• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimization of durable press finishing process of cotton fabric with a combination of BTCA and CA by response surface methodology

    2019-07-15 10:47:46CHUXudongWANGHuaifangZHUPingSUIShuying

    CHU Xudong, WANG Huaifang, ZHU Ping, SUI Shuying

    (College of Textile & Clothing/Institute of Functional Textiles and Advanced Materials/State Key Laboratory of Bio-fibers and Eco-textiles/Collaborative Innovation Center of Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071,Shandong, China)

    Abstract:A two-dimensional numerical model was developed to investigate and optimize the durable press (DP) finishing process of cotton fabric with a combination of 1, 2, 3, 4-butanetetracarboxylic acid (BTCA) and citric acid (CA).The numerical model was validated by experimental data. Response surface methodology (RSM) was used to establish mathematical models of the wrinkle recovery angle (WRA) and the breaking strength as the function of the operating parameters involving BTCA concentration, CA concentration, sodium hypophosphite (SHP) concentration, curing temperature, and curing time. Analysis of variance (ANOVA) for the models revealed that the curing time was the most significant factors affecting WRA, followed by the concentration of BTCA and CA, the curing temperature and the concentration of SHP. As to the breaking strength, the curing time was the most significant variable, followed by the curing temperature, the concentration of SHP, the concentration of CA and the concentration of BTCA. The optimal process is as follows:BTCA 50 g/L, CA 45 g/L, SHP 33 g/L, curing at 162℃ for 63 s, and WRA of the finished cotton fabric in this condition is 260° and breaking strength retention is 72%.

    Key words:DP finish; response surface methodology (RSM); BTCA; citric acid; cotton fabric

    0 Introduction

    In the early 1990s, Clark M. Welch et al. found that alkali metal salts containing phosphoric acid can be used as catalysts for esterification of polycarboxylic acid with cellulose[1-2], and that treated fabrics have excellent durable press (DP) property. This discovery laid the foundation for the application of polycarboxylic acids as formaldehyde-free DP finishing agents for cotton fabrics, avoiding the possible harm of formaldehyde to the environment and human body.

    Polycarboxylic acids have been considered to be the most promising formaldehyde-free DP finishing agents to replace Di-Methylol Di-Hydroxy Ethylene Urea (DMDHEU), and 1, 2, 3, 4-butane tetracarboxylic acid (BTCA) is the best one among them. The DP grade of cotton fabrics treated with this compound can reach 4-5 grades. In addition to the fine DP property of cotton fabrics, the finished cotton fabrics also possess the desired whiteness and washability. However, the price of BTCA is too high that few industrial applications were carried out till now. Citric acid (CA) is also a kind of polycarboxylic acid for DP finishing agent with much lower cost[3-4]. Although the wrinkle resistance of fabrics finished with CA is not as good as that of BTCA, it still has great application value.

    Response surface methodology (RSM) introduced by BOX and Wilson[5], is a collection of mathematical and statistical techniques with wide applications in food engineering, analytical chemistry, biological engineering and so on by designing experiments, building models and analyzing the effects of independent factors[6-7]. This method would establish a mathematical quadratic model between response value and design factors by statistical techniques based on experimental results. The optimal values of experimental conditions would be obtained by this model.

    Conventionally, DP finishing process with polycarboxylic acid is mainly carried out by single factor experimental method[8-9]. Based on this method, only the parameter to be examined is varied while the others are fixed at a certain value. Compared with single factor experimental method, the empirical model of RSM cannot only clarify the interactive effects among experimental parameters, but also can predict the experimental parameters to obtain the needed experimental results[10-11]. In this study, the effect of finishing parameters like BTCA concentration, CA concentration, SHP concentration, curing temperature, and curing time was investigated on the wrinkle recovery angle (WRA) and the breaking strength. Furthermore, the optimization of the finishing process of cotton fabrics was successfully conducted by RSM.

    1 Experimental

    1.1 Materials

    The materials used in this study are desized, scoured, bleached and mercerized plain cotton woven fabrics (weight:140 g/m2, warp density:52.4 ends/cm, weft density:28.3 picks/cm, yarn count:14.75 tex×14.76 tex), which are supplied by Weifang Qirong Textile Co., Ltd. BTCA, sodium hypophosphite (SHP) and CA were obtained from China National Pharmaceutical Group Co. Ltd., Shanghai, China. DA-26 silicon oil (solid content:40%) was used as a fabric softener and purchased from Shanghai Xingzhou chemical industry limited Co. Ltd., Shanghai, China. All chemicals were of chemically pure and used as received unless otherwise stated.

    1.2 Fabric treatment

    The fabrics were finished by pad-dry-curing method. The finishing solution contained BTCA and SHP as well as 20 g/L silicon oil (DA-26). The sample was impregnated in the solution and padded with a laboratory padder with two dips and two nips. The wet pickup of the padded sample is approximately 80%. Padded samples were dried at 100 ℃ for 2 minutes, and then cured at a desired temperature for a time period. Finally, the cured fabrics were rinsed in water to remove all unreacted agents and dried at 80 ℃ for 5 minutes.

    1.3 Measurements

    1.3.1 Wrinkle recovery angle (WRA) Wrinkle recovery property was tested both in wrap and weft direction according to GB/T 3819—1997 “Textile fabrics——Determination of the recovery from creasing of a folded specimen by measuring the angle of recovery”. After maintaining in the standard atmospheric balance box for 24 h, each sample was tested 6 times and the mean value was recorded as the index of fabric wrinkle recovery.

    1.3.2 Breaking strength Breaking strength property of cotton fabric was tested according to GB/T 3923.1—2013 “Textiles—Tensile properties of fabrics——Part 1:Determination of maximum force and elongation at maximum force using the strip method”. All samples were 30×6cm2sized. After maintaining in the standard atmospheric balance box 24 h, each sample was tested 5 times and the mean value recorded. During the testing process, the gauge length is 20 cm, the drawing speed is 100 mm/min, and the recovery speed is 300 mm/min.Breaking strength retention (%)=(Rb/Ra)×100%.

    WhereRbis the breaking strength (N) of the finished fabric andRais the breaking strength (N) of the fabric before finishing treatment.

    The loss of weft strength of finished fabric is normally greater than that of warp strength[12]. All measurements were measured in weft direction only.

    1.4 Experimental design

    This article aims at developing a two-dimensional numerical model for investigating and optimizing the DP finishing process of cotton fabric with a combination of BTCA and CA. In the optimization procedure, WRA and the breaking strength are selected as the responses, and five operating parameters include: BTCA concentration, CA concentration, SHP concentration, curing temperature, and curing time are chosen as the variable factors. According to actual finishing process, the effective domains of five factors are determined. Five-factor and three-level experimental matrix shown in Tab.1 is designed and generated by the Box-Behnken Design (BBD).

    Table 1 Range and levels of independent variables in BBD

    According to the design matrix arranged by BBD, the model based on Design Expert 8.0.6 (Stat-Ease Inc., USA) mentioned above is performed to obtain the corresponding responses. The experimental design and results of BBD response surface are shown in Tab. 2. The first column of the Table shows the run number of experiments. The next five columns represent the actual conditions of runs and the last three columns represent the results of experiments.

    Table 2 Design of experimental matrix and its responses

    2 Results and discussion

    2.1 Effect of CA concentration on DP property

    Effect of CA concentration on WRA and breaking strength of finished fabrics was investigated and the results are shown in Fig.1.In Fig.1,BTCA conc. is 40 g/L,SHP conc., 40 g/L,curing temperature, 170 ℃,Curing time,90 s.

    Fig.1 Effect of CA concentration on the property of the finished fabrics

    Fig.1 shows that WRA increases with the increase of CA concentration, while the breaking strength increases slightly and then decreases dramatically. When the concentration of CA is 50 g/L, WRA reaches 269° and the breaking strength is 212 N. The DP property would satisfy the practical production. An excess of CA will lead to the decreases of breaking strength. Therefore, the concentration of CA was fixed at 50 g/L in subsequent experiments.

    2.2 Effect of BTCA concentration on DP property

    Effects of BTCA concentration on WRA and breaking strength of finished fabrics were investigated. The results are shown in Fig.2.

    Fig.2 Effect of BTCA concentration on the property of the finished fabrics

    Fig.2 shows that WRA could be significantly improved with the increase of BTCA concentration. However, the breaking strength has a slight decrease when the BTCA concentration was less than 30 g/L and more breaking strength loss can be observed along with the continue increase of BTCA concentration. Therefore, the concentration of CA was fixed to 30 g/L in subsequent experiments.In Fig.2, CA conc.is 50 g/L; SHP conc., 40 g/L; Curing temperature, 170℃; Curing time, 90 s.

    2.3 Effect of SHP concentration on DP property

    Effect of SHP concentration on WRA and breaking strength of finished fabrics was investigated. The results are shown in Fig.3.In Fig.3,BTCA conc. is 30 g/L,CA conc.,50 g/L,Curing temperature, 170 ℃,Curing time, 90 s.

    Fig.3 Effect of SHP concentration on the property of the finished fabrics

    Fig.3 shows that WRA and breaking strength follow a similar trend as the concentration of SHP increases. After reaching the highest point when the concentration of SHP is 40 g/L, there is a decrease of different extent in the figure of WRA and breaking strength. This may be due to the fact that SHP is both a cross-linking catalyst and a buffer, which promotes the cross-linking of BTCA with cellulose to a certain extent, and also reduces the acid degradation of the fabric by solution and improves its strength. Continuous increase of SHP concentration has little effect on WRA, but the breaking strength of fabric decreases with the increase of crosslinking degree.

    2.4 Effect of curing temperature on DP property

    Effect of curing temperature on WRA and breaking strength of finished fabrics was investigated. The results are shown in Fig.4.In Fig.4, BTCA conc.is 30 g/L; CA conc., 50 g/L; SHP conc., 40 g/L; Curing time, 90 s.

    Fig.4 Effect of curing temperature on the property of the finished fabrics

    Fig.4 shows that WRA of the fabric grow obviously at the first period in question, then the growth slows down when the curing temperature is over than 170 ℃. However, figures of the breaking strength witnessed a different trend to WRA, which decrease sharply from 246 N to 216 N as the temperature rises from 150 ℃ to 170 ℃; from then onwards, it sees a slight decrease. This is possibly because the esterification degree of carboxyl group and fabric increases with the increase of baking temperature, so WRA increases, but high temperature will accelerate the acid degradation of cellulose, resulting in more serious strength loss.

    2.5 Effect of curing time on DP property

    Effect of curing time on WRA and breaking strength of finished fabrics was investigated. The results are shown in Fig.5.In Fig.5,BTCA conc.is 30 g/L,CA conc.is 50 g/L,SHP conc.is 40 g/L,curing temperature, 170 ℃.

    Fig.5 Effect of curing time on the property of the finished fabrics

    Fig.5 shows that WRA of the fabric increases with the increase of curing time. Longer curing time has little effect on improvement of WRA of the fabric whereas it would cause a serious strength.

    2.6 Optimization by response surface methodology

    2.6.1 Analysis of variance (ANOVA) The ANOVA for the regression model of WRA and breaking strength were shown in Table 3.

    Table 3 shows thatPvalues of quadratic polynomial models for WRA and breaking strength are all less than 0.000 1, which indicates that the models are of high significance. The adjusted judgment coefficient (Radj2) of WRA model is 0.998 7, which shows that the model can accurately predict 99.87% of the response values. The coefficient of variation (CV) is 0.28%, which indicates that the correlation of the model is good and the reliability is high. ThePvalue of the lack of fit item is greater than 0.05, which is not significant. Therefore, the fitting degree of WRA model is high, and the model can be used to predict and analyze WRA. It can be seen fromFvalue that the importance of factor effects on WRA isX5>X1=X2>X4>X3. The first term of SHP concentration cannot fit WRA model, but the second term fits significantly, which shows that there is not a simple linear relationship between each factor and the response value.

    TheRadj2of the breaking strength model is 0.979 7, which shows that the model can accurately predict 97.97% of the response changes. TheCVof the model is 1.57%, and thePvalue of the lack of fit term of the breaking strength model is greater than 0.05, which is not significant. Therefore, the model can also be used to predict and analyze the breaking strength. It can be seen from theFvalue of a term that the order of the influence degree of each factor on breaking strength isX5>X4>X3>X2>X1.

    In conclusion, it can be concluded that the two regression models can predict WRA and breaking strength of cotton fabric treated with BTCA-CA mixed polycarboxylic acid. According to the results of variance analysis, the accurate relationship model between the parameters and the response value is obtained. Finally, after converting the actual value of the model into the coding value, the quadratic regression model is obtained as follows:

    Table 3 Variance analysis of regression model and significance test of regression coefficients

    *=significant (P<0.05). **=highly significant (P<0.001)

    2.6.2 Interactive effect of BTCA and CA concentrations on response values The interactive influence between BTCA and CA concentration on WRA and the breaking strength of finished fabrics are separately shown in Fig.6 and Fig.7.

    (a) 3-D surface plot

    (b) 2-D contour plotFig.6 Effects of concentration of BTCA and CA on WRA. Other variables take place at zero level (X3=40 g/L, X4=170 ℃, X5=90 s)

    Fig.6 shows the effect of BTCA on WRA is similar to CA, as WRA figures for cotton fabric treated with CA and BTCA experienced a similar trend when the concentration increases. Fig. 7 shows the breaking strength increases slightly with the increase of the amount of CA when the amount of BTCA is unchanged. This may be due to the esterification of some CA with BTCA, which improves the cross-linking length and forms a larger three-dimensional network structure on the fabric. Therefore, it improves the ductility of cross-linked fabrics, reduces the restriction of fiber activity and reduces the strength loss of fabrics to a certain extent. Continuous increase of CA concentration will increase the degree of crosslinking and decrease the breaking strength.

    (a) 3-D surface plot

    (b) 2-D contour plotFig.7 Effects of concentration of BTCA and CA on the breaking strength. Other variables take place at zero level (X3=40 g/L, X4=170 ℃, X5=90 s)

    2.6.3 Verification of the optimized parameters In order to achieve higher WRA and retain a higher breaking strength, optimum finishing parameters with a signal-to-noise ratio of 1.000 were obtained by taking WRA of 260° and the breaking strength of 230 N as objective response values: BTCA 50 g/L, CA 45 g/L, SHP 33 g/L and curing at 162 ℃ for 63 s. Confirmation experiments were carried out and the tested results of WRA and breaking strength under this finishing process are 260° and 227 N, respectively. The strength retention rate is 72%. The actual value is close to the predicted value, which shows that the regression model can truly reflect the influence of various factors on WRA and breaking strength of BTCA-CA mixed polycarboxylic acid finished process.

    3 Conclusion

    (1) Effects of the operating parameters and their interactive effects on WRA and the breaking strength had been explained in detail by ANOVA. It was found that five operating parameters have different influence on the response value. The order of them on WRA model is: Curing time>BTCA concentration>curing temperature>SHP concentration. In terms of concentration effect, effect of CA on WRA is similar to that of BTCA. The order of them in breaking strength model is:Curing time>curing temperature>SHP concentration>CA concentration>BTCA concentration.

    (2) Optimized process was carried out to determine the optimized parameters and the accuracy of the regression model were verified. Results showed a good agreement between numerical and predicted results. This study could provide an efficient and accuracy method to guide and optimize the BTCA-CA mixed polycarboxylic acid finished process. The optimum parameters DP finishing process with the mixed compounds of BTCA and CA is: BTCA 50 g/L, CA 45 g/L, SHP 33 g/L, curing at 162 ℃ for 63 s. WRA is 260° and the retention rate of breaking strength is 72%.

    www日本在线高清视频| 久久欧美精品欧美久久欧美| 久久久久久久久久黄片| 色精品久久人妻99蜜桃| 欧美国产日韩亚洲一区| 在线观看免费视频日本深夜| 热99在线观看视频| 欧美在线一区亚洲| 欧美中文综合在线视频| 亚洲专区国产一区二区| 91麻豆精品激情在线观看国产| 亚洲欧美日韩卡通动漫| 久久精品国产99精品国产亚洲性色| 一级毛片高清免费大全| av天堂在线播放| 19禁男女啪啪无遮挡网站| 黄片大片在线免费观看| 亚洲在线自拍视频| 亚洲一区二区三区色噜噜| 久久久成人免费电影| 两个人视频免费观看高清| 两人在一起打扑克的视频| 99久久精品一区二区三区| 人妻夜夜爽99麻豆av| 久久中文看片网| 亚洲精华国产精华精| 欧美成人免费av一区二区三区| 成人欧美大片| 神马国产精品三级电影在线观看| 久久久久久国产a免费观看| www.www免费av| 亚洲av不卡在线观看| 一本综合久久免费| 欧美av亚洲av综合av国产av| 狠狠狠狠99中文字幕| 日本黄色片子视频| 国产精品亚洲美女久久久| 精品人妻1区二区| 成年女人永久免费观看视频| 亚洲人成伊人成综合网2020| 国产精品亚洲美女久久久| 精品人妻1区二区| 国产一区二区三区在线臀色熟女| 少妇的丰满在线观看| 好看av亚洲va欧美ⅴa在| 欧美又色又爽又黄视频| 天天添夜夜摸| 欧美黄色淫秽网站| 欧美乱色亚洲激情| 男女下面进入的视频免费午夜| 搡老妇女老女人老熟妇| 欧美成人免费av一区二区三区| 日韩国内少妇激情av| 国产野战对白在线观看| 丝袜美腿在线中文| 国产av一区在线观看免费| 中文字幕高清在线视频| 黄色日韩在线| 国产精品久久久久久精品电影| 精品国产美女av久久久久小说| 亚洲国产精品成人综合色| 成人亚洲精品av一区二区| 国内精品一区二区在线观看| 在线观看一区二区三区| 欧美成人一区二区免费高清观看| 制服人妻中文乱码| 久久国产精品影院| 免费看a级黄色片| 亚洲精品粉嫩美女一区| 国产精品久久久久久人妻精品电影| 在线观看日韩欧美| 一级毛片女人18水好多| 此物有八面人人有两片| 免费大片18禁| 在线免费观看不下载黄p国产 | 欧美bdsm另类| www.999成人在线观看| 欧美性猛交╳xxx乱大交人| 午夜精品久久久久久毛片777| 午夜精品久久久久久毛片777| 欧美黄色淫秽网站| 国产又黄又爽又无遮挡在线| 在线国产一区二区在线| 亚洲最大成人中文| 99视频精品全部免费 在线| 一区二区三区高清视频在线| 亚洲精品日韩av片在线观看 | 欧美成狂野欧美在线观看| 特大巨黑吊av在线直播| 一区二区三区国产精品乱码| 免费无遮挡裸体视频| 国产精品综合久久久久久久免费| 男女下面进入的视频免费午夜| 久久婷婷人人爽人人干人人爱| 99在线人妻在线中文字幕| 国产精品久久久久久人妻精品电影| 日本撒尿小便嘘嘘汇集6| 国产 一区 欧美 日韩| 亚洲无线观看免费| 成人高潮视频无遮挡免费网站| 日韩中文字幕欧美一区二区| 国产精品久久久久久亚洲av鲁大| 精华霜和精华液先用哪个| 欧美黑人欧美精品刺激| 国产精品自产拍在线观看55亚洲| 中国美女看黄片| 少妇人妻精品综合一区二区 | 午夜福利免费观看在线| www.www免费av| 欧美大码av| 我的老师免费观看完整版| 天堂√8在线中文| 毛片女人毛片| 久久欧美精品欧美久久欧美| 欧美在线黄色| 国产一区二区在线av高清观看| 精品人妻1区二区| 美女黄网站色视频| 亚洲精华国产精华精| 日本三级黄在线观看| 久久精品国产亚洲av涩爱 | 国产日本99.免费观看| 国产熟女xx| 色在线成人网| 高清毛片免费观看视频网站| 亚洲在线自拍视频| 中文亚洲av片在线观看爽| 国产成+人综合+亚洲专区| 国产精品99久久99久久久不卡| 欧美日本亚洲视频在线播放| 国产精品三级大全| 嫁个100分男人电影在线观看| 禁无遮挡网站| 97超级碰碰碰精品色视频在线观看| 国产成人欧美在线观看| 国产综合懂色| 免费av观看视频| 一区二区三区激情视频| 色在线成人网| 亚洲精品粉嫩美女一区| 精品久久久久久久末码| 桃色一区二区三区在线观看| 夜夜躁狠狠躁天天躁| 国产精品国产高清国产av| 又粗又爽又猛毛片免费看| 国产精品久久久久久精品电影| 成人午夜高清在线视频| 99热这里只有是精品50| 美女免费视频网站| 欧美成狂野欧美在线观看| 色综合婷婷激情| 国产一区二区在线观看日韩 | 亚洲va日本ⅴa欧美va伊人久久| 久久婷婷人人爽人人干人人爱| 1024手机看黄色片| 欧美日本视频| 色综合亚洲欧美另类图片| 久久性视频一级片| 久久久久久久久中文| 久久精品国产自在天天线| 黄片大片在线免费观看| 9191精品国产免费久久| 日韩欧美三级三区| 亚洲第一欧美日韩一区二区三区| 麻豆久久精品国产亚洲av| 欧美性感艳星| 久久伊人香网站| 免费在线观看影片大全网站| 欧美在线一区亚洲| 日韩欧美在线乱码| 国产91精品成人一区二区三区| 黄色片一级片一级黄色片| 成人高潮视频无遮挡免费网站| 国产精品免费一区二区三区在线| 亚洲人与动物交配视频| 在线观看66精品国产| 国产精品三级大全| 久久久久精品国产欧美久久久| 99久久久亚洲精品蜜臀av| 超碰av人人做人人爽久久 | 3wmmmm亚洲av在线观看| 在线观看日韩欧美| 在线观看66精品国产| 琪琪午夜伦伦电影理论片6080| 蜜桃亚洲精品一区二区三区| 精品人妻偷拍中文字幕| 18禁裸乳无遮挡免费网站照片| 亚洲av中文字字幕乱码综合| 国产精品久久久人人做人人爽| 国产真实乱freesex| 熟妇人妻久久中文字幕3abv| 免费av毛片视频| 亚洲欧美日韩高清专用| 亚洲一区二区三区不卡视频| 一二三四社区在线视频社区8| 美女高潮的动态| 久久国产精品影院| 51午夜福利影视在线观看| 观看免费一级毛片| 日韩 欧美 亚洲 中文字幕| 欧美成狂野欧美在线观看| 久久久国产成人精品二区| 一个人看的www免费观看视频| 日韩欧美三级三区| 蜜桃久久精品国产亚洲av| 91久久精品电影网| 午夜免费激情av| 欧美乱码精品一区二区三区| 色吧在线观看| 亚洲人成网站在线播| av在线蜜桃| 69人妻影院| 国内精品久久久久精免费| 18禁黄网站禁片免费观看直播| 亚洲欧美日韩高清专用| 在线观看66精品国产| 一个人免费在线观看的高清视频| 精品一区二区三区av网在线观看| 少妇人妻一区二区三区视频| 日韩有码中文字幕| 成人特级黄色片久久久久久久| av在线天堂中文字幕| 久久国产精品人妻蜜桃| 搡老岳熟女国产| av女优亚洲男人天堂| 国内精品一区二区在线观看| 国产成人福利小说| 国产精品一区二区免费欧美| 男女做爰动态图高潮gif福利片| 欧美日韩一级在线毛片| 亚洲国产高清在线一区二区三| 制服丝袜大香蕉在线| 淫妇啪啪啪对白视频| 91av网一区二区| 亚洲欧美日韩高清专用| 久久香蕉精品热| 欧美性感艳星| 波多野结衣巨乳人妻| 久久久成人免费电影| 亚洲成a人片在线一区二区| 国产精品久久久久久久电影 | 麻豆成人av在线观看| 叶爱在线成人免费视频播放| 可以在线观看毛片的网站| 国产蜜桃级精品一区二区三区| 国内精品久久久久久久电影| 亚洲国产高清在线一区二区三| 精品免费久久久久久久清纯| a级一级毛片免费在线观看| 国产免费av片在线观看野外av| 一级黄片播放器| 中文亚洲av片在线观看爽| 一夜夜www| 美女被艹到高潮喷水动态| 久久99热这里只有精品18| xxxwww97欧美| 好男人电影高清在线观看| 亚洲精品久久国产高清桃花| 欧美+日韩+精品| АⅤ资源中文在线天堂| 日本三级黄在线观看| 欧美日本亚洲视频在线播放| 午夜激情欧美在线| 国产高清视频在线播放一区| 天天躁日日操中文字幕| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲国产欧美人成| 夜夜躁狠狠躁天天躁| 草草在线视频免费看| 国产69精品久久久久777片| 亚洲一区二区三区色噜噜| 男女视频在线观看网站免费| 国产探花极品一区二区| 香蕉丝袜av| 看片在线看免费视频| 精品国产美女av久久久久小说| 国产成人欧美在线观看| 欧美日本亚洲视频在线播放| 免费在线观看成人毛片| 成人国产一区最新在线观看| 日韩亚洲欧美综合| 国产一级毛片七仙女欲春2| 久久久久久久精品吃奶| 免费看光身美女| 国产精品爽爽va在线观看网站| 国产精品一区二区免费欧美| 国产精品,欧美在线| 人妻久久中文字幕网| 日韩欧美国产一区二区入口| 黄色片一级片一级黄色片| 一区二区三区激情视频| 日韩欧美精品免费久久 | 五月伊人婷婷丁香| 欧美黄色淫秽网站| 午夜福利18| 可以在线观看的亚洲视频| 久久香蕉精品热| 免费人成视频x8x8入口观看| 国产毛片a区久久久久| 叶爱在线成人免费视频播放| 久久精品国产综合久久久| 国产欧美日韩精品亚洲av| 中文字幕人妻熟人妻熟丝袜美 | 久久久精品大字幕| 99精品欧美一区二区三区四区| 日本在线视频免费播放| 啦啦啦免费观看视频1| e午夜精品久久久久久久| 精品人妻偷拍中文字幕| 国产精品美女特级片免费视频播放器| 成人av一区二区三区在线看| 高清毛片免费观看视频网站| 九九在线视频观看精品| 十八禁人妻一区二区| 成人国产综合亚洲| 欧美zozozo另类| 国产伦在线观看视频一区| 国产一区二区在线av高清观看| 两个人看的免费小视频| 宅男免费午夜| 天堂影院成人在线观看| 免费av毛片视频| 内地一区二区视频在线| 婷婷六月久久综合丁香| 国内久久婷婷六月综合欲色啪| 美女免费视频网站| 色综合欧美亚洲国产小说| 色在线成人网| 久久草成人影院| 欧美日本亚洲视频在线播放| 亚洲一区高清亚洲精品| 国产真实伦视频高清在线观看 | 久9热在线精品视频| 黄色日韩在线| 色精品久久人妻99蜜桃| 欧美区成人在线视频| 欧美黑人巨大hd| 亚洲欧美日韩东京热| 99国产综合亚洲精品| 99久久99久久久精品蜜桃| 国产精品日韩av在线免费观看| 99热精品在线国产| 19禁男女啪啪无遮挡网站| 亚洲欧美日韩高清在线视频| 少妇的逼好多水| 日本一本二区三区精品| 亚洲av成人av| 成人一区二区视频在线观看| 少妇的逼好多水| 看免费av毛片| 久久久久久久午夜电影| 人人妻人人看人人澡| 有码 亚洲区| 啦啦啦观看免费观看视频高清| 97超视频在线观看视频| 亚洲av成人精品一区久久| 日韩欧美三级三区| 一级毛片女人18水好多| 琪琪午夜伦伦电影理论片6080| av专区在线播放| 99在线人妻在线中文字幕| 中文字幕久久专区| 国产精品日韩av在线免费观看| 丁香六月欧美| a级毛片a级免费在线| 真人做人爱边吃奶动态| 成人特级av手机在线观看| 丁香六月欧美| 嫩草影院精品99| 韩国av一区二区三区四区| 久久久精品欧美日韩精品| 亚洲午夜理论影院| 日本免费a在线| 国产探花极品一区二区| 啪啪无遮挡十八禁网站| 久久国产精品影院| 亚洲成av人片免费观看| 每晚都被弄得嗷嗷叫到高潮| 一进一出抽搐动态| 老司机在亚洲福利影院| 天天躁日日操中文字幕| 日韩中文字幕欧美一区二区| 久久久国产成人免费| 国产高潮美女av| 麻豆成人午夜福利视频| 动漫黄色视频在线观看| 少妇裸体淫交视频免费看高清| 亚洲欧美精品综合久久99| 女同久久另类99精品国产91| 免费高清视频大片| 日本黄色片子视频| 国产精品1区2区在线观看.| 一进一出好大好爽视频| av欧美777| 在线观看免费午夜福利视频| 亚洲色图av天堂| 女生性感内裤真人,穿戴方法视频| 精品久久久久久成人av| 精品一区二区三区人妻视频| 狠狠狠狠99中文字幕| 日日摸夜夜添夜夜添小说| 国产精品久久久人人做人人爽| 夜夜夜夜夜久久久久| 色哟哟哟哟哟哟| 99久久无色码亚洲精品果冻| 亚洲一区二区三区不卡视频| 免费高清视频大片| 成人18禁在线播放| 无遮挡黄片免费观看| 在线观看免费午夜福利视频| 欧美区成人在线视频| 国产黄色小视频在线观看| 国产精品电影一区二区三区| 亚洲美女视频黄频| 首页视频小说图片口味搜索| 老熟妇仑乱视频hdxx| 日韩欧美精品免费久久 | 好看av亚洲va欧美ⅴa在| 十八禁网站免费在线| 免费观看的影片在线观看| 国产精品嫩草影院av在线观看 | 亚洲国产精品sss在线观看| av片东京热男人的天堂| 欧美日韩瑟瑟在线播放| 亚洲性夜色夜夜综合| 啦啦啦观看免费观看视频高清| 男女做爰动态图高潮gif福利片| 少妇的丰满在线观看| av天堂在线播放| 好男人在线观看高清免费视频| 免费av不卡在线播放| 九九热线精品视视频播放| 亚洲精品乱码久久久v下载方式 | 欧美xxxx黑人xx丫x性爽| 国产欧美日韩精品一区二区| 他把我摸到了高潮在线观看| 特大巨黑吊av在线直播| 神马国产精品三级电影在线观看| 欧美乱妇无乱码| 免费av不卡在线播放| 精品免费久久久久久久清纯| 非洲黑人性xxxx精品又粗又长| 少妇裸体淫交视频免费看高清| 久久久国产精品麻豆| 在线播放无遮挡| 两个人视频免费观看高清| 免费av不卡在线播放| 国产亚洲精品久久久com| 欧美日韩黄片免| 非洲黑人性xxxx精品又粗又长| 在线视频色国产色| 天堂影院成人在线观看| 国产精品日韩av在线免费观看| 一本综合久久免费| 一区二区三区免费毛片| 国产精品综合久久久久久久免费| 日本撒尿小便嘘嘘汇集6| eeuss影院久久| 国产综合懂色| 90打野战视频偷拍视频| 国产精品国产高清国产av| 午夜免费激情av| 日韩人妻高清精品专区| 婷婷丁香在线五月| 美女黄网站色视频| 欧美高清成人免费视频www| 亚洲av熟女| 一区二区三区激情视频| 很黄的视频免费| 色噜噜av男人的天堂激情| xxx96com| 中文字幕熟女人妻在线| 白带黄色成豆腐渣| 麻豆成人午夜福利视频| 成人三级黄色视频| 尤物成人国产欧美一区二区三区| 99在线人妻在线中文字幕| 国产午夜精品论理片| 91久久精品国产一区二区成人 | 亚洲精品美女久久久久99蜜臀| 在线播放无遮挡| 免费搜索国产男女视频| 老汉色∧v一级毛片| 夜夜夜夜夜久久久久| 黄色女人牲交| 一级毛片高清免费大全| 免费人成视频x8x8入口观看| 每晚都被弄得嗷嗷叫到高潮| 蜜桃亚洲精品一区二区三区| 亚洲av美国av| 国产午夜精品论理片| 18美女黄网站色大片免费观看| 国产精品综合久久久久久久免费| 蜜桃亚洲精品一区二区三区| 深夜精品福利| 国产精品99久久久久久久久| 俺也久久电影网| 日韩欧美国产一区二区入口| 亚洲不卡免费看| 国产黄a三级三级三级人| 国产探花极品一区二区| 欧美成狂野欧美在线观看| 男女午夜视频在线观看| 一本精品99久久精品77| 最近视频中文字幕2019在线8| 国语自产精品视频在线第100页| 久久久国产成人免费| 成人三级黄色视频| 精品久久久久久久久久免费视频| 极品教师在线免费播放| 九九在线视频观看精品| xxxwww97欧美| 国产精品,欧美在线| 久久精品国产综合久久久| 99久久无色码亚洲精品果冻| 一进一出抽搐gif免费好疼| 亚洲欧美精品综合久久99| 国产高清视频在线观看网站| 搞女人的毛片| 精品欧美国产一区二区三| 在线视频色国产色| 欧美一级a爱片免费观看看| 一个人免费在线观看电影| 久久精品91蜜桃| 日本黄色片子视频| 亚洲av美国av| 免费搜索国产男女视频| 国产高潮美女av| 成熟少妇高潮喷水视频| 麻豆国产97在线/欧美| 成人国产综合亚洲| 亚洲成人久久爱视频| 一区福利在线观看| a级一级毛片免费在线观看| 国产精品久久久久久人妻精品电影| 日韩欧美 国产精品| av片东京热男人的天堂| 精品乱码久久久久久99久播| 欧美+日韩+精品| 国产亚洲精品久久久com| 国产午夜精品久久久久久一区二区三区 | 最新在线观看一区二区三区| 99热只有精品国产| 熟妇人妻久久中文字幕3abv| 亚洲欧美日韩高清专用| 一a级毛片在线观看| 日日夜夜操网爽| 免费看美女性在线毛片视频| 不卡一级毛片| 午夜福利成人在线免费观看| 国产黄a三级三级三级人| 亚洲av五月六月丁香网| 午夜激情欧美在线| 一进一出好大好爽视频| 欧美日韩国产亚洲二区| 精品欧美国产一区二区三| eeuss影院久久| 国产精品野战在线观看| 久久精品91无色码中文字幕| 亚洲精品在线观看二区| xxx96com| 最近最新中文字幕大全免费视频| 国内少妇人妻偷人精品xxx网站| 熟女少妇亚洲综合色aaa.| 成人特级av手机在线观看| 小说图片视频综合网站| av片东京热男人的天堂| 中文字幕人妻丝袜一区二区| 国产精品一区二区三区四区免费观看 | 欧美激情久久久久久爽电影| 国产成人aa在线观看| 国产蜜桃级精品一区二区三区| 亚洲成av人片在线播放无| 18禁裸乳无遮挡免费网站照片| 午夜福利18| 看免费av毛片| 欧美成人a在线观看| 国产av在哪里看| 国产成人av激情在线播放| 欧美zozozo另类| 此物有八面人人有两片| xxx96com| 99国产精品一区二区蜜桃av| 日韩精品青青久久久久久| 精品人妻一区二区三区麻豆 | 免费人成在线观看视频色| 老鸭窝网址在线观看| 神马国产精品三级电影在线观看| 久久国产精品人妻蜜桃| 成人午夜高清在线视频| 此物有八面人人有两片| 黑人欧美特级aaaaaa片| 91在线精品国自产拍蜜月 | 一卡2卡三卡四卡精品乱码亚洲| 国产三级黄色录像| 九九在线视频观看精品| 99久国产av精品| 九九热线精品视视频播放| 亚洲电影在线观看av| 人妻久久中文字幕网| or卡值多少钱| 国内精品美女久久久久久| 国产久久久一区二区三区| 乱人视频在线观看| 两个人的视频大全免费| 国产av一区在线观看免费| 一个人免费在线观看电影| 日韩人妻高清精品专区| 国产 一区 欧美 日韩| 久久6这里有精品| 精品人妻1区二区| 免费观看精品视频网站| 亚洲精华国产精华精| 成人三级黄色视频| 中文字幕高清在线视频|