陳國安
摘要:學(xué)生的智力成長過程中,教師的引導(dǎo)是不可或缺的。教師在教學(xué)過程中科學(xué)地應(yīng)用策略,能有效快速增進(jìn)學(xué)生智力的發(fā)展。在處理數(shù)學(xué)問題解題過程中,老師要把握好問題難易程度,設(shè)計(jì)合理的教學(xué)順序,綜合學(xué)生即時(shí)心理狀態(tài)、知識(shí)水平,應(yīng)用能力等,有規(guī)劃的設(shè)置。只有這樣,才能較好的提高學(xué)生解決數(shù)學(xué)問題的能力。總的來說,教育者必須營造寬松和諧的解題環(huán)境,構(gòu)建情感教育;教育者必須開拓學(xué)生多向思維,注重靈活創(chuàng)新;教育者必須加強(qiáng)引導(dǎo)學(xué)生聯(lián)系實(shí)際,注重分析比較。
關(guān)鍵詞:情感教育;靈活創(chuàng)新;分析比較
中圖分類號(hào):G623.5?????文獻(xiàn)標(biāo)識(shí)碼:B????文章編號(hào):1672-1578(2019)16-0147-01
小學(xué)生的數(shù)學(xué)解題能力是學(xué)生掌握許多其它能力的基點(diǎn),如何拓展學(xué)生的數(shù)學(xué)解題能力是個(gè)較為復(fù)雜的問題。由于小學(xué)生年齡較小,情感脆弱,對(duì)問題的認(rèn)識(shí)多局限于形象思維,想法單一,缺乏綜合思考,難于形成縝密的邏輯思維。為了能夠盡早開發(fā)學(xué)生的智力,拓展學(xué)生解決問題的能力,教學(xué)必須從三個(gè)方面入手。
1.老師需要營造寬松和諧的解題環(huán)境,構(gòu)建情感教育
情感教育不僅是學(xué)生文化教育的組成部分,更是學(xué)生智力開發(fā)的助推器。當(dāng)代的孩子,大多數(shù)是獨(dú)生子女,是幾代人共同呵護(hù)成長的孩子,表現(xiàn)出任性,更有甚者,一點(diǎn)點(diǎn)的小挫折都承受不起,其心靈較之七八十年代的孩子,顯得非常脆弱。老師若是因?yàn)閷W(xué)生在學(xué)習(xí)方面的缺點(diǎn)而過多的批評(píng),學(xué)生就會(huì)厭煩抵觸,進(jìn)而會(huì)導(dǎo)致學(xué)生對(duì)于學(xué)習(xí)放任自流,置之不問,置之不理,嚴(yán)重滯緩了學(xué)生智力的開發(fā)。作為當(dāng)代的小學(xué)數(shù)學(xué)老師,不單單只強(qiáng)化自身的教學(xué)理論,更重要的是研究心理學(xué),教育學(xué)。了解研究學(xué)生的心理,能在不同時(shí)間,不同地點(diǎn)熟知學(xué)生即刻的情趣心理,能夠即時(shí)依據(jù)學(xué)生的特點(diǎn)創(chuàng)設(shè)合理的教學(xué)情境。
有一道利用列方程解決的圖文并茂的實(shí)際問題:圖中顯示一只梅花鹿和一只長頸鹿身高相差3.65米,并告知:長頸鹿的身高是梅花鹿身高的3.5倍。求梅花鹿和長頸鹿身高各多少米?一位老師這樣講解:同學(xué)們,問你們一個(gè)問題,“你們有沒有去過動(dòng)物園?”大多數(shù)學(xué)生回答說有,此時(shí)一小部分學(xué)生沒有回答。老師馬上問:“大家想不想去動(dòng)物園?”全班齊聲說“想”。這樣,一下子把全班學(xué)生的情緒提了起來。老師馬上又問:“那好,你們見過梅花鹿和長頸鹿嗎?”同學(xué)們都說見過。老師又問:“哪種動(dòng)物高哪種動(dòng)物矮?”同學(xué)們齊聲說“長頸鹿高梅花鹿矮”。老師問:高多少?此時(shí)大家紛紛猜測。老師說:為了讓大家更清楚認(rèn)識(shí),請(qǐng)看?!瘪R上出示情景圖。學(xué)生馬上清楚他們身高相差3.65米。老師又說:“長頸鹿的身高是梅花鹿身高的3.5倍,那你們應(yīng)該假設(shè)誰的身高好呢?”同學(xué)們都說梅花鹿。老師說“加油,算出它們身高,到時(shí)候去動(dòng)物園跟實(shí)際的動(dòng)物比較一下?”同學(xué)們立馬動(dòng)筆,很快就解出正確答案。結(jié)果會(huì)做的學(xué)生很多,效果很好。
2.老師需要開拓學(xué)生多向思維,注重靈活創(chuàng)新
學(xué)生的智力成長過程中,教師的引導(dǎo)是不可或缺的。教師在教學(xué)過程中科學(xué)地應(yīng)用策略,能有效快速增進(jìn)學(xué)生智力的發(fā)展。現(xiàn)今社會(huì)的更新變革更迫切要求教育工作者在教學(xué)過程中,注重培養(yǎng)學(xué)生的創(chuàng)造性思維和多向性思維。小學(xué)生,由于個(gè)體的差異,認(rèn)知層次的不同,對(duì)數(shù)學(xué)問題的理解也不盡相同。這就要求老師要對(duì)數(shù)學(xué)問題的設(shè)置講究層次性,設(shè)計(jì)由簡及難;講究廣泛性,設(shè)計(jì)覆蓋重難點(diǎn);講究開放性,設(shè)計(jì)不同問題多種思路。而最重要的是老師要善于引導(dǎo),依據(jù)學(xué)生的思維特點(diǎn),從問題的不同角度,不同思考方向給予學(xué)生提醒、點(diǎn)撥。文字?jǐn)?shù)字圖形化,學(xué)生理解更直觀,更易于掌握,能把握好解題的切入口。抽象問題具體化,引導(dǎo)學(xué)生將抽象問題數(shù)字化、圖像化,避免學(xué)生頭腦空洞,而且更重要的是引導(dǎo)學(xué)生要學(xué)會(huì)區(qū)分具體不等同于抽象,抽象能化分具體的特點(diǎn)。如"因?yàn)?2=2×2,所以x2=2x”。學(xué)生往往認(rèn)為這一命題是正確的。顯現(xiàn)了學(xué)生表象的思考,而缺乏深層次的思維。為了能提升學(xué)生的積極思維,不受各種干擾,在引領(lǐng)學(xué)生解題過程中,要盡量構(gòu)思教學(xué)思路環(huán)節(jié),設(shè)計(jì)不同的解題策略,挖掘數(shù)學(xué)問題的顯性條件和隱形條件,從問題的最終目的入手,采用分散法,逆推法,綜合法等不同方法,直至解出問題。這就無形當(dāng)中培養(yǎng)學(xué)生思維的多向性,對(duì)于學(xué)生快速有效的解題,綜合智力的發(fā)展起到推進(jìn)作用。
3.老師需要引導(dǎo)學(xué)生聯(lián)系實(shí)際,注重分析比較
數(shù)學(xué)來源于生活,學(xué)習(xí)數(shù)學(xué)可用于生活。培養(yǎng)學(xué)生能夠?qū)⑸罱?jīng)驗(yàn)和已有知識(shí)體系相結(jié)合,善于從生活中發(fā)現(xiàn)數(shù)學(xué),并用數(shù)學(xué)知識(shí)解決生活實(shí)際問題。例題:我校新建的分校區(qū)的校道長198米,為美觀要在校道的兩旁種上46棵棕櫚樹,每相鄰兩棵間隔相等,那么相鄰兩棵樹相距多少米?此問題會(huì)增強(qiáng)學(xué)生解出此題的欲望,學(xué)生會(huì)著手分析其中的數(shù)量和數(shù)量關(guān)系:兩旁種46棵,那么一旁應(yīng)種46÷2=23(棵),而23棵之間有23-1=22(個(gè))間隔,所以每相鄰兩棵間的距離應(yīng)是198÷22=9(米)。問題之所以能夠得到解答,是要學(xué)生善于觀察生活,發(fā)現(xiàn)路旁的頭和尾都需種上樹,故而只有22個(gè)間隔,接著學(xué)生能用數(shù)學(xué)中的總長度除以間隔數(shù),從而求出間隔長度。小學(xué)生在生活中比較被動(dòng),不能深入觀察了解生活,對(duì)于實(shí)際問題的理解也就不夠深入,更不善于將所學(xué)知識(shí)運(yùn)用于生活中,這就要求老師設(shè)計(jì)好的教學(xué)策略,引導(dǎo)學(xué)生如何將所學(xué)知識(shí)用于生活,讓學(xué)生感受到知識(shí)的實(shí)用性。學(xué)生才會(huì)樂意去學(xué),去解決問題。
總之,要依據(jù)不同的時(shí)間、地點(diǎn)、情境、學(xué)生的心理狀態(tài)采取適宜的教學(xué)策略,循序漸進(jìn),逐層引導(dǎo),誘發(fā)深入,直至撞出火花。總的來說,教學(xué)策略要從學(xué)生自身的特點(diǎn)出發(fā),突出情感教育,注重思維培養(yǎng),提升學(xué)生綜合應(yīng)用能力,讓學(xué)生達(dá)到知識(shí)融會(huì)貫通,能夠有效地解決問題。只有這樣,學(xué)生在遇到問題時(shí)才不懼怕,不退縮。