• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improving hydrophilicity of polyester by surface electrospun deposition

    2019-07-15 10:47:48LIUShakeZHANGTengLUOChongyangHUANGLepingZHAOJinchao

    LIU Shake,ZHANG Teng,LUO Chongyang, HUANG Leping,ZHAO Jinchao

    (1.Hubei Biomass Fibers and Eco-dyeing & Finishing Key Laboratory, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China;2.School of Material Science and Engineering, Wuhan Textile University, Wuhan 430200, China)

    Abstract: In order to improve the hydrophilicity of polyester fabric, polyvinyl alcohol(PVA)/sodium alginate(SA) electrospun (E-spun) fibers was deposited directly on the surface of polyester fabric by electrospun method. The effects of polyvinyl alcohol concentration, sodium alginate concentration, volume ratio of polyvinyl alcohol and sodium alginate, and E-spun time on the morphology of E-spun fibers, modified polyester fabric(M-PET)′s hydrophilicity, antistatic property, air permeability and mechanical properties were discussed. The results show that when the PVA(10%)∶SA(2%)=9∶1, the E-spun fiber on the modified polyester fabric has uniform distribution morphology. The hydrophilicity and antistatic properties of modified polyester fabric increase considerably. Elongation at break and breaking force of the modified polyester fabric are enhanced,and its softness is maintained. Further increasing E-spun time has no obvious alterations in the mechanical properties. However, the formation of E-spun fiber layer lead to a significant decrease in the air permeability of modified polyester fabric .

    Key words: polyvinyl alcohol; sodium alginate; modified polyester fabric; electrospun;hydrophilicity; antistatic property; air permeability; mechanical properties

    0 Introduction

    Polyethylene terephthalate(PET) commonly called as polyester is widely accepted as a textile material due to its excellent physical and chemical properties, such as excellent wash and wear, good dimensional stability, anti-wrinkle, and quick drying properties[1]. However, 100% PET has extremely poor moisture management property(0.42%) compared to cotton(8.5%)[2]. The poor water absorption and moisture retain of PET fabric make it less desirable material in many textile applications, such as sportswear, under garment, furniture, and bedding[3]. So improving hydrophilicity of PET is a focal point not only in the past but also in today.

    The different method and technology had been performed to improve poor water absorption and moisture retain of PET fabric. There are three main methods: structural modification[4-7], chemical grafting[8-9]and hydrophilic agents finishing[10-11]. However, structural modification would resulted in the decrease of fiber strength; chemical grafting increased process complexity and chemical pollution; fabric comfort after hydrophilic agent finishing become poor[12].

    Electrospun (E-spun) is a common technology of micro/nano fabrication. It has been developed since its introduction by Formhals in 1934[13]. Due to the high surface-to-volume ratio, E-spun fibers have been already applied in many difference areas[14], such as filtration[15], protective clothing[16], biomedical applications[17], battery electrode[18], reinforced composites[19]. Pirjo et al[15]produced lightweight coatings of polyamide-66 nanofibers by E-spun on different fibrous substrates. Discovered that a nanofiber layer on a fibrous substrate clearly improved the filtration efficiency of the substrate, even the lowest coating weight, had a clear effect on efficiency. Gibson et al[16]used E-spun to compose the elastomeric fibers membranes, which are under development for protective clothing applications. It was explored that E-spun fiber coatings produce an exceptionally lightweight multifunctional membrane for protective clothing applications, which exhibits high breathability, elasticity, and filtration efficiency.

    In this study, polyvinyl alcohol(PVA)/sodium alginate(SA) E-spun fibers was deposited directly on the surface of PET fabric by electrospun method in order to improve the hydrophilic property of the PET fabric.

    1 Experimental

    1.1 Materials

    Polyester fabric (75D×75D, 170T, 39.35 g/m2, knitted fabric) was used for the experiment. Polyvinyl alcohol (PVA,DP∶1 750±50, Alcholysis degree≥99%), and Sodium dodecyl sulfate(SDS) were purchased from Sinopharm Chemical Reagent Co. Ltd(China). Sodium alginate(SA, 660 cps) was supplied by Qingdao Bright Moon Seaweed Group Co. Ltd(China). All the reagents were dissolved with deionized water.

    1.2 Preparation of E-spun solution

    The PVA was swollen in deionized water at room temperature for 12 hours and then stirred, reflux condensation at 90 ℃ for 3 hours, the PVA solution was obtained. The SA was dissolved in deionized water at 60 ℃ for 3 hours to prepare the SA solution. Then, the PVA and SA were mixed with mechanical stirring, then adding SDS(0.111 5 g/50 mL). The concentration and mixed ratio of E-spun solution were shown in the Table 1.

    Table 1 The concentration and mixed ratio of E-spun solution

    1.3 Preparation of modified polyester fabric

    The polyester fabric samples were cut into 40 cm × 17 cm and set on to the acceptor. The spinning polymer solution was placed into a 20 mL plastic syringe equipped with a needle with diameter 0.60 mm(20 G). A 20 kV DC voltage was applied across the electrostatic field, the distance between the needle tip and the collector was 20 cm, and the syringe pump was used to feed the polymer solution into needle tip and the feed rate of the syringe pump was fixed at 0.8 mL/h. The effect of E-spun time on the polyester fabric was discussed at 15, 20, 25, 30, 40 and 60 min. After E-spun fiber modification, the polyester fabric was removed from the collector and was dried under vacuum at 45℃ for 1 hour. The modified polyester fabric was obtained.The experimental setup used for the E-spun process is shown in Fig.1.

    Fig.1 Experimental set-up of PET modified by E-spun method

    2 Characterizations

    2.1 Fabric weight test

    The modified polyester fabric samples were cut into 15 cm × 5 cm. The reported results represent the average values from five samples.

    2.2 Surface morphology

    The morphology of modified polyester fabric samples was observed with scanning electron microscopy (PhenomTMDesktop Scanning Electron Microscope).

    2.3 Hydrophilic properties test

    The modified polyester fabric samples were cut into 30 cm × 5 cm(warp ×weft). Fix the tension folder at the bottom of the specimen(make the fabric no floating), draw a vertical line with a pencil in the tension folder along the warp. The other end of the specimen is fixed on the capillary effect instrument, and adjusted baseline coincides with the liquid level(1.5 g/L potassium dichromate solution). Record the height of the liquid along the warp for 30 minutes. Test two samples to take the average for the results.

    2.4 Static friction test

    FY403E fabric rubbing type electrometer(Wenzhou Fangyuan Instrument) was used for the static friction test. The friction voltage can be determined by the textiles rubbing again the friction cloth. The distance between the test probe and the sample is 15±0.1 mm. The standard size of the sample was 50 mm × 80 mm. The maximum friction voltage was obtained. The average voltage results represent from four samples.

    2.5 Air permeability test

    YG461E/Ⅱ Digital Air permeability Tester(Ningbo Textile Instrument Factory, China) was used for fabric air permeability test. According to the standard of the test is ISO 9237:1995, the reported results represent the average values from five samples.

    2.6 Mechanical properties test

    According to the standard of the test ASTM D5035∶1995, the H10K-L Series Materials Testing Machines(Tinius Olsen American) was applied to the test the breaking force and elongation at break of the samples. The standard of the sample is 20 cm × 5 cm(warp ×weft). The reported results represent the average values from five samples.

    2.7 Softness

    The modified polyester fabric samples were cut into 15 cm × 5 cm. FAST(Fabric assurance by simple testing) fabric style instrument was used to measure the bending length of the sample.

    3 Result and discussion

    The surface morphology of modified polyester fabric could be seen from the SEM image(Fig.2 to Fig.5,picture (b) is an enlarged view of picture (a) in each fig.), hydrophilic fibrous layer was deposited on the surface of polyester fabric by electro- spinning technique. Compared with the Fig.2(a) and Fig.3(a), the E-spun fiber on the polyester fabric had unevenly island-shape distributed morphology. With the increase of E-spun time, the E-spun fiber deposit on the polyester fabric surface became thicker. Compared with the high magnification of Fig.2(b) and Fig.3(b), the adhesion between the E-spun fibers and the beaded structure of fiber increased. Compared with Fig.2(a) and Fig.4(a), with the decrease of SA concentration, the morphology of E-spun fiber on the polyester fabric was more uniform dispersed. From the high magnification of the Fig.2(b) and Fig.4(b), the adhesion between the E-spun fibers and the beaded structure of fiber reduced obviously. Moreover, the diameter of the E-spun fiber increased. From the Fig.3(a) and Fig.4(a), with the volume increase of PVA(10%), the distributed of E-spun fiber on polyester fabric in the Fig.4(a) were more uniform and dense compared with that of in the Fig.3(a). There was not beadlike structure and the diameter of the E-spun fiber decreased in the Fig.4(b).

    Fig.2 Surface morphology of sample at 20 min E-spun time (PVA(10%)∶SA(3%)=8∶2)

    Fig.3 Surface morphology of sample at 40 min E-spun time (PVA(10%)∶SA(3%)=8∶2)

    Fig.4 Surface morphology of sample at 20 min E-spun time (PVA(10%)∶SA(2%)=8∶2)

    Fig.5 Surface morphology of sample at 20 min E-spun time (PVA(10%)∶SA(2%)=9∶1)

    The weight of polyester fabric before and after modification was presented in the Table 2 and Fig.6, and the weight of polyester fabric after modification had a significant increase. As can be seen from the Table 2, as the concentration of PVA and SA increasing, the weight of the fabric had no obvious change. From Fig.6, as the E-spun time extended, the weight of the fabric increased.

    Fig.6 The weight of polyester fabric before and after modification at different E-spun times

    Table 2 The weight of PET before and after modification at the 20 min E-spun time

    Through GSM and the surface morphology analysis of polyester fabric, it was known that the fiber layer was successfully deposited on the surface of polyester fabric by electrospinning technology.

    Fig.7 shows that the capillary effect value and electrostatic half-life of polyester fabric before and after modification.Fig.7(a) is the ratio of 9∶1,Fig.7(b) is the ratio of 8∶2.The hydrophilic properties of the fabric could be reflected by the capillary effect. Compared with the untreated polyester fabric, the capillary effect value of modified polyester fabric increased greatly, hydrophilic performance had been significantly improved. With the increase of SA concentration in the E-spun solution, the capillary effect value gradually increased, indicating that increasing the content of SA was beneficial to improve the hydrophilicity of modified polyester fabrics. It could be clearly seen from the Fig.7, compared with the untreated polyester fabric, the electrostatic half-life of modified polyester fabric was shorter, the antistatic properties of the fabric had been greatly improved. The addition of hydrophilic groups enhanced the hydrophilic properties of the fabric, led to faster diffusion of electrons on the surface of the fabric, electrostatic repulsion reduced during friction. When the concentration of mixed solution was PVA(8%)/SA(2%), the hydrophilic properties and antistatic properties of modified polyester fabric were the best.

    (a) ratio(v/v) of 9∶1

    (b) ratio(v/v) of 8∶2Fig.7 The capillary effect value and electrostatic half-life of polyester fabric before and after modification

    The air permeability of polyester fabric before and after modification at the same E-spun time was shown in the Table 3. With different concentration and different ratio of mixed solution, the air permeability of modified polyester fabric after spinning greatly reduced. When the PVA(8%)/SA(2%)=8∶2, the air permeability of modified polyester fabric was the highest. The air permeability of polyester fabric before and after modification at different E-spun times was shown in the Fig.8, with the increase of E-spun time, the air permeability of modified polyester fabric has a tendency to decrease, and at the ratio of 9∶1, the air permeability of modified polyester fabric was higher than the others.

    Fig.8 The air permeability of polyester fabric before and after modification at different E-spun times

    Table 3 The air permeability of polyester fabric before and after modification at the 20 min E-spun time

    The stress-strain curves of some sample were shown in Fig.9. Table 4 and Fig.10 showed the breaking force and elongation at break of the polyester fabric before and after modification at different conditions. Compared with untreated polyester fabric, the breaking force and elongation at break of modified polyester fabric had improved significantly. The PVA/SA fiber layer was deposited on the surface of the polyester fabric to form PVA/SA modified polyester fabric,and the fiber layer did not damage the structure of the polyester fabric during the deposition process.It was probable that the fiber layer had a certain strength which had good interface bonding with polyester matrix. Therefore, the mechanical properties of the modified polyester fabric were enhanced. From Table 4, when the ratio of PVA/SA was 8∶2, the breaking force and elongation at break of modified polyester fabric was larger than that of the ratio of 9∶1. And when the concentration of mixed solution was PVA(8%)∶SA(2%), the ratio of mixed solution was 8∶2, the breaking force and elongation at break of modified polyester fabric was the highest, 418.5 N and 19.52 respectively. From Fig.10, with the increase of E-spun time, the breaking force of modified polyester fabric was not continuously increase. Therefore, the increase of E-spun time did not have a significant effect on the breaking force of modified polyester fabric.

    Fig.9 Stress-strain curves of polyester fabric Fig.10 Elongation at break and breaking force of before and after modification polyester fabric before and after modification at different E-spun times

    IndexesUntreatedPVA(10%)∶SA(3%)9∶18∶2PVA(8%)∶SA(3%)9∶18∶2PVA(10%)∶SA(2%)9∶18∶2PVA(8%)∶SA(2%)9∶18∶2Breaking force/N260.0374.0396.0391.2395.2392.0398.4335.2418.5Elongation at break/%9.2315.7317.6518.6018.3318.6119.2315.4419.52

    The softness is determined by the bending length of the fabric. The softness of polyester fabric before and after modification at the same E-spun time was shown in the Table 5. As can be seen from that, the bending length of polyester fabric after modification increased. The softness of modified polyester fabric deteriorated, but, not seriously. The softness of polyester fabric before and after modification at different E-spun times was shown in the Fig.11. With the increase of E-spun time, the bending length of modified polyester fabric increased, from about 9 to 14. So the softness of modified fabric decreased. So, the E-spun time should not be too long while hydrophilic properties of modified polyester fabric were enhanced.

    Table 5 The softness of polyester fabric before and after modification at the 20 minute E-spun time

    Fig.11 The softness of polyester fabric before and after modification at different E-spun times

    4 Conclusion

    The polyvinyl alcohol/sodium alginate nanofiber film was successfully deposited on the surface of polyester fabric by E-spun. During the study, polyvinyl alcohol concentration, sodium alginate concentration, volume ratio of polyvinyl alcohol and sodium alginate, and different E-spun time were studied to explore modified polyester fabric’s hydrophilicity, antistatic property, air permeability, mechanical properties.

    The results show that,compared with untreated polyester fabric, the capillary effect value of modified polyester fabric increased, its hydrophilic properties were improved. Meanwhile, the antistatic properties of the fabric had been improved significantly. The mechanical properties of modified polyester fabric were better than those untreated, and modified polyester fabric retained softness. However, the air permeability of the modified polyester fabric was greatly reduced, which requires further exploration in subsequent experiments.

    Acknowledgments:This work was supported by the National Natural Science Foundation of China (No.51303138)

    美女脱内裤让男人舔精品视频| 91午夜精品亚洲一区二区三区| 国内揄拍国产精品人妻在线| 国产精品女同一区二区软件| 国产 精品1| 亚洲精品一区蜜桃| 十八禁网站网址无遮挡 | 精品久久久久久电影网| av卡一久久| 国产精品伦人一区二区| 亚洲国产精品999| 精品人妻偷拍中文字幕| 男女国产视频网站| 99热6这里只有精品| 中文字幕久久专区| 国产精品久久久久久久电影| 久久久久精品久久久久真实原创| 亚洲,一卡二卡三卡| 热re99久久精品国产66热6| 国产精品国产av在线观看| 身体一侧抽搐| 国产精品欧美亚洲77777| 日本一二三区视频观看| 国产乱人偷精品视频| 国产精品.久久久| 日本午夜av视频| 18禁在线播放成人免费| 国产69精品久久久久777片| 欧美变态另类bdsm刘玥| 国产精品福利在线免费观看| 久久综合国产亚洲精品| 99热这里只有是精品在线观看| 国产久久久一区二区三区| 尤物成人国产欧美一区二区三区| 亚洲精品日本国产第一区| 下体分泌物呈黄色| 少妇熟女欧美另类| 亚洲人与动物交配视频| 美女视频免费永久观看网站| 美女视频免费永久观看网站| 涩涩av久久男人的天堂| 精品一区二区三卡| 赤兔流量卡办理| 亚洲欧美成人精品一区二区| 亚洲国产精品999| 国产黄片美女视频| 精品国产露脸久久av麻豆| 91午夜精品亚洲一区二区三区| 五月伊人婷婷丁香| 亚洲成人中文字幕在线播放| 26uuu在线亚洲综合色| 久久99热这里只有精品18| 色哟哟·www| 国内精品宾馆在线| 欧美97在线视频| 永久网站在线| 国产国拍精品亚洲av在线观看| 一区二区三区乱码不卡18| 韩国高清视频一区二区三区| 伊人久久精品亚洲午夜| 亚洲国产精品专区欧美| 日韩亚洲欧美综合| 18+在线观看网站| 男人舔奶头视频| a级毛片免费高清观看在线播放| 亚洲欧美中文字幕日韩二区| 少妇的逼水好多| 日韩av在线免费看完整版不卡| 国国产精品蜜臀av免费| 国产精品99久久99久久久不卡 | 国产欧美日韩一区二区三区在线 | 国产成人午夜福利电影在线观看| 久久99精品国语久久久| 黄色怎么调成土黄色| 成人二区视频| av福利片在线观看| 成人国产av品久久久| av网站免费在线观看视频| 免费高清在线观看视频在线观看| 精品一区在线观看国产| 中文字幕制服av| 成人亚洲精品一区在线观看 | 美女高潮的动态| 91狼人影院| 国产 一区精品| 国产av国产精品国产| 嘟嘟电影网在线观看| 成人午夜精彩视频在线观看| 如何舔出高潮| 国产精品人妻久久久影院| 成人特级av手机在线观看| 丰满人妻一区二区三区视频av| 欧美高清成人免费视频www| 美女脱内裤让男人舔精品视频| 午夜福利高清视频| 国产精品成人在线| 少妇丰满av| 精品一区在线观看国产| 国产成人免费无遮挡视频| 国产淫片久久久久久久久| 欧美 日韩 精品 国产| 中文字幕久久专区| 国产精品一区二区三区四区免费观看| 精品熟女少妇av免费看| 国产永久视频网站| 观看av在线不卡| 欧美精品国产亚洲| 国产成人免费无遮挡视频| 欧美精品亚洲一区二区| 亚洲精品乱码久久久v下载方式| 午夜视频国产福利| 亚洲经典国产精华液单| 视频区图区小说| 能在线免费看毛片的网站| 亚洲国产毛片av蜜桃av| 男人舔奶头视频| 少妇裸体淫交视频免费看高清| 国产欧美日韩一区二区三区在线 | 中文字幕人妻熟人妻熟丝袜美| 精品熟女少妇av免费看| 国产高清国产精品国产三级 | 色婷婷av一区二区三区视频| 五月天丁香电影| 久热这里只有精品99| 蜜臀久久99精品久久宅男| 免费观看性生交大片5| 国产爽快片一区二区三区| 久久久久久久久久人人人人人人| 国产亚洲91精品色在线| 狂野欧美激情性bbbbbb| 一个人看的www免费观看视频| 国产精品秋霞免费鲁丝片| 久久人人爽av亚洲精品天堂 | 色哟哟·www| 黑人猛操日本美女一级片| 六月丁香七月| 建设人人有责人人尽责人人享有的 | 中国国产av一级| 精品久久久精品久久久| 久久久久性生活片| 精品亚洲乱码少妇综合久久| 欧美日本视频| 亚洲成色77777| av免费观看日本| 多毛熟女@视频| 女性被躁到高潮视频| 如何舔出高潮| 精品一区二区三卡| 精品国产露脸久久av麻豆| 男女啪啪激烈高潮av片| 久久精品国产a三级三级三级| 久久久久久人妻| 久久av网站| 亚洲欧美一区二区三区黑人 | 97精品久久久久久久久久精品| 精品人妻一区二区三区麻豆| 伦精品一区二区三区| 国产一区二区三区av在线| 黑人猛操日本美女一级片| 毛片女人毛片| 中文字幕制服av| 亚洲精品一二三| 国产成人精品久久久久久| 日韩精品有码人妻一区| av一本久久久久| 免费观看的影片在线观看| 久热久热在线精品观看| 亚洲av中文字字幕乱码综合| 少妇人妻一区二区三区视频| 王馨瑶露胸无遮挡在线观看| 欧美变态另类bdsm刘玥| 亚洲av.av天堂| 国产成人aa在线观看| 日韩国内少妇激情av| 久久久久久伊人网av| 人妻少妇偷人精品九色| 国产黄片美女视频| 欧美性感艳星| 美女中出高潮动态图| 一区二区三区精品91| 嫩草影院入口| 国产又色又爽无遮挡免| 久久久久久久久大av| 免费黄色在线免费观看| 夜夜看夜夜爽夜夜摸| 成人影院久久| 国产高清三级在线| 免费高清在线观看视频在线观看| 欧美极品一区二区三区四区| 欧美精品一区二区大全| 亚洲婷婷狠狠爱综合网| 高清视频免费观看一区二区| 日日撸夜夜添| 久久久久久久大尺度免费视频| 久久av网站| 汤姆久久久久久久影院中文字幕| 国产免费一区二区三区四区乱码| 亚洲不卡免费看| 色网站视频免费| 欧美国产精品一级二级三级 | 久久亚洲国产成人精品v| 国产精品av视频在线免费观看| 亚洲国产色片| 欧美区成人在线视频| 国产精品爽爽va在线观看网站| 精品99又大又爽又粗少妇毛片| 亚洲欧美精品自产自拍| 精品少妇久久久久久888优播| 国产成人精品一,二区| 91aial.com中文字幕在线观看| 高清欧美精品videossex| 麻豆成人av视频| 一本色道久久久久久精品综合| 色视频www国产| 免费观看在线日韩| 在线观看美女被高潮喷水网站| 丝袜喷水一区| 99热国产这里只有精品6| 简卡轻食公司| 夜夜看夜夜爽夜夜摸| 视频中文字幕在线观看| 小蜜桃在线观看免费完整版高清| 七月丁香在线播放| 亚洲精品国产av蜜桃| 亚洲精品aⅴ在线观看| 久久青草综合色| 成年女人在线观看亚洲视频| 久久久成人免费电影| a级毛色黄片| 熟女电影av网| 嫩草影院入口| 精品少妇黑人巨大在线播放| 九色成人免费人妻av| 欧美高清性xxxxhd video| 男女边摸边吃奶| 能在线免费看毛片的网站| 尾随美女入室| 免费久久久久久久精品成人欧美视频 | 亚洲精品一二三| 18禁裸乳无遮挡动漫免费视频| 国产一级毛片在线| 亚洲精品视频女| av国产久精品久网站免费入址| 久久亚洲国产成人精品v| 黑人高潮一二区| 晚上一个人看的免费电影| 成人毛片a级毛片在线播放| 国产成人免费无遮挡视频| av视频免费观看在线观看| 亚洲av.av天堂| 国产一级毛片在线| 日本与韩国留学比较| 国产精品熟女久久久久浪| 国产在线免费精品| a级毛片免费高清观看在线播放| 极品少妇高潮喷水抽搐| 免费播放大片免费观看视频在线观看| 妹子高潮喷水视频| 男的添女的下面高潮视频| 精品久久久久久久末码| www.av在线官网国产| 亚洲精品国产色婷婷电影| 免费黄频网站在线观看国产| 一区二区av电影网| 亚洲精品国产av蜜桃| 国产精品国产三级专区第一集| 婷婷色综合www| 久久鲁丝午夜福利片| 777米奇影视久久| 狂野欧美白嫩少妇大欣赏| 高清毛片免费看| 高清欧美精品videossex| 国产精品久久久久久久久免| 九草在线视频观看| 国产一区二区在线观看日韩| 欧美xxxx黑人xx丫x性爽| tube8黄色片| 91久久精品电影网| 成人18禁高潮啪啪吃奶动态图 | 女性生殖器流出的白浆| 久久久久视频综合| 人妻少妇偷人精品九色| 国产毛片在线视频| 男女下面进入的视频免费午夜| 一级毛片我不卡| 黄色欧美视频在线观看| 亚洲精品日韩在线中文字幕| 日本爱情动作片www.在线观看| 韩国高清视频一区二区三区| 国产精品.久久久| 在线观看三级黄色| 午夜激情福利司机影院| 国产精品一区二区性色av| 大片免费播放器 马上看| 日韩国内少妇激情av| 国产精品欧美亚洲77777| 中文在线观看免费www的网站| av免费观看日本| 国产精品国产三级国产专区5o| 国产精品一区二区性色av| 国模一区二区三区四区视频| 波野结衣二区三区在线| 精品久久久久久久末码| 免费av不卡在线播放| 欧美日韩视频高清一区二区三区二| av专区在线播放| 最近最新中文字幕免费大全7| 久热久热在线精品观看| 国产乱人视频| 97精品久久久久久久久久精品| 肉色欧美久久久久久久蜜桃| 国语对白做爰xxxⅹ性视频网站| 国产精品一区二区三区四区免费观看| av国产精品久久久久影院| 午夜免费男女啪啪视频观看| 精品久久久久久久久av| 久久国产精品男人的天堂亚洲 | 黄色一级大片看看| 男女边摸边吃奶| 一本—道久久a久久精品蜜桃钙片| 国模一区二区三区四区视频| 少妇人妻精品综合一区二区| 亚洲国产精品999| 又大又黄又爽视频免费| 人妻 亚洲 视频| 亚洲欧美日韩东京热| 观看av在线不卡| 好男人视频免费观看在线| 日日啪夜夜爽| 日本-黄色视频高清免费观看| 色视频在线一区二区三区| 亚洲第一av免费看| 婷婷色麻豆天堂久久| 国产成人a∨麻豆精品| 成人美女网站在线观看视频| 亚洲av二区三区四区| 伦理电影免费视频| 亚洲精品乱码久久久v下载方式| 午夜福利在线观看免费完整高清在| 一级毛片电影观看| 午夜精品国产一区二区电影| 最近中文字幕2019免费版| 精品久久国产蜜桃| 特大巨黑吊av在线直播| 亚洲欧美精品自产自拍| 黑人高潮一二区| 在线免费十八禁| 免费黄网站久久成人精品| 赤兔流量卡办理| 国产乱人视频| 欧美一区二区亚洲| 国产91av在线免费观看| 欧美xxⅹ黑人| 在线观看国产h片| 高清在线视频一区二区三区| 成人毛片a级毛片在线播放| 少妇裸体淫交视频免费看高清| 亚洲av在线观看美女高潮| 边亲边吃奶的免费视频| 一区二区三区四区激情视频| 纵有疾风起免费观看全集完整版| 深爱激情五月婷婷| 国产 一区 欧美 日韩| 男女啪啪激烈高潮av片| 天天躁日日操中文字幕| 熟女av电影| 久久久久久伊人网av| 日韩一区二区三区影片| 日韩,欧美,国产一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 久久久色成人| 久久鲁丝午夜福利片| 有码 亚洲区| 99热这里只有精品一区| 国产免费一级a男人的天堂| 免费观看无遮挡的男女| 欧美一级a爱片免费观看看| 日韩精品有码人妻一区| 最近2019中文字幕mv第一页| 一个人免费看片子| 国产免费又黄又爽又色| 边亲边吃奶的免费视频| 偷拍熟女少妇极品色| 久久精品国产a三级三级三级| 男人舔奶头视频| 男女国产视频网站| 久久精品国产亚洲av天美| 亚洲激情五月婷婷啪啪| 一区二区三区免费毛片| 成人午夜精彩视频在线观看| 日本vs欧美在线观看视频 | 日本欧美国产在线视频| 中文资源天堂在线| 在线观看美女被高潮喷水网站| 久久精品国产亚洲av涩爱| 欧美性感艳星| 伦理电影大哥的女人| 国产免费视频播放在线视频| 九九在线视频观看精品| 日本一二三区视频观看| 久久热精品热| 国产无遮挡羞羞视频在线观看| 一区二区三区精品91| 亚洲精品中文字幕在线视频 | 高清日韩中文字幕在线| 久久国产精品男人的天堂亚洲 | 99re6热这里在线精品视频| 精品一区在线观看国产| 亚洲av成人精品一区久久| 久久精品人妻少妇| 国产有黄有色有爽视频| 一本色道久久久久久精品综合| 国产人妻一区二区三区在| 色综合色国产| 五月玫瑰六月丁香| 特大巨黑吊av在线直播| freevideosex欧美| 国产免费一区二区三区四区乱码| 内射极品少妇av片p| 大码成人一级视频| 国产v大片淫在线免费观看| 午夜福利高清视频| 一本久久精品| 久久久久国产网址| 国产精品三级大全| 观看免费一级毛片| 美女主播在线视频| 国产乱来视频区| 久久久午夜欧美精品| 插阴视频在线观看视频| 久久久久久久久久久免费av| 舔av片在线| 精品视频人人做人人爽| 亚洲欧洲国产日韩| 最近的中文字幕免费完整| 久久国产精品大桥未久av | 国产男女内射视频| 国产 一区 欧美 日韩| 在线观看一区二区三区| 亚洲av综合色区一区| 一级黄片播放器| 免费人妻精品一区二区三区视频| 18禁动态无遮挡网站| 久久久久久伊人网av| 在线观看一区二区三区激情| 国产高清国产精品国产三级 | 午夜福利影视在线免费观看| 成人毛片a级毛片在线播放| 日韩一区二区三区影片| 看非洲黑人一级黄片| 乱码一卡2卡4卡精品| 亚洲精品色激情综合| 国产伦精品一区二区三区四那| 久久人妻熟女aⅴ| 成人国产av品久久久| 看非洲黑人一级黄片| 国产精品伦人一区二区| 亚洲精品久久久久久婷婷小说| 精品人妻熟女av久视频| 高清欧美精品videossex| 亚洲成人一二三区av| 中文资源天堂在线| 久久99热这里只有精品18| 久久久久久人妻| 久久久久久九九精品二区国产| 日韩免费高清中文字幕av| 亚洲av中文字字幕乱码综合| 1000部很黄的大片| 一区二区三区免费毛片| 久久毛片免费看一区二区三区| 99久久精品热视频| 99热6这里只有精品| 国产精品久久久久久久电影| 少妇的逼好多水| 日日啪夜夜爽| av免费观看日本| 国产无遮挡羞羞视频在线观看| 国内少妇人妻偷人精品xxx网站| 最后的刺客免费高清国语| 亚洲在久久综合| 国产精品欧美亚洲77777| 观看免费一级毛片| 欧美bdsm另类| 成人二区视频| 黄片无遮挡物在线观看| 建设人人有责人人尽责人人享有的 | 久久久久久久大尺度免费视频| 深夜a级毛片| 少妇人妻精品综合一区二区| 国产免费一级a男人的天堂| 亚洲av免费高清在线观看| 欧美日韩综合久久久久久| 成人无遮挡网站| 一个人看的www免费观看视频| 在线观看免费高清a一片| 亚洲最大成人中文| 日本av手机在线免费观看| 精品久久久噜噜| av免费在线看不卡| 亚洲国产精品成人久久小说| 国产免费视频播放在线视频| 久久这里有精品视频免费| 在线观看三级黄色| 国产大屁股一区二区在线视频| 丰满人妻一区二区三区视频av| 激情 狠狠 欧美| 亚洲人成网站在线播| 日本av免费视频播放| 欧美xxxx性猛交bbbb| 欧美区成人在线视频| 精品少妇久久久久久888优播| 80岁老熟妇乱子伦牲交| 18禁裸乳无遮挡动漫免费视频| 纯流量卡能插随身wifi吗| 一区二区三区精品91| 乱系列少妇在线播放| 国产熟女欧美一区二区| 91在线精品国自产拍蜜月| 秋霞伦理黄片| 日韩大片免费观看网站| 欧美成人精品欧美一级黄| 哪个播放器可以免费观看大片| 国产乱来视频区| 亚洲精品视频女| 国产精品国产三级国产专区5o| 午夜日本视频在线| 99热全是精品| 汤姆久久久久久久影院中文字幕| 韩国av在线不卡| 蜜臀久久99精品久久宅男| 天堂俺去俺来也www色官网| 少妇被粗大猛烈的视频| 免费黄网站久久成人精品| 草草在线视频免费看| 蜜桃久久精品国产亚洲av| 亚洲怡红院男人天堂| 九九爱精品视频在线观看| 在线观看一区二区三区| 麻豆精品久久久久久蜜桃| 精品人妻偷拍中文字幕| 亚洲四区av| 国产伦理片在线播放av一区| 九色成人免费人妻av| 久久国产精品男人的天堂亚洲 | 国产女主播在线喷水免费视频网站| 亚洲国产精品一区三区| 人人妻人人看人人澡| 搡老乐熟女国产| 午夜免费男女啪啪视频观看| 亚洲精品国产色婷婷电影| 欧美老熟妇乱子伦牲交| 舔av片在线| 一个人看视频在线观看www免费| 久久99热这里只频精品6学生| 女人久久www免费人成看片| 欧美成人a在线观看| 黄色日韩在线| 能在线免费看毛片的网站| 肉色欧美久久久久久久蜜桃| 一级毛片我不卡| 国产熟女欧美一区二区| 欧美日韩国产mv在线观看视频 | 青春草亚洲视频在线观看| 国产精品人妻久久久久久| 国产国拍精品亚洲av在线观看| 久久这里有精品视频免费| 精品午夜福利在线看| 久久这里有精品视频免费| 大片电影免费在线观看免费| 国产色爽女视频免费观看| av又黄又爽大尺度在线免费看| 成年女人在线观看亚洲视频| 国产精品三级大全| 亚洲人成网站在线观看播放| 午夜免费鲁丝| 欧美激情极品国产一区二区三区 | 男人狂女人下面高潮的视频| 久久久久精品久久久久真实原创| 国产91av在线免费观看| 精品久久国产蜜桃| 欧美日韩综合久久久久久| 天堂俺去俺来也www色官网| 亚洲自偷自拍三级| 岛国毛片在线播放| 亚洲人与动物交配视频| 国产精品一及| 亚洲性久久影院| 精品一区二区三区视频在线| 国产精品秋霞免费鲁丝片| 97超碰精品成人国产| 99久国产av精品国产电影| 亚洲精品乱码久久久久久按摩| 国产69精品久久久久777片| 又大又黄又爽视频免费| 九九爱精品视频在线观看| 久久99热这里只有精品18| 国产精品麻豆人妻色哟哟久久| 一本—道久久a久久精品蜜桃钙片| 精品亚洲成国产av| 亚洲综合色惰| 国产一区有黄有色的免费视频| 国产精品人妻久久久影院| 99久久精品一区二区三区| 日本猛色少妇xxxxx猛交久久| 午夜免费男女啪啪视频观看| 少妇裸体淫交视频免费看高清| 亚洲中文av在线| 一区二区三区免费毛片| 国产有黄有色有爽视频| 精品人妻熟女av久视频| 自拍偷自拍亚洲精品老妇| 亚洲av不卡在线观看| 黑人高潮一二区| 国产在线男女| 国精品久久久久久国模美|