• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      樣本量估計(jì)及其在nQuery和SAS軟件上的實(shí)現(xiàn)*——均數(shù)比較(十一)

      2019-07-10 07:01:46南方醫(yī)科大學(xué)生物統(tǒng)計(jì)學(xué)系510515
      中國衛(wèi)生統(tǒng)計(jì) 2019年3期
      關(guān)鍵詞:參數(shù)設(shè)置樣本量計(jì)算公式

      南方醫(yī)科大學(xué)生物統(tǒng)計(jì)學(xué)系(510515)

      徐 瑩 高培純 徐笑寒 陳平雁△

      1.2.2.11 基于比值高階交叉設(shè)計(jì)的非劣效性檢驗(yàn)

      Chen(1997)[1]和Chow and Liu(2009)[2]給出的高階交叉設(shè)計(jì)的樣本量估計(jì)方法是建立在近似服從自由度為vk的t分布上,當(dāng)指標(biāo)為高優(yōu)指標(biāo)時(shí),其檢驗(yàn)效能計(jì)算公式為:

      (1-59)

      當(dāng)指標(biāo)為低優(yōu)指標(biāo)時(shí),對應(yīng)的檢驗(yàn)效能計(jì)算公式為:

      (1-60)

      在計(jì)算樣本量時(shí),一般先設(shè)定樣本量初始值,然后迭代樣本量直到所得的檢驗(yàn)效能滿足條件為止。此時(shí)的樣本量,即研究所需的樣本量。

      【例1-32】某公司欲驗(yàn)證一種治療風(fēng)濕病的仿制藥非劣于標(biāo)準(zhǔn)藥。擬采用2×4設(shè)計(jì)。研究者決定將非劣界值設(shè)置為0.2。根據(jù)以往研究,已知標(biāo)準(zhǔn)藥CV為0.4。假設(shè)仿制藥與標(biāo)準(zhǔn)藥真實(shí)比值為1。檢驗(yàn)水準(zhǔn)為0.05,試估計(jì)檢驗(yàn)效能為90%所需的樣本量。

      nQuery Advanced 8.2實(shí)現(xiàn):設(shè)定檢驗(yàn)水準(zhǔn)為α=0.05,檢驗(yàn)效能取90%。由題意知,μ2/μ1=1,NIM=0.2,CV=0.4。在nQuery Advanced 8.2主菜單選擇:

      方法框中選擇:Higher-order Cross-Over Design for Two Means- Non-Inferiority-using Ratios

      在彈出的樣本量計(jì)算窗口將各參數(shù)鍵入,如圖1-75所示,結(jié)果為N=29。

      圖1-75 nQuery Advanced 8.2 關(guān)于例1-32樣本量估計(jì)的參數(shù)設(shè)置與計(jì)算結(jié)果

      SAS9.4軟件實(shí)現(xiàn):

      proc IML;

      start MTE91(Designtype,Better,a,Ratio,NIM,CV,power);

      error=0;

      if(Designtype=1|Designtype=2|Designtype=3|Designtype=4)then do;

      error=0;end;

      else do;error=1;print"error" "Designtype must be 1 or 2 or 3 or 4";end;

      if(Better=1 | Better=0)then do;

      error=0;end;

      else do;

      error=1;print"error" "Higher means better(1)/worse(0)";end;

      if(a>0.2 | a<0) then do;

      error=1;print"error" "Test significance level must be in 0-0.2";end;

      if(Ratio<0) then do;

      error=1;print"error" "True Ratio of means must be>0";end;

      if(NIM<0) then do;

      error=1;print"error" "Non-Inferiority margin must be>0";end;

      if(Better=1) then do;

      if(Ratio<= 1-NIM)then do;

      error=1;print"error" "True Ratio should be>1 - Non-Inferiority margin if higher means better";end;

      end;

      if(Better=0) then do;

      if(Ratio>= 1+NIM)then do;

      error=1;print"error" "True Ratio should be<1+Non-Inferiority margin if higher means worse";end;

      end;

      if(CV<0) then do;

      error=1;print"error" "Coefficient of variance must be>= 0";end;

      if(power>100 | power<1) then do;

      error=1;print"error" "Power(%) must be in 1-100";end;

      if(error=1) then stop;

      if(error=0) then do;

      if(Designtype=1) then do;n=1;b=2;end;

      if(Designtype=2) then do;n=2;b=3/4;end;

      if(Designtype=3) then do;n=1;b=11/20;end;

      if(Designtype=4) then do;n=1;b=1/4;end;

      Sw=sqrt(log(CV**2+1));

      if(Better=1) then do;

      do until(pw>=power/100);

      if(Designtype=1) then do;df=4*n-3;end;

      if(Designtype=2) then do;df=4*n-4;end;

      if(Designtype=3) then do;df=6*n-5;end;

      if(Designtype=4) then do;df=12*n-5;end;

      t=(-log(Ratio)-log(1-NIM))/(Sw*sqrt(b/n))-tinv(1-a,df);

      pw=probt(t,df);n=n+0.01;

      end;

      end;

      if(Better=0) then do;

      do until(pw>=power/100);

      if(Designtype=1) then do;df=4*n-3;end;

      if(Designtype=2) then do;df=4*n-4;end;

      if(Designtype=3) then do;df=6*n-5;end;

      if(Designtype=4) then do;df=12*n-5;end;

      t=tinv(1-a,df)-(log(Ratio)+log(1+NIM))/(Sw*sqrt(b/n));

      pw=probt(t,df);n=n+0.01;

      end;

      end;

      if(Designtype=1) then do;N=ceil((n-0.01)*4);end;

      if(Designtype=2) then do;N=ceil((n-0.01)*2);end;

      if(Designtype=3) then do;N=ceil((n-0.01)*2);end;

      if(Designtype=4) then do;N=ceil((n-0.01)*4);end;

      if(Designtype=1) then do;Design_type="1. 4*2";end;

      if(Designtype=2) then do;Design_type="2. 2*3";end;

      if(Designtype=3) then do;Design_type="3. 2*4";end;

      if(Designtype=4) then do;Design_type="4. 4*4";end;

      if better=1 then Better_="better";else Better_="worse";

      print

      Design_type

      Better_[label="Higher Mean Values are"]

      a[label="Test Significance Level"]

      Ratio[label="True Ratio of Means,u2/u1"]

      NIM[label="Non-Inferiority Margin"]

      CV[label="Coefficient of Variance,CV"]

      power[label="Power(%)"]

      N[label="N"];

      end;

      finish MTE91;

      run MTE91(3,1,0.05,1,0.2,0.4,90);

      quit;

      SAS運(yùn)行結(jié)果:

      圖1-76 SAS 9.4 關(guān)于例1-32樣本量估計(jì)的參數(shù)設(shè)置與計(jì)算結(jié)果

      1.2.2.12 基于均差高階交叉設(shè)計(jì)的優(yōu)效性檢驗(yàn)

      Chen(1997)[1]和Chow and Liu(2009)[2]給出的高階交叉設(shè)計(jì)的樣本量估計(jì)方法是建立在近似服從自由度為vk的t分布上,當(dāng)指標(biāo)為高優(yōu)指標(biāo)時(shí),其檢驗(yàn)效能計(jì)算公式為:

      (1-61)

      當(dāng)指標(biāo)為低優(yōu)指標(biāo)時(shí),對應(yīng)的檢驗(yàn)效能計(jì)算公式為:

      (1-62)

      在計(jì)算樣本量時(shí),一般先設(shè)定樣本量初始值,然后迭代樣本量直到所得的檢驗(yàn)效能滿足條件為止。此時(shí)的樣本量,即研究所需的樣本量。

      【例1-33】某公司欲驗(yàn)證一種治療風(fēng)濕病的仿制藥非劣于標(biāo)準(zhǔn)藥,擬采用2×3設(shè)計(jì)。研究者決定將優(yōu)效界值設(shè)置為5。根據(jù)以往類似研究,已知均方誤為100。假設(shè)仿制藥于標(biāo)準(zhǔn)藥真實(shí)差值為15。檢驗(yàn)水準(zhǔn)設(shè)置為0.05,試估計(jì)檢驗(yàn)效能為90%所需的樣本量。

      nQuery Advanced 8.2 實(shí)現(xiàn):設(shè)定檢驗(yàn)水準(zhǔn)為α=0.05,檢驗(yàn)效能取90%。由題意知,μ2-μ1=15,SM=5,=10。在nQuery Advanced 8.2主菜單選擇:

      方法框中選擇:Higher-order Cross-Over Design for Two Means- Superiority by Margin-using Differences

      在彈出的樣本量計(jì)算窗口將各參數(shù)鍵入,如圖1-77所示,結(jié)果為N=14。

      圖1-77 nQuery Advisor 8.2 關(guān)于例1-33樣本量估計(jì)的參數(shù)設(shè)置與計(jì)算結(jié)果

      SAS 9.4軟件實(shí)現(xiàn):

      proc IML;

      start MTE71(Designtype,Better,a,Delta,SM,Sw,power);

      error=0;

      if(Designtype=1|Designtype=2|Designtype=3|Designtype=4)then do;

      error=0;end;

      elsedo;error=1;print"error" "Designtype must be 1 or 2 or 3 or 4";end;

      if(Better=1 | Better=0)then do;

      error=0;end;

      else do;

      error=1;print"error" "Higher means better(1)/worse(0)";end;

      if(a>0.2 | a<0) then do;

      error=1;print"error" "Test significance level must be in 0-0.2";end;

      if(Better=1) then do;

      if(Delta<= abs(SM))then do;

      error=1;print"error" "True difference in means must>superiority margin if higher means better";end;

      end;

      if(Better=0) then do;

      if(Delta>= -abs(SM))then do;

      error=1;print"error" "True difference in means must

      end;

      if(Sw<0) then do;

      error=1;print"error" "Within standard error must be>=0";end;

      if(power>100 | power<1) then do;

      error=1;print"error" "Power(%) must be in 1-100";end;

      if(error=1) then stop;

      if(error=0) then do;

      if(Designtype=1) then do;n=1;b=2;end;

      if(Designtype=2) then do;n=2;b=3/4;end;

      if(Designtype=3) then do;n=1;b=11/20;end;

      if(Designtype=4) then do;n=1;b=1/4;end;

      if(Better=1) then do;

      do until(pw>=power/100);

      if(Designtype=1) then do;df=4*n-3;end;

      if(Designtype=2) then do;df=4*n-4;end;

      if(Designtype=3) then do;df=6*n-5;end;

      if(Designtype=4) then do;df=12*n-5;end;

      t=(Delta-abs(SM))/(Sw*sqrt(b/n))-tinv(1-a,df);

      pw=probt(t,df);n=n+0.01;

      end;

      end;

      if(Better=0) then do;

      do until(pw>=power/100);

      if(Designtype=1) then do;df=4*n-3;end;

      if(Designtype=2) then do;df=4*n-4;end;

      if(Designtype=3) then do;df=6*n-5;end;

      if(Designtype=4) then do;df=12*n-5;end;

      t=tinv(1-a,df)-(-Delta-abs(SM))/(Sw*sqrt(b/n));

      pw=probt(t,df);n=n+0.01;

      end;

      end;

      if(Designtype=1) then do;N=ceil((n-0.01)*4);end;

      if(Designtype=2) then do;N=ceil((n-0.01)*2);end;

      if(Designtype=3) then do;N=ceil((n-0.01)*2);end;

      if(Designtype=4) then do;N=ceil((n-0.01)*4);end;

      if(Designtype=1) then do;Design_type="1. 4*2";end;

      if(Designtype=2) then do;Design_type="2. 2*3";end;

      if(Designtype=3) then do;Design_type="3. 2*4";end;

      if(Designtype=4) then do;Design_type="4. 4*4";end;

      if better=1 then Better_="better";else Better_="worse";

      print

      Design_type

      Better_[label="Higher Mean Values are"]

      a[label="Test Significance Level"]

      Delta[label="True Difference in Means.u2-u1"]

      SM[label="Superiority Margin"]

      Sw[label="Within Standard Error"]

      power[label="Power(%)"]

      N[label="N"];

      end;

      finish MTE71;

      run MTE71(2,1,0.05,15,5,10,90);

      quit;

      SAS運(yùn)行結(jié)果:

      圖1-78 SAS 9.4 關(guān)于例1-33樣本量估計(jì)的參數(shù)設(shè)置與計(jì)算結(jié)果

      1.2.2.13 基于比值高階交叉設(shè)計(jì)的優(yōu)效性檢驗(yàn)

      Chen(1997)[1]和Chow(2009)[2]給出的高階交叉設(shè)計(jì)的樣本量估計(jì)方法是建立在近似服從自由度為vk的t分布上,當(dāng)指標(biāo)為高優(yōu)指標(biāo)時(shí),其檢驗(yàn)效能計(jì)算公式為:

      (1-63)

      當(dāng)指標(biāo)為低優(yōu)指標(biāo)時(shí)對應(yīng)的檢驗(yàn)效能計(jì)算公式為:

      (1-64)

      在計(jì)算樣本量時(shí),一般先設(shè)定樣本量初始值,然后迭代樣本量直到所得的檢驗(yàn)效能滿足條件為止。此時(shí)的樣本量,即研究所需的樣本量。

      【例1-34】某公司欲驗(yàn)證一種治療風(fēng)濕病的仿制藥非劣于標(biāo)準(zhǔn)藥,擬采用2×4設(shè)計(jì)。研究者決定將優(yōu)效界值設(shè)置為0.2。根據(jù)以往研究,已知標(biāo)準(zhǔn)藥CV為0.4。假設(shè)仿制藥與標(biāo)準(zhǔn)藥真實(shí)比值為1.4。檢驗(yàn)水準(zhǔn)設(shè)置為0.05,試估計(jì)檢驗(yàn)效能為90%所需的樣本量。

      nQuery Advanced 8.2 實(shí)現(xiàn):設(shè)定檢驗(yàn)水準(zhǔn)為α=0.05,檢驗(yàn)效能取90%。由題意知,μ2/μ1=1.4,SM=0.2,CV=0.4。在nQuery Advanced 8.2主菜單選擇:

      方法框中選擇:Higher-order Cross-Over Design for Two Means- Superiority by Margin- using Ratios

      在彈出的樣本量計(jì)算窗口將各參數(shù)鍵入,如圖1-79所示,結(jié)果為N=60。

      圖1-79 nQuery Advanced 8.2 關(guān)于例1-34樣本量估計(jì)的參數(shù)設(shè)置與計(jì)算結(jié)果

      SAS 9.4軟件實(shí)現(xiàn):

      proc IML;

      start MTE101(Designtype,Better,a,Ratio,SM,CV,power);

      error=0;

      if(Designtype=1|Designtype=2|Designtype=3|Designtype=4)then do;

      error=0;end;

      elsedo;error=1;print"error" "Designtype must be 1 or 2 or 3 or 4";end;

      if(Better=1 | Better=0)then do;

      error=0;end;

      else do;

      error=1;print"error" "Higher means better(1)/worse(0)";end;

      if(a>0.2 | a<0) then do;

      error=1;print"error" "Test significance level must be in 0-0.2";end;

      if(Ratio<= 0) then do;

      error=1;print"error" "True Ratio of means must be>0";end;

      if(SM<0) then do;

      error=1;print"error" "Superiority margin must be>0";end;

      if(Better=1) then do;

      if(Ratio<= 1+SM)then do;

      error=1;print"error" "True difference in means must>1+superiority margin if higher means better";end;

      end;

      if(Better=0) then do;

      if(Ratio>= 1-SM)then do;

      error=1;print"error" "True difference in means must<1 - superiority margin if higher means worse";end;

      end;

      if(CV<0) then do;

      error=1;print"error" "Coefficient of variance must be>= 0";end;

      if(power>100 | power<1) then do;

      error=1;print"error" "Power(%) must be in 1-100";end;

      if(error=1) then stop;

      if(error=0) then do;

      if(Designtype=1) then do;n=1;b=2;end;

      if(Designtype=2) then do;n=2;b=3/4;end;

      if(Designtype=3) then do;n=1;b=11/20;end;

      if(Designtype=4) then do;n=1;b=1/4;end;

      Sw=sqrt(log(CV**2+1));

      if(Better=1) then do;

      do until(pw>=power/100);

      if(Designtype=1) then do;df=4*n-3;end;

      if(Designtype=2) then do;df=4*n-4;end;

      if(Designtype=3) then do;df=6*n-5;end;

      if(Designtype=4) then do;df=12*n-5;end;

      t=(abs(log(Ratio))-log(1+SM))/(Sw*sqrt(b/n))-tinv(1-a,df);

      pw=probt(t,df);n=n+0.01;

      end;

      end;

      if(Better=0) then do;

      do until(pw>=power/100);

      if(Designtype=1) then do;df=4*n-3;end;

      if(Designtype=2) then do;df=4*n-4;end;

      if(Designtype=3) then do;df=6*n-5;end;

      if(Designtype=4) then do;df=12*n-5;end;

      t=-(abs(log(Ratio))+log(1-SM))/(Sw*sqrt(b/n))+tinv(1-a,df);

      pw=probt(t,df);n=n+0.01;

      end;

      end;

      if(Designtype=1) then do;N=ceil((n-0.01)*4);end;

      if(Designtype=2) then do;N=ceil((n-0.01)*2);end;

      if(Designtype=3) then do;N=ceil((n-0.01)*2);end;

      if(Designtype=4) then do;N=ceil((n-0.01)*4);end;

      if(Designtype=1) then do;Design_Type="1. 4*2";end;

      if(Designtype=2) then do;Design_Type="2. 2*3";end;

      if(Designtype=3) then do;Design_Type="3. 2*4";end;

      if(Designtype=4) then do;Design_Type="4. 4*4";end;

      print

      Design_Type

      a[label="Test Significance Level"]

      Ratio[label="True Ratio of Means,u2/u1"]

      SM[label="Superiority margin"]

      CV[label="Coefficient of Variance(non-logarithmic),CV"]

      power[label="Power(%)"]

      N[label="N"];

      end;

      finish MTE101;

      run MTE101(3,1,0.05,1.4,0.2,0.4,90);

      quit;

      SAS運(yùn)行結(jié)果:

      圖1-80 SAS 9.4 關(guān)于例1-34樣本量估計(jì)的參數(shù)設(shè)置與計(jì)算結(jié)果

      猜你喜歡
      參數(shù)設(shè)置樣本量計(jì)算公式
      電機(jī)溫升計(jì)算公式的推導(dǎo)和應(yīng)用
      醫(yī)學(xué)研究中樣本量的選擇
      2019離職補(bǔ)償金計(jì)算公式一覽表
      航空裝備測試性試驗(yàn)樣本量確定方法
      Sample Size Calculations for Comparing Groups with Binary Outcomes
      蟻群算法求解TSP中的參數(shù)設(shè)置
      動(dòng)車環(huán)境下U900異頻切換參數(shù)設(shè)置探討
      采用初等代數(shù)推導(dǎo)路基計(jì)算公式的探討
      關(guān)于節(jié)能評估中n值計(jì)算公式及修正
      基于MATLAB仿真的井下變壓器參數(shù)設(shè)置研究
      惠东县| 改则县| 连州市| 双桥区| 阿拉善右旗| 南乐县| 临夏市| 兰考县| 永胜县| 嘉黎县| 房产| 湘西| 娄烦县| 平邑县| 开阳县| 长顺县| 蕲春县| 历史| 佛山市| 嘉兴市| 台南市| 林甸县| 沧州市| 吴桥县| 亳州市| 安宁市| 闽侯县| 青浦区| 轮台县| 瑞金市| 游戏| 建宁县| 景泰县| 射洪县| 喀喇沁旗| 府谷县| 万年县| 青岛市| 二连浩特市| 井研县| 舒城县|