Sec.2,we briefly review the irreducible representation of the set of SU(2)generators or angular momentum vector operator using the spinor approach.The reader who is familiar with it may skip this section.In Sec.3,we present our detailed calculations on CG coefficients utilizing the spinor algebra.In Sec.4,we work out some simple physical examples to illustrate the spinor approach.Section 5 is devoted to discussions.In Appendix A,we sketch two conventional methods for calculating the SU(2)CG coefficients.

    2 Review of Representation of SU(2)

    In this section,we briefly review the spinor construction of the irreducible representation of the Lie algebra of SU(2).[1]The three generators of SU(2)or the components of angular momentum J satisfy the usual commutation relation2

    We denote the “spin up” and “spin down” spinors as ξ1and ξ2,respectively.The action of Jion ξα(α =1,2)is as follows

    And the Leibnitz rule

    is assumed.Equation(2)is equivalent to

    where J±=J1±iJ2or Jx±iJyare the usual raising and lowering operators.

    The(irreducible)(2j+1)-dimensional representation of Jican be constructed by introducing the set of basis state vectors

    with j=0,1/2,1,3/2,2,...,and m= ?j,?j+1,...,j?1,j.The physical interpretation of Eq.(6)is that it describes a state of 2j spin 1/2 particles;specifically,it describes the state of(j+m)“spin up” particles and(j?m)“spin down”particles.Using Eqs.(2)and(4),we see that the corresponding eigenvalues of J2and J3are j(j+1)and m,respectively,i.e.,

    and it is easy to show that

    The irreducible representation matricesdefined bycan be read o fffrom Eqs.(7)and(8).By Eq.(8),we see that the matrix elements ofare real and positive3If we use the following “τ-pauli” matricesto replace the σ-pauli matrices in Eqs.(2)and(3),Eqs.(7)remain unchanged,but the matrix elements(9)turn out to However,we follow the convention of Refs.[5–7]by setting the phase factor eiδ =1.,i.e.,

    Also,the matrix elements of the raising and lowering operators defined via Eqs.(14),(15),and(40)are real and positive.

    3 SU(2)CG Coefficients and Spinors

    We now consider two independent angular momentum vector operators J1and J2and their coupling.Following the idea of the last section,it is not difficult to construct the simultaneous eigenstate of J21,J22,J1z,and J2z:

    Here ηαis another independent pair of spinors.The action of J1and J2on the spinors is as follows

    and the Leibnitz rule,similar to Eq.(4),is assumed.We see that Eq.(10)is an obvious generalization of Eq.(6).In summary,the state vector ψj1j2;m1m2satisfies

    Here JA±=JAx±iJAy.Notice that ψj1j2;m1m2is also an eigenstate of Jz=J1z+J2z,the z-component of the total angular momentum

    It is useful to consider the general SU(2)transformation generated by J.It can be defined as follows.Let U=exp(iθ ·J),where θ is a vector of parameters.Using Eq.(11),we learn that

    where uβα= (eiθ·σ/2)βα,obeying u?u = 12×2and detu=1,namely

    Here ?αβ(?12= ??21= ?1)is the antisymmetric tensor.Later we will see that ?αβplays the key role for constructing the eigenstates of the total angular momentum.

    Our central task is to construct the general eigenstate ψj1j2;jmof J21,J22,J2,and Jz,as a linear superposition of ψj1j2;m1m2,

    and read o ffthe CG coefficients from the above unitary transformation.As usual,we use j and m to label the quantum numbers of J2and Jz,respectively.

    The basic strategy is to construct ψj1j2;jjfirst,with|j2?j1|≤j≤j1+j2,then use the lowering operator J?=J1?+J2?to act on it(j ? m)times to get the general state ψj1j2;jm.

    We begin by considering the special case j1=j2.In this case,the minimum j is 0.The essential observation is that the state ψj1j1;j=0,m=0must take the following form:

    (up to a normalization constant).In fact,due to the constraint of the antisymmetric tensor ?αβ,the number of“spin up” particles is exactly the same as the number of“spin down”particles,so Eq.(20)must be the spin zero state of the total angular momentum J;Or in other words,due to the second equation of Eqs.(18),(20)must transform as a scalar under the SU(2)transformation(17).This can be proved as follows:Using

    and Eq.(11),a short calculation gives

    Taking account of the equation

    we see that it is indeed the spin zero state,namely,

    Finally,notice that Eq.(20)is also the simultaneous eigenstate of J21and J22,belonging to the same eigenvalue j1(j1+1).This completes the proof.The next step is to construct ψj1j1;j=1,m=1;it must take the following form:

    More generally

    where 0≤j≤j1+j2=2j1.We are going to prove Eq.(26)a little later.

    We are now ready to construct ψj1j1;jj,without assuming j1=j2.Following the idea for constructing Eqs.(20)and(26),it is natural to propose4Similarly,one may construct ψj1j2;j(?j)as follows:

    with c a constant.If j1=j2,Eq.(27)is reduced to Eq.(26);So it is sufficient to prove Eq.(27).In Eq.(27),the part constrained by the antisymmetric tensor ?αβis obviously the “spin zero” part,while the rest part,containing[j?(j2?j1)]+[j+(j2?j1)]=2j“spin up”particles,must be the“spin j”part with m=j.It is not difficult to prove this claim:Using Eqs.(21)and(11),we see immediately that the right-hand side of Eq.(27)is annihilated by J+,

    while it is an eigenstate of Jz,belonging to the eigenvalue j,

    On account of Eq.(23),we learn that the right-hand side of Eq.(27)is indeed the eigenstate of J2,and the corresponding eigenvalue is j(j+1).

    On other hand,in Eq.(27),we have 2j1ξ-type spinors and 2j2η-type spinors,so Eq.(27)must be the simultaneous eigenstate of J21and J22.To see this,let us expand the right-hand side of Eq.(27):

    Using Eq.(10),the above expression can be converted into

    In the second line,we have set j1?r=m1and m2=j?j1+r;And

    is the normalization constant,to be given by Eq.(37).Now it is manifest that the second line of Eq.(31)is the simultaneous eigenstate of J21,J22,and Jz,and the corresponding eigenvalues are j1(j1+1),j2(j2+1),and m1+m2,respectively.

    The range of j can be determined by noting that the powers of the spinors in Eq.(27)must be non-negative integers,i.e.,

    which are nothing but

    which can be evaluated using the identity5It can be proved by Taylor expanding the equation(x+y)?n(x+y)?m=(x+y)?(n+m),where m and n are positive real numbers.

    where ni≥0(i=1,2,3).A short computation gives

    with eiγthe phase factor;We choose our phase convention by setting

    i.e.,the normalization constant c of Eq.(27)depends on the sign of(?1)j1+j2?j.

    Now the general state ψj1j2;jmcan be worked out in the standard way.Using the lower sign of the equations

    we learn that

    Using Eq.(14),we learn that

    and(J2?)j?m?rψj1j2;m1m2has a similar expression.Substituting Eqs.(31),(37),and(42)into Eq.(41),and relabeling the indices,then comparing the expression with Eq.(19),we obtain

    which is in agreement with the result in Ref.[7].

    Let us comment on our phase convention.With the choice of phase factor(38),our phase convention is identical with that of Ref.[7].In Ref.[7],the phase factor of ψj1j2;jjis fixed by requiring that

    ?or the non-vanishing CG coefficientis positive6In Ref.[7],Cj1j2m1=j1,m2;jjis written as(j1j1j2m2|j1j2jj),and(44)reads(j1j1j2m2|j1j2jj)=arg(j1j1j2m2|j1j2jj)|(j1j1j2m2|j1j2jj)|=|(j1j1j2m2|j1j2jj)|,i.e.,the phase convention is arg(j1j1j2m2|j1j2jj)=1.(See(3.5.11)of Ref.[7]).(In Re.[7],the phase factor eiδin Eq.(44)is denoted as arg(j1j1j2m2|j1j2jj)to emphasize it may depend on the quantum numbers j1,j2,and j.),i.e.,

    The above two requirements are equivalent(see Sec.3.4 and 3.5 of Ref.[7]). One can easily read o ff ourfrom Eq.(31):

    which is obviously positive.

    We see that using the antisymmetric tensor ?αβproperly,we have been able to construct ψj1j2;jjin terms of ψj1j2;m1m2with very little calculations(see Eqs.(27)and(31)),leading to a simple calculation of the explicit expression of CG coefficients(43).However,in the most conventional approach,[5]it is not that easy to construct ψj1j2;jjwhen j=j1+j2:One has to work out ψj1j2;(j1+j2)(j1+j2),ψj1j2;(j1+j2?1)(j1+j2?1),...,and ψj1j2;|j1?j2||j1?j2|step by step7Alternatively,one has to work out ψj1j2;(j1+j2)(?j1?j2), ψj1j2;(j1+j2?1)(?j1?j2+1),...,and ψj1j2;|j1?j2|(?|j1?j2|)step by step..

    In another conventional approach,[6]the strategy is to derive recursion relations for the CG coefficients.Using the recursion relations and the normalization conditions of CG coefficients,in principle one can work out all nonvanishing CG coefficients.However,the calculation is so involved that the textbook[6]says that“With enough patience we can obtain the Clebsch-Gordan coefficient of every site in terms of the coefficient of the starting site,A.”

    In summary,it is not that simple to use the conventional approaches to work out the general expression of the SU(2)CG coefficients(43).See Appendix A for a quick review for these two conventional methods of computing the CG coefficients.

    4 Simple Physical Examples

    In this section,we work out some simple physical examples using the method developed in Sec.3.We begin by considering the familiar case of the coupling of two spin 1/2 particles,such as two electrons.For j1=j2=1/2,according to Eq.(34),j has two possible values:1 or 0.If j=0,using Eq.(20)or Eq.(27),we obtain the spin singlet

    immediately.Here we have omitted the quantum numbers j1and j2.By Eqs.(37)–(39),the normalization constant is c= ?1Following the convention of Ref.[6],we will use “±” to denote “spin up” and “spin down”,respectively.defining ψ1+≡ ξ1,ψ1?≡ ξ2,ψ2+≡ η1,and ψ2?≡ η2,the singlet Eq.(45)takes the familiar form,

    Also,using Eq.(27),we learn that the spin triplet with quantum numbers j=m=1 takes the following form(the normalization constant c is obviously equal to 1):

    And the rest state vectors of spin triplet can be determined in the standard way Eq.(41);For instance,

    Similarly,

    It is a simple matter to read o ffthe CG coefficients from the above equations.

    We now turn to the case of j1=j2=1,i.e.,the coupling of two identical spin 1 particles.According to Eq.(34),j=0,1,or 2.If j=0,using Eqs.(27)and(10),or using Eq.(31)directly,we obtain

    By Eqs.(37)–(39),the normalization constant is2c=Comparing the above equation with Eq.(19)determines the corresponding CG coefficients:

    which are in agreement with the results in the textbook.[5]Similarly,by Eqs.(27)and(10),or Eq.(31),we have

    The normalization constant can be determined by using Eqs.(37)–(39);It is?c=?c=1/2 by Eqs.(37)–(39).And

    where the normalization constant c is 1/2 by our convention defined by Eqs.(37)–(39). One can use the standard way(41)to work out ψ11,(j=1)(m=0,?1)and ψ11,(j=2)(m=0,±1,?2),and read o ff the CG coefficients.Since these calculations are quite standard and straightforward,we do not present them here.

    Since the quantum numbers discussed in this section are small(j1=j2=1/2 or j1=j2=1),it is also not difficult to work out the coupling of(spin)state vectors of two identical particles by using the conventional approaches described in Appendix A.However,for arbitrary j1and j2,the spinor approach for working out the general expression(43)of CG coefficients is more convenient and efficient.

    5 Discussions

    In summary,we have derived the expression of SU(2)CG coefficients coupling two independent angular momentum vector operators utilizing the spinor algebra,and presented two simple physical examples to illustrate the spinor approach.Clearly,one can generalize this spinor approach to work out the expressions for 6j and 9j coefficients coupling three and four angular momentum vector operators,respectively.

    Appendix A:Sketches of Conventional Calculations of SU(2)CG Coefficients

    In this appendix,we briefly sketch the two conventional methods for calculating the SU(2)CG coefficients in Refs.[5]and[6],respectively.In Refs.[5–6],the overall phase factor for the CG coefficients is not specified;We shall fix the phase factor by adopting the convention of Ref.[7](see(44)).

    In the most conventional approach to CG coefficients,say for example,in Ref.[5],the first step is to assume that both j and m take the maximum value j=j1+j2=m and to construct the state vector8For convenience,we still use ψ to denote the wave functions,though they do not necessarily take exactly the same forms as that of(6)and(10).

    The only CG coefficient is

    where we have fixed the phase factor by using the convention Eq.(44).Evaluating the following equation

    gives

    Comparing the above equation with Eq.(19),one can read o ffthe corresponding CG coefficients. Similarly, one can obtain ψj1j2;(j1+j2)mby evaluating(J?)(j1+j2)?mψj1j2;(j1+j2)(j1+j2),and then one can read of the CG coefficients

    The next step is to consider

    The state vector ψj1j2;(j1+j2?1)(j1+j2?1)must be orthogonal to ψj1j2;(j1+j2)(j1+j2?1).(Recall that J2is a hermitian operator,so its two eigenstates corresponding to two different eigenvalues must be orthogonal.)Equation(A4)suggests that

    Let us fix above overall phase factor eiδby using the convention(44).Comparing Eq.(A6)with Eq.(19),we can read off the CG coefficient

    Comparing(A7)with(44)determines the phase factor eiδ=1.However,in Ref.[5],the phase factor in Eq.(59)is eiδ= ?1.This is not a problem:According to chapter 4 of Ref.[5],the state vector Eq.(A6)is defined“apart from an arbitrary choice of a phase factor”.

    One then derives ψj1j2;(j1+j2?1)mby calculating(J?)(j1+j2?1)?mψj1j2;(j1+j2?1)(j1+j2?1),and read of the CG coefficients

    Similarly,one can construct

    by noting that it must be orthogonalto both ψj1j2;(j1+j2?1)(j1+j2?2)and ψj1j2;(j1+j2)(j1+j2?2);And the overall phase factor can be fixed by using the convention(44).Then one can derive ψj1j2;(j1+j2?2)mby using the lowering operator J?to act on Eq.(A8)[(j1+j2?2)?m]times.

    Continuing in this way until j reaches the minimum value j=|j1?j2|,one can work out all CG coefficients in principle.However,the calculation for working out the general expression of SU(2)CG coefficients(43)is lengthy and complicated.

    Another conventional way is based on the recursion relations for CG coefficients.[6]We now briefly outline this method.For simplicity,we will omit the quantum numbers j1j2;For instance,we will write|j1j2;jm>as|jm>.The recursion relations can be derived by calculating the matrix elements

    in two different ways.Using(J1±+J2±)=(J?1?+J?2?),a short computation gives the recursion relations:

    In terms of our notation,the CG coefficients read

    The textbook[6]derives Eq.(63)in a slightly different way.Similarly,by evaluating the matrix elements

    we obtain conditions for non-vanishing CG coefficients

    The recursion relations(A10)and the normalization conditions

    determine all CG coefficients(up to an overall phase factor).To see this,we consider the lower signs of Eq.(A10).Note that if we set m1=j1,the first term of the right-hand side of Eq.(A10)vanishes,i.e.,

    For convenience,we use “A” and “B” to stand for <j1(m2+1)|jm>and <j1m2|j(m ? 1)>,respectively9They are the CG coefficients in the sites“A”and“B”of Fig.3.9 of Ref.[6]..We see that“B” can be expressed in terms of“A”.Here we treat“A” as a starting coefficient.Later we will see,the rest of CG coefficients can be expressed in terms of“A”as well.For instance,if we take the upper signs of Eq.(A10),and do the replacements:

    Eq.(A10)becomes

    Here the key point is that we have used“A”and “B”to generate a new CG coefficient“D”.By Eqs.(A15)and(A17),we see that“D” can be also expressed in terms of“A”.

    ? Similarly,we can use“B” and “D” to generate a new CG coefficient“E”,and express“E” in terms of“A”;

    ? And then it is possible to use“B” and “E” to generate a new CG coefficient“C”,and express“C” in terms of“A”.

    Continuing in this way,with “enough patience”,as the textbook[6]pointed out,we can express the rest of CG coefficients in terms of the CG coefficient“A”.And the CG coefficient“A”can be determined(up to an overall phase factor)by the normalization conditions(A14).However,the calculation is quite involved,as the textbook[6]noticed.

    We shall fix the overall phase factor by adopting the convention(44).In Eq.(A15),if we set m=j,and replace m2+1 by m2,then CG coefficient “A” reads <j1m2|jj>.According to Eq.(44),it satisfies

    namely,the above overall phase factor is eiδ=1.

    For more detailed discussions and calculations of the CG coefficients using the approach of recursion relations,see Refs.[6]and[7].

    Acknowledgement

    We are grateful to Yan-Wu Lu for useful discussions.

    国产精品1区2区在线观看.| 久久久久久久久久黄片| 亚洲第一区二区三区不卡| 亚洲三级黄色毛片| 亚洲va在线va天堂va国产| 五月天丁香电影| 精品久久久久久久久av| 国国产精品蜜臀av免费| 男女边摸边吃奶| 我的老师免费观看完整版| 欧美最新免费一区二区三区| 亚洲精品一二三| 大又大粗又爽又黄少妇毛片口| 三级国产精品片| 嘟嘟电影网在线观看| 色视频www国产| 91精品国产九色| 国产亚洲精品久久久com| 午夜福利在线观看吧| 2018国产大陆天天弄谢| av天堂中文字幕网| 尤物成人国产欧美一区二区三区| 久久精品久久久久久噜噜老黄| 1000部很黄的大片| 精品人妻偷拍中文字幕| 亚洲精品视频女| 国内精品美女久久久久久| 国产有黄有色有爽视频| 国产伦精品一区二区三区四那| 99热这里只有精品一区| 尤物成人国产欧美一区二区三区| 人妻一区二区av| 纵有疾风起免费观看全集完整版 | 国产毛片a区久久久久| 高清在线视频一区二区三区| 欧美成人午夜免费资源| 99热全是精品| 乱系列少妇在线播放| 成人毛片60女人毛片免费| 久久久久久久久久成人| 国产欧美日韩精品一区二区| 91精品一卡2卡3卡4卡| 中文字幕人妻熟人妻熟丝袜美| 国产单亲对白刺激| 人妻系列 视频| 久久人人爽人人片av| 简卡轻食公司| 亚洲欧美中文字幕日韩二区| 在线 av 中文字幕| 五月天丁香电影| 久久6这里有精品| 亚洲精品乱久久久久久| 美女黄网站色视频| 亚洲欧美精品专区久久| 国产黄片美女视频| 秋霞伦理黄片| 日韩欧美一区视频在线观看 | 干丝袜人妻中文字幕| 99热这里只有是精品在线观看| 老司机影院成人| 国产美女午夜福利| 久久久久性生活片| 天堂俺去俺来也www色官网 | 国产一区有黄有色的免费视频 | 欧美日本视频| 色5月婷婷丁香| 欧美97在线视频| 精品国内亚洲2022精品成人| 乱码一卡2卡4卡精品| 少妇猛男粗大的猛烈进出视频 | av.在线天堂| 成人综合一区亚洲| 内地一区二区视频在线| 欧美激情在线99| 男人舔女人下体高潮全视频| 亚洲无线观看免费| 日韩在线高清观看一区二区三区| 亚洲性久久影院| 搞女人的毛片| 99久久九九国产精品国产免费| h日本视频在线播放| 三级经典国产精品| 寂寞人妻少妇视频99o| 国产女主播在线喷水免费视频网站 | 成人鲁丝片一二三区免费| 好男人视频免费观看在线| 噜噜噜噜噜久久久久久91| 国产高清国产精品国产三级 | 老司机影院成人| 国产精品精品国产色婷婷| 国产精品国产三级国产av玫瑰| 人人妻人人澡欧美一区二区| 美女脱内裤让男人舔精品视频| 国产精品99久久久久久久久| 精品一区二区三卡| 精品99又大又爽又粗少妇毛片| 在线免费观看不下载黄p国产| 成人av在线播放网站| 一区二区三区乱码不卡18| 免费大片18禁| 嫩草影院新地址| 亚洲精品久久午夜乱码| 国产亚洲最大av| 国产一区二区在线观看日韩| 免费看a级黄色片| 午夜福利高清视频| 精品熟女少妇av免费看| 1000部很黄的大片| 日产精品乱码卡一卡2卡三| 97人妻精品一区二区三区麻豆| 草草在线视频免费看| 午夜福利高清视频| 亚洲性久久影院| 国产午夜精品一二区理论片| 观看免费一级毛片| 成人一区二区视频在线观看| 日韩成人伦理影院| 国产一区二区三区综合在线观看 | 色尼玛亚洲综合影院| 秋霞伦理黄片| 国产毛片a区久久久久| 一个人看视频在线观看www免费| 嫩草影院精品99| 一级av片app| 亚洲精品中文字幕在线视频 | 超碰av人人做人人爽久久| 大陆偷拍与自拍| 午夜福利视频1000在线观看| 777米奇影视久久| 91av网一区二区| 欧美三级亚洲精品| 免费人成在线观看视频色| 国产单亲对白刺激| 亚洲国产色片| 精品一区二区三区视频在线| 国产精品精品国产色婷婷| 国产精品久久久久久精品电影| 22中文网久久字幕| 国产高清不卡午夜福利| 色网站视频免费| 一个人看的www免费观看视频| 欧美激情久久久久久爽电影| 成人高潮视频无遮挡免费网站| 少妇丰满av| 黄片wwwwww| 99久国产av精品国产电影| 国产麻豆成人av免费视频| 亚洲精品中文字幕在线视频 | 亚洲18禁久久av| 丝瓜视频免费看黄片| 五月天丁香电影| 能在线免费观看的黄片| 亚洲天堂国产精品一区在线| 22中文网久久字幕| 久久久久精品性色| 成人av在线播放网站| 国产精品美女特级片免费视频播放器| 卡戴珊不雅视频在线播放| 美女脱内裤让男人舔精品视频| 日本一本二区三区精品| 伊人久久国产一区二区| 日本三级黄在线观看| 男人狂女人下面高潮的视频| 一级黄片播放器| 国产精品嫩草影院av在线观看| 久久午夜福利片| 国产综合精华液| 嫩草影院精品99| 18禁在线播放成人免费| 乱人视频在线观看| 丰满乱子伦码专区| 精品午夜福利在线看| 亚洲欧美成人综合另类久久久| 又大又黄又爽视频免费| 日本wwww免费看| 在线观看一区二区三区| 久久久久久久久久黄片| 一级毛片 在线播放| or卡值多少钱| 午夜福利在线观看吧| 亚洲人与动物交配视频| 内地一区二区视频在线| 免费人成在线观看视频色| 国产亚洲精品av在线| 亚洲国产日韩欧美精品在线观看| 久久亚洲国产成人精品v| 国产伦一二天堂av在线观看| 成年版毛片免费区| 大话2 男鬼变身卡| 伦精品一区二区三区| 精品一区二区三卡| 少妇高潮的动态图| 三级国产精品欧美在线观看| 国产一区二区三区综合在线观看 | 亚洲精品一区蜜桃| 亚洲三级黄色毛片| 国产成人午夜福利电影在线观看| 91在线精品国自产拍蜜月| av一本久久久久| 国产精品久久久久久精品电影| 婷婷色综合大香蕉| 免费看a级黄色片| 免费观看在线日韩| 黄色配什么色好看| 亚洲欧美日韩东京热| 日韩电影二区| 精品国内亚洲2022精品成人| 亚洲三级黄色毛片| 大香蕉久久网| 高清在线视频一区二区三区| 亚洲国产色片| 国产精品蜜桃在线观看| 丝袜喷水一区| 少妇熟女aⅴ在线视频| 国产免费福利视频在线观看| 美女大奶头视频| 五月玫瑰六月丁香| 久久人人爽人人爽人人片va| 国产精品日韩av在线免费观看| 听说在线观看完整版免费高清| 五月玫瑰六月丁香| 激情五月婷婷亚洲| 免费观看性生交大片5| 激情 狠狠 欧美| av一本久久久久| 日本爱情动作片www.在线观看| 日韩av在线大香蕉| 精品久久久久久久末码| 亚洲欧美清纯卡通| 男人爽女人下面视频在线观看| 51国产日韩欧美| 国产中年淑女户外野战色| 亚洲精品456在线播放app| 日本三级黄在线观看| 免费黄频网站在线观看国产| av专区在线播放| 免费大片黄手机在线观看| 亚洲成人av在线免费| 中文字幕av成人在线电影| 蜜臀久久99精品久久宅男| 在线观看一区二区三区| 精品一区在线观看国产| 2021少妇久久久久久久久久久| 99热这里只有是精品在线观看| 观看免费一级毛片| 亚洲国产日韩欧美精品在线观看| av在线蜜桃| 一级毛片 在线播放| 九色成人免费人妻av| 亚洲精品国产成人久久av| 嫩草影院新地址| 水蜜桃什么品种好| 狠狠精品人妻久久久久久综合| 精品国内亚洲2022精品成人| 一个人看的www免费观看视频| 伦理电影大哥的女人| 在线观看av片永久免费下载| 99热网站在线观看| 有码 亚洲区| 性色avwww在线观看| 久久久久久久国产电影| 久久亚洲国产成人精品v| 久久久久久九九精品二区国产| freevideosex欧美| 中文字幕亚洲精品专区| 日韩av在线大香蕉| 在线 av 中文字幕| 一级爰片在线观看| 免费av观看视频| 大香蕉久久网| 自拍偷自拍亚洲精品老妇| 亚洲国产精品专区欧美| 少妇的逼好多水| 高清欧美精品videossex| 欧美3d第一页| 中文字幕av在线有码专区| 日本免费在线观看一区| 搡女人真爽免费视频火全软件| 国产黄片视频在线免费观看| 三级毛片av免费| 夜夜爽夜夜爽视频| 色播亚洲综合网| 99久国产av精品| 欧美不卡视频在线免费观看| av在线观看视频网站免费| 听说在线观看完整版免费高清| 中文乱码字字幕精品一区二区三区 | 亚洲无线观看免费| 久久热精品热| 国产国拍精品亚洲av在线观看| 嫩草影院新地址| 嘟嘟电影网在线观看| 国产又色又爽无遮挡免| 日韩av不卡免费在线播放| 美女国产视频在线观看| 一个人观看的视频www高清免费观看| 国产69精品久久久久777片| 欧美潮喷喷水| 国产爱豆传媒在线观看| 床上黄色一级片| 能在线免费看毛片的网站| 久热久热在线精品观看| 欧美潮喷喷水| 永久网站在线| 免费av不卡在线播放| 亚洲精品aⅴ在线观看| freevideosex欧美| 麻豆国产97在线/欧美| 久久久精品94久久精品| 日本一二三区视频观看| 欧美xxxx性猛交bbbb| 国产欧美日韩精品一区二区| 久久久欧美国产精品| 精品少妇黑人巨大在线播放| 久久综合国产亚洲精品| 最后的刺客免费高清国语| 成年av动漫网址| 国产又色又爽无遮挡免| 久久久午夜欧美精品| 欧美另类一区| 国产成人aa在线观看| videos熟女内射| 黄色日韩在线| 美女主播在线视频| 亚洲精品成人久久久久久| 激情五月婷婷亚洲| 午夜精品在线福利| 精品一区二区三区视频在线| a级毛色黄片| 久久精品熟女亚洲av麻豆精品 | 91狼人影院| 纵有疾风起免费观看全集完整版 | 欧美性猛交╳xxx乱大交人| 亚洲国产精品成人久久小说| 欧美成人午夜免费资源| 91狼人影院| 亚洲av中文av极速乱| 爱豆传媒免费全集在线观看| 69av精品久久久久久| 日本欧美国产在线视频| 建设人人有责人人尽责人人享有的 | 久久精品国产亚洲网站| 国产日韩欧美在线精品| 九九在线视频观看精品| 欧美日韩精品成人综合77777| 在线观看免费高清a一片| 尤物成人国产欧美一区二区三区| h日本视频在线播放| 一级毛片 在线播放| 成人性生交大片免费视频hd| 国产伦精品一区二区三区四那| 日韩av不卡免费在线播放| av在线天堂中文字幕| 一级av片app| 亚洲经典国产精华液单| 亚洲av男天堂| 最近中文字幕高清免费大全6| 最近2019中文字幕mv第一页| 99久久精品一区二区三区| 男女边摸边吃奶| 久久久精品欧美日韩精品| 一级黄片播放器| 熟女电影av网| 免费不卡的大黄色大毛片视频在线观看 | 中文乱码字字幕精品一区二区三区 | 人人妻人人澡人人爽人人夜夜 | 亚洲精品久久午夜乱码| 美女高潮的动态| 女人久久www免费人成看片| 日韩大片免费观看网站| 麻豆成人午夜福利视频| 国产单亲对白刺激| 看黄色毛片网站| 亚洲成人av在线免费| eeuss影院久久| 国产精品一区二区三区四区久久| av国产久精品久网站免费入址| 简卡轻食公司| 国产探花在线观看一区二区| 看十八女毛片水多多多| 亚洲自拍偷在线| 国产精品三级大全| 一区二区三区乱码不卡18| 亚洲精品乱码久久久v下载方式| 亚洲人成网站在线观看播放| 色综合色国产| 亚洲伊人久久精品综合| 2018国产大陆天天弄谢| 国产亚洲一区二区精品| 精品少妇黑人巨大在线播放| 九九久久精品国产亚洲av麻豆| 亚洲精品日本国产第一区| 久久久久免费精品人妻一区二区| 欧美日韩精品成人综合77777| 午夜老司机福利剧场| 国产一区有黄有色的免费视频 | 一级毛片 在线播放| 乱系列少妇在线播放| kizo精华| 91aial.com中文字幕在线观看| 精品久久国产蜜桃| 国国产精品蜜臀av免费| 男女视频在线观看网站免费| 欧美3d第一页| 成人一区二区视频在线观看| 日韩av不卡免费在线播放| 91久久精品国产一区二区三区| 亚洲成人久久爱视频| 中文字幕av在线有码专区| 午夜福利在线在线| 超碰av人人做人人爽久久| 亚洲精品456在线播放app| 免费大片黄手机在线观看| 亚洲怡红院男人天堂| 91精品伊人久久大香线蕉| 日韩欧美国产在线观看| 免费无遮挡裸体视频| 美女黄网站色视频| 五月天丁香电影| 91精品一卡2卡3卡4卡| 哪个播放器可以免费观看大片| 最近2019中文字幕mv第一页| 欧美日韩一区二区视频在线观看视频在线 | 国产91av在线免费观看| 国产男女超爽视频在线观看| 国产成年人精品一区二区| 亚洲精品成人av观看孕妇| 国产在线男女| 男人舔奶头视频| 亚洲精品国产成人久久av| 亚洲精品中文字幕在线视频 | 国产精品美女特级片免费视频播放器| 国产精品不卡视频一区二区| 婷婷色综合大香蕉| 婷婷色综合www| 国产伦一二天堂av在线观看| 免费电影在线观看免费观看| 建设人人有责人人尽责人人享有的 | 成年女人在线观看亚洲视频 | 亚洲最大成人中文| 亚洲综合色惰| 99热这里只有是精品在线观看| 亚洲国产日韩欧美精品在线观看| 国产真实伦视频高清在线观看| 亚洲精品国产av成人精品| av女优亚洲男人天堂| 三级经典国产精品| 国产真实伦视频高清在线观看| av国产久精品久网站免费入址| 赤兔流量卡办理| 草草在线视频免费看| 成人性生交大片免费视频hd| 少妇熟女aⅴ在线视频| 九色成人免费人妻av| 国产精品伦人一区二区| 国产av码专区亚洲av| 亚洲av电影在线观看一区二区三区 | 国产不卡一卡二| 欧美97在线视频| 搞女人的毛片| 亚洲伊人久久精品综合| av女优亚洲男人天堂| 99re6热这里在线精品视频| 国产精品一及| 午夜激情欧美在线| 日本-黄色视频高清免费观看| 一二三四中文在线观看免费高清| 免费av观看视频| 亚洲国产欧美人成| 国产一级毛片在线| 国产高清不卡午夜福利| 国产精品三级大全| videos熟女内射| 亚洲乱码一区二区免费版| 好男人视频免费观看在线| 国产成人午夜福利电影在线观看| 美女大奶头视频| 美女内射精品一级片tv| 午夜免费男女啪啪视频观看| 哪个播放器可以免费观看大片| 毛片女人毛片| 日韩欧美一区视频在线观看 | 别揉我奶头 嗯啊视频| 久久久久久久久久人人人人人人| 国产一区二区亚洲精品在线观看| 中文字幕制服av| 亚洲精品久久久久久婷婷小说| 婷婷色综合www| 成年版毛片免费区| 青春草亚洲视频在线观看| 亚洲天堂国产精品一区在线| 日本午夜av视频| 亚洲精品第二区| 午夜福利在线观看免费完整高清在| 日韩成人av中文字幕在线观看| 免费观看精品视频网站| 亚洲自拍偷在线| 简卡轻食公司| 黄色日韩在线| 亚洲av一区综合| av黄色大香蕉| 欧美日韩精品成人综合77777| 51国产日韩欧美| 在线天堂最新版资源| 深爱激情五月婷婷| 丝瓜视频免费看黄片| 在线观看av片永久免费下载| 好男人视频免费观看在线| 欧美+日韩+精品| 国产成人福利小说| 亚洲av在线观看美女高潮| 黄片无遮挡物在线观看| 在线 av 中文字幕| 国产有黄有色有爽视频| 搡老乐熟女国产| 国产探花在线观看一区二区| 亚洲综合色惰| 熟妇人妻不卡中文字幕| 深夜a级毛片| 国产精品一区www在线观看| 亚洲色图av天堂| 国产综合精华液| 亚洲欧美成人精品一区二区| 在线免费观看的www视频| 精品久久久久久久久久久久久| eeuss影院久久| 中文乱码字字幕精品一区二区三区 | 天天一区二区日本电影三级| av又黄又爽大尺度在线免费看| 亚洲人成网站在线播| 免费观看在线日韩| 免费观看性生交大片5| 大又大粗又爽又黄少妇毛片口| 美女主播在线视频| 水蜜桃什么品种好| 欧美区成人在线视频| av一本久久久久| 午夜免费观看性视频| 日韩制服骚丝袜av| 麻豆av噜噜一区二区三区| 亚洲真实伦在线观看| 天堂俺去俺来也www色官网 | 观看美女的网站| 欧美高清成人免费视频www| 国产精品国产三级国产av玫瑰| 欧美成人精品欧美一级黄| 国产精品综合久久久久久久免费| 高清欧美精品videossex| 在线a可以看的网站| 嫩草影院新地址| 精品少妇黑人巨大在线播放| 国产综合精华液| 麻豆成人av视频| 欧美性感艳星| 人人妻人人看人人澡| 亚洲av福利一区| 国产在线一区二区三区精| 热99在线观看视频| 特大巨黑吊av在线直播| 免费观看a级毛片全部| 亚洲成人一二三区av| av在线观看视频网站免费| 成年免费大片在线观看| 蜜臀久久99精品久久宅男| 精品人妻熟女av久视频| 你懂的网址亚洲精品在线观看| 亚洲aⅴ乱码一区二区在线播放| 内射极品少妇av片p| 欧美日韩视频高清一区二区三区二| 色5月婷婷丁香| 一级毛片久久久久久久久女| 国产又色又爽无遮挡免| 国产黄a三级三级三级人| 精品一区二区三卡| 五月玫瑰六月丁香| 男女那种视频在线观看| 免费电影在线观看免费观看| 国产乱人偷精品视频| 看非洲黑人一级黄片| 99久国产av精品| 哪个播放器可以免费观看大片| 天堂俺去俺来也www色官网 | 菩萨蛮人人尽说江南好唐韦庄| 亚洲美女搞黄在线观看| 看非洲黑人一级黄片| 精品久久久久久成人av| 婷婷色综合大香蕉| 中文字幕制服av| 久久久久精品久久久久真实原创| 亚洲综合色惰| 国产在视频线在精品| 在线免费观看的www视频| 亚洲av成人精品一区久久| 黑人高潮一二区| 最近最新中文字幕大全电影3| 亚洲18禁久久av| 精品国内亚洲2022精品成人| 午夜激情久久久久久久| 亚洲丝袜综合中文字幕| 久久久国产一区二区| 成年女人在线观看亚洲视频 | 亚洲av免费在线观看| 国产免费又黄又爽又色| 有码 亚洲区| 日韩在线高清观看一区二区三区| 免费看美女性在线毛片视频| 国产伦理片在线播放av一区| 观看美女的网站| www.av在线官网国产| 欧美成人a在线观看| 色网站视频免费| 麻豆成人午夜福利视频| 2022亚洲国产成人精品| 99久国产av精品| 日韩精品有码人妻一区|