• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sample Size Calculations for Comparing Groups with Binary Outcomes

    2017-11-29 06:03:10XunanZHANGJiangnanLYUJustinTUJinyuanLIUXiangLU
    上海精神醫(yī)學(xué) 2017年5期
    關(guān)鍵詞:調(diào)查者生物醫(yī)學(xué)樣本量

    Xunan ZHANG, Jiangnan LYU, Justin TU, Jinyuan LIU, Xiang LU*

    ?BIOSTATISTICS IN PSYCHIATRY (41)?

    Sample Size Calculations for Comparing Groups with Binary Outcomes

    Xunan ZHANG1, Jiangnan LYU2, Justin TU3, Jinyuan LIU4, Xiang LU5*

    sample size, binary outcomes

    1. Introduction

    Sample size plays a critical role in clinical research studies. It provides information for optimal use of available resources to detect treatment differences. In the last article, we discussed sample size calculations for comparing means of continuous outcomes between two groups. In this report, we continue our discussion of this topic and turn our attention to extending our earlier considerations to binary outcomes.

    Sample size is determined through power analysis.Unlike data analysis, power analysis is carried out at the design stage of a clinical study before any data is collected. Because of lack of data during power analysis, study investigators need to provide information about treatment differences, which not only allow biostatisticians to proceed with power analysis, but enable power analysis results to become meaningful and reliable.[1]Thus, power analysis is not a "trick" played by the statistician, but rather,an integrative process involving close interactions between study investigators and biostatisticians.

    Note that editors of some medical journals sometimes ask authors of a manuscript to provide power analysis results of their study to support their findings. Such post-hoc power analysis generally makes no logical sense.[2]As most research studies are conducted based on a random sample from a study population of interest, results from power analysis become meaningless, as the random component in the study disappears once data are collected. Before the study begins, the study sample is unknown and outcomes of interest are random. Power analysis shows the probability, or likelihood, that a test statistic (function of data) will hypothesized difference between the two populations, such as the t statistic for comparing mean blood pressure levels between a hypertension and a normal population.[3]Once the study is complete, we observe a sample, i.e., a particular group of subjects among many such groups from the study population, and data from this group of subjects become non-random.

    In this article, we focus on comparing proportions of binary outcomes between two groups. As in ourprevious article on power analysis for comparing two group means for continuous outcomes, we consider both independent and paired groups. We begin our discussion with a brief overview of the concept of power analysis within the context of one group. Although most studies involve comparing two or more treatment groups, the simplified setting of one group helps better illustrate the basic steps for sample size calculations.

    2. Sample Size for One Group

    Consider testing the hypothesis,

    Without loss of generality, we assume d>b. For power analysis, we must also specify a known value d for p a priori, in addition to the value b under H0,in order to quantify our ability to reject H0in favor of Ha. Such explicit specification is not required for data analysis after data is observed.

    Given a type I error αand a specific d in Ha,we then calculate power, or the probability that (the absolute value of) the standardized difference in (2)exceeds the threshold zα/2, i.e.,

    By comparing the above with (3), we see that the only difference in (5) is the change of condition from H0to Ha. The probability in (5) is again readily evaluated to yield:

    Once αis selected, power is only a function of sample size n , and b and dspecified in the null and alternative hypothesis. To determine sample size n, we must specify b and dreflect treatment effects, which are study specific and require investigators' knowledge.As power is quite sensitive to these parameters, careful consideration and justification of these quantities is critical for calculated sample size to be meaningful,reliable and informative. Thus, power analysis is not merely an algebraic and computational exercise by biostatisticians, but is an integrative process involving critical input from content researchers.

    Power increases as n grows and approaches1 asn grows unbounded. Thus, by increasing sample size, we can have more power to reject the null, or ascertaining treatment effect. However, we must be mindful about selecting an appropriate power level,as arbitrarily increasing sample size not only leads to waste of precious manpower and resources, but also increases the likelihood of failed studies due to logistic constraints, and diminishing interest and return due to rapid scientific progresses and discoveries and changing technologies. Power is generally set at some reasonable level such as 0.80. Also, small treatment effect may have little clinical relevance. Thus, it is critical that we specify treatment effects that correspond to clinically meaningful differences, which again require critical input from investigators specializing in the field of study.

    Given a type I error α, a pre-specified power,often denoted as 1?β, and H0and Ha, sample size is the smallest n such that the test has the given power to reject H0under Ha

    Although it is generally difficult to find an analytical nformula to compute the smallest satisfying (7), such an nis readily obtained by using statistical packages.Note that power in the literature is typically denoted by 1?β, where β, known as "type II error rate", denotes the probability that the null H0is accepted when in fact it is false.

    For continuous outcomes, difference μ1?μ0between μ1under Haand μ0under Hais generally expressed as an "effect size" to remove its dependence on the scale of X :

    Note that for large sample size n , the z-score in(2) has approximately the standard normal distribution,which provides the basis for evaluating power using the expression in (6) when testing the hypothesis in (4).For moderate sample size, the normal approximation can still be used if np≥5and n (1 ?p)≥5, where p is either p0or p1. If these conditions are not met, the z-score may deviate significantly from the normal distribution and the expression in (6) no longer provides reliable power estimates. Different methods must be used. For example, in exact inference, we use the binomial distribution of count of 1's to derive the power function.[5]Exact methods work for both small and large sample size. However, for large sample size, it takes a long time to evaluate the power function, even with modern computing power. Thus, exact methods are usually used only in cases where p or nor both are small.

    3. Sample Size for Two Independent Groups

    Considering testing the hypothesis,

    If H0: p1?p0=0is true, the probability of rejecting H0, therefore committing a type I error a , is:

    3. Sample Size for Paired Groups

    In the last section, the two groups are assumed independent. This assumption is satisfied when the groups are formed by different subjects, such as male vs. female and depressed vs. healthy control subjects.In many studies, we may also be interested in changes before and after an intervention on the same individual.For example, suppose we are interested in the effect of a new antidepressant medication. We may give the drug to a group of depressed patients and measure their depression severity before and after taking the medication. Unlike groups formed by different subjects, the control (before taking the medication)and intervention (after the medication) groups are formed by the same individuals and outcomes generally become dependent between the two groups. For example, patients higher on depression severity before the mediation likely remain so after the medication.As a result, the power function for testing two independent groups discussed earlier no longer applies to such dependent "paired" groups.

    For continuous outcomes X1jand X0j, the difference Dj=X1j?X0jis also continuous. Thus, (13) becomes a hypothesis for testing whether the mean ofDjis 0 and sample size calculations can be carried out using the power function for the one group case as discussed in the previous article for power analysis for continuous outcomes. This approach, however, does not work within the current context of binary outcomes, since the difference Dj=X1j?X0jmay take on the value ?1 in addition to 0 and 1 and thus no longer follows the Bernoulli distribution.

    Table 1. A contingency table for joint distribution of paired binary outcomes

    4. Illustrations

    In this section, we illustrate power and sample size calculations for comparing two independent and two paired groups. We continue to use G*Power in our examples, as it is free and easy to use. In all cases, we set power at 80% and two-sided alpha at α=0.05.

    Example 1. A San Diego-based biopharmaceutical company plans to conduct a study to test the efficacy of an experimental Ebola drug. To determine the sample size, the investigators use their pilot data and obtain the following information concerning death rates between the company's new drug and standard care:

    The problem is to estimate sample size for the study to detect the above difference in death rates between the two treatment conditions.

    Let p1(p0) denote the percent of death for the new drug (standard care). We can express the corresponding statistical hypothesis as follows:

    To calculate sample size using the G*Power package, we enter the following information:

    Statistical test > Proportions: Difference between two independent proportions

    Type of power analysis > A priori: Compute required sample size – given α, power and effect size

    Tails > Two

    Proportion p2 > 0.22

    Proportion p1 > 0.38

    αerr prob > 0.05

    Power (1 - β err prob) > 0.80

    Allocation ratio N2/N1 > 1

    By clicking on "Calculate", we obtain a sample size of 128 for each group, or a total of 256 for both groups(see Figure 1).

    The G*Power also offers an exact method to calculate sample size. In this case, we enter the following information:

    Test family > Exact

    Statistical test > Proportions: Inequality, two independent groups (Fisher's exact test)

    Tails > Two

    Proportion p2 > 0.22

    Proportion p1 > 0.38

    αerr prob > 0.05

    Power (1 - β err prob) > 0.80

    Allocation ratio N2/N1 > 1

    By clicking on "Calculate", we obtain a sample size of 139 for each group, or a total of 278 for both groups(see Figure 2). The estimated sample size using the exact method is slightly higher than the asymptotic method based on the standard normal distribution.Here the sample size is moderate and the discrepancy between the asymptotic and exact methods likely reflects the limited sample size. In general, if exact methods are used, we should go with sample size estimated from such methods. Fortunately, differences between asymptotic and exact methods diminish as sample size increases. Thus, such difference generally does not have any major impact on real studies.

    Example 2. A research team is interested in conducting research on sexual behaviors among the Botswana Defense Force. The team has learned from other similar studies that self-reported sexual behaviors based on a daily diary is more accurate than a retrospective survey. They have estimated that about 50% would report having sex with spouse within last two weeks by daily diary, while only 20% would report such events by retrospective recall. Before conducting the survey, the research team wants to confirm such discrepancy to justify their use of a daily diary for their study.

    Figure 1. Screenshot of G*Power for calculating sample size for comparing two independent proportions using the asymptotic method for Example 1

    Let p1(p0) denote the percent of sex reported in a daily diary (retrospective recall). Then, the team's interest can be stated in a hypothesis as:

    Since both daily diary and retrospective recall are completed by the same subject, the outcomes from the diary and retrospective recall are not independent.Thus, we use McNemar's test for comparing sexual behaviors reported by the two assessment strategies and estimate sample size using the method for paired groups.

    To use the G*Power, we need to enter the odds ratio and proportion of discordant pairs under Ha. To compute these quantities, it is helpful to create the following 2x2 table indicating both the marginal probabilities p1(p0) (specified in the hypothesis)and joint probabilities (calculated from the marginal probabilities).

    Table 2. Marginal and joint cell probabilities for the marginal and joint distribution of paired binary outcomes.

    Both the odds ratio and proportion of discordant pairs are readily computed from the above table:

    Proportion of discordant pairs:

    We then enter these quantities, along with some other information, into the G*Power:

    Figure 2. Screenshot of G*Power for calculating sample size for comparing two independent proportions using the exact method for Example 1

    Test family > Exact

    Statistical test > Proportions: Inequality, two dependent groups (McNemar)

    Type of power analysis > A priori: Compute required sample size – given α, power and effect size

    Tails > Two

    Odds ratio > 2.333

    αerr prob > 0.05

    Power (1 - β err prob) > 0.80

    Prop discordant pairs > 0.18

    By clicking on "Calculate", we obtain a sample of 273 subjects to detect the hypothesized difference in reporting sexual activities between daily diary and retrospective recall (see Figure 3).

    Figure 3. Screenshot of G*Power for calculating sample size for comparing two paired proportions using the asymptotic method for Example 2

    4. Conclusion

    Sample size estimation is an essential component of planning clinical research studies. It provides critical information for assessing feasibility of a planned study.For power analysis to be informative and useful, it requires reliable information on effect size, which can only be provided by biomedical and psychosocial investigators specializing in the field of the study. Thus,although power and sample size analysis relies on solid statistical theory, efficient computational methods and modern computing power, sample size estimates obtained from state-of-the-art methods and cuttingedge computing power are really useless without input from scientific investigators.

    Funding statement

    Conflicts of interest statement

    The authors have no conflict of interest to declare.

    Authors' contributions

    Michael Zheng, Justin Tu and Xiang Lu: Manuscript outline, structure and drafting.

    Michael Zheng, Jinyuan Liu and Jinyuan Liu: Technical details of statistical tests, power functions.

    Jiangnan Lyn and Jinyuan Liu: Computations of sample size for illustrative examples using statistical software.

    Michael Zheng, Jiangnan Lyn, Justin Tu, Jinyuan Liu,Xiang Lu: Manuscript finalizing and proofreading.

    1. Chow SC, Chang M. Adaptive design methods in clinical trials.New York: Chapman & Hall / CRC; 2007

    2. Heonig J M, Heisey DM. The abuse of power: the pervasive fallacy of power calculations for data analysis. Am Stat. 2001; 55(1): 19--24. doi: https://doi.org/10.1198/000313001300339897

    3. Kreyszig E. Advanced Engineering Mathematics (Fourth ed.).New York: Wiley; 1979

    4. Moss AJ, Zareba W, Hall WJ, Klein H, Wilber DJ, Cannom DS,et al. Prophylactic Implantation of a Defibrillator in Patients with Myocardial Infarction and Reduced Ejection Fraction. N Engl J Med. 2002; 346: 877--883. doi: https://doi.org/10.1056/NEJMoa013474

    5. Tang W, He H, Tu XM. Applied Categorical and Count Data Analysis. FL: Chapman & Hall/CRC; 2012

    二分類結(jié)果組間比較的樣本量計(jì)算

    Zhang X, Lyn J, Tu J, Liu J, Lu X

    樣本量、二分類結(jié)果

    Summary:Sample size is a critical parameter for clinical studies. However, to many biomedical and psychosocial investigators, power and sample size analysis seems like a magic trick of statisticians. In this paper, we continue to discuss power and sample size calculations by focusing on binary outcomes. We again emphasize the importance of close interactions between investigators and biostatisticians in setting up hypotheses and carrying out power analyses.

    [Shanghai Arch Psychiatry. 2017; 29(5): 316-324.

    http://dx.doi.org/10.11919/j.issn.1002-0829.217132]

    1Department of Statistics, University of California, Berkeley, CA, USA

    2Department of Mathematics, University of California, San Diego, CA, USA

    3Department of Physical Medicine and Rehabilitation, University of Virginia School of Medicine Charlottesville, VA, USA

    4Department of Family Medicine and Public Health, University of California, San Diego, CA, USA

    5Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA

    *correspondence: Xiang LU. Mailing address: Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester,NY, USA; Postcode: NY 14942; E-Mail: Xiang_Lu@URMC.Rochester.edu

    no external funding.

    概述:樣本大小是臨床研究的一個(gè)重要參數(shù).然而,把握度和樣本量分析對許多生物醫(yī)學(xué)和社會心理調(diào)查者來說似乎是一個(gè)統(tǒng)計(jì)學(xué)家的魔術(shù).在本文中,我們繼續(xù)討論二分類結(jié)果的把握度和樣本量的計(jì)算.我們再次強(qiáng)調(diào)了在建立假設(shè)和進(jìn)行把握度分析中調(diào)查者和生物統(tǒng)計(jì)學(xué)家之間密切聯(lián)系的重要性.

    Xunan Zhang is currently completing his BS in the department of Computer Science and Statistics, University of California - Berkeley, USA. His research interest is in the field of biostatistics.

    猜你喜歡
    調(diào)查者生物醫(yī)學(xué)樣本量
    芻議“生物醫(yī)學(xué)作為文化”的研究進(jìn)路——兼論《作為文化的生物醫(yī)學(xué)》
    靈長類生物醫(yī)學(xué)前沿探索中的倫理思考
    醫(yī)學(xué)研究中樣本量的選擇
    配對設(shè)計(jì)中缺乏差值標(biāo)準(zhǔn)差情況下的樣本量估計(jì)策略*
    慢性腎衰竭合并冠心病患者血漿氧化型低密度脂蛋白水平變化及臨床意義
    航空裝備測試性試驗(yàn)樣本量確定方法
    國外生物醫(yī)學(xué)文獻(xiàn)獲取的技術(shù)工具:述評與啟示
    LED光源在生物醫(yī)學(xué)中的應(yīng)用分析
    九成人認(rèn)為作風(fēng)有改進(jìn)
    多個(gè)行業(yè)維權(quán)成本分項(xiàng)調(diào)查顯示
    ——食品餐飲 醫(yī)療衛(wèi)生 互聯(lián)網(wǎng)金融維權(quán)成本最高
    好看av亚洲va欧美ⅴa在| 看片在线看免费视频| 桃色一区二区三区在线观看| 1024手机看黄色片| 俺也久久电影网| 国产亚洲精品久久久久5区| 19禁男女啪啪无遮挡网站| 国产精品免费一区二区三区在线| 婷婷精品国产亚洲av在线| 91字幕亚洲| 日本黄色视频三级网站网址| 在线观看www视频免费| 成熟少妇高潮喷水视频| 18禁裸乳无遮挡免费网站照片 | 中文字幕人妻丝袜一区二区| 此物有八面人人有两片| 亚洲精品一卡2卡三卡4卡5卡| 国产成人精品久久二区二区免费| 国内精品久久久久精免费| 观看免费一级毛片| 校园春色视频在线观看| bbb黄色大片| 无人区码免费观看不卡| 禁无遮挡网站| 欧美在线一区亚洲| 搡老妇女老女人老熟妇| 欧美激情高清一区二区三区| 久久中文字幕人妻熟女| 国产一区二区在线av高清观看| 亚洲激情在线av| 国产精品一区二区三区四区久久 | 大型av网站在线播放| 18禁美女被吸乳视频| 国产一区二区三区在线臀色熟女| 女性生殖器流出的白浆| 国产黄a三级三级三级人| 中文字幕人妻丝袜一区二区| 国产精品,欧美在线| 国产精品久久久av美女十八| 亚洲精品一区av在线观看| 老司机靠b影院| 97碰自拍视频| 日韩免费av在线播放| 国产午夜福利久久久久久| 777久久人妻少妇嫩草av网站| 亚洲国产高清在线一区二区三 | 亚洲国产欧美日韩在线播放| ponron亚洲| 国产精品久久久久久亚洲av鲁大| 亚洲专区中文字幕在线| 精品一区二区三区视频在线观看免费| 欧美精品啪啪一区二区三区| 免费无遮挡裸体视频| 黑人巨大精品欧美一区二区mp4| 黑人巨大精品欧美一区二区mp4| 一区二区三区激情视频| 亚洲熟女毛片儿| 一区二区三区高清视频在线| 麻豆久久精品国产亚洲av| 亚洲精品在线观看二区| 一级a爱片免费观看的视频| avwww免费| 欧美黑人欧美精品刺激| 亚洲中文av在线| 亚洲精品粉嫩美女一区| 国产精品爽爽va在线观看网站 | 亚洲人成伊人成综合网2020| 97超级碰碰碰精品色视频在线观看| 久久久久久亚洲精品国产蜜桃av| 免费看日本二区| 欧美大码av| 黄色a级毛片大全视频| 色播在线永久视频| 欧美绝顶高潮抽搐喷水| 久久国产精品影院| 亚洲成人久久性| 国产三级在线视频| 国产主播在线观看一区二区| 久久精品影院6| 亚洲av电影在线进入| 亚洲九九香蕉| 午夜福利在线观看吧| 操出白浆在线播放| 91麻豆av在线| 欧美久久黑人一区二区| 一级毛片精品| 国产精品亚洲美女久久久| 亚洲av五月六月丁香网| 一级a爱视频在线免费观看| 亚洲精品中文字幕在线视频| 日韩免费av在线播放| 久久久国产欧美日韩av| 亚洲国产看品久久| 日韩欧美一区视频在线观看| 在线永久观看黄色视频| 黄色视频不卡| 亚洲一区二区三区色噜噜| 久久婷婷成人综合色麻豆| 亚洲精品在线观看二区| 午夜福利18| 亚洲 国产 在线| 亚洲欧美日韩无卡精品| 欧美av亚洲av综合av国产av| 精品国产一区二区三区四区第35| 搡老岳熟女国产| 日韩欧美一区二区三区在线观看| 国产精品九九99| 日韩av在线大香蕉| 男人的好看免费观看在线视频 | 欧美大码av| 国产精品 欧美亚洲| 精品久久久久久久久久免费视频| 精品卡一卡二卡四卡免费| 岛国在线观看网站| 老司机靠b影院| 日本五十路高清| 国内揄拍国产精品人妻在线 | 最近最新中文字幕大全免费视频| 中亚洲国语对白在线视频| 国产精品美女特级片免费视频播放器 | 精品日产1卡2卡| 级片在线观看| 久久青草综合色| 一级毛片精品| av电影中文网址| 国产亚洲av高清不卡| 国产亚洲精品久久久久久毛片| 999精品在线视频| 亚洲 国产 在线| 日韩精品免费视频一区二区三区| 少妇被粗大的猛进出69影院| 天堂动漫精品| 色综合站精品国产| 日韩视频一区二区在线观看| 性色av乱码一区二区三区2| 久久久久九九精品影院| 人人妻人人澡人人看| 国产97色在线日韩免费| √禁漫天堂资源中文www| 久久青草综合色| 欧美绝顶高潮抽搐喷水| 夜夜看夜夜爽夜夜摸| av天堂在线播放| 成人三级黄色视频| 婷婷六月久久综合丁香| 国产精品一区二区三区四区久久 | 麻豆成人午夜福利视频| 久久久国产成人精品二区| 黄色丝袜av网址大全| 看片在线看免费视频| 亚洲精品一卡2卡三卡4卡5卡| 自线自在国产av| 中文字幕人成人乱码亚洲影| 香蕉av资源在线| 黄色视频,在线免费观看| 狠狠狠狠99中文字幕| 黄片大片在线免费观看| 很黄的视频免费| 亚洲天堂国产精品一区在线| 欧美日本视频| 国产亚洲精品久久久久久毛片| 男女午夜视频在线观看| 一区二区日韩欧美中文字幕| 欧美激情极品国产一区二区三区| 国产成人精品久久二区二区91| 欧美乱妇无乱码| 精品一区二区三区四区五区乱码| 欧洲精品卡2卡3卡4卡5卡区| 欧美一级a爱片免费观看看 | 99精品在免费线老司机午夜| 欧美乱色亚洲激情| 丝袜在线中文字幕| 99国产极品粉嫩在线观看| 久久精品夜夜夜夜夜久久蜜豆 | 看黄色毛片网站| 久久精品国产综合久久久| 欧美不卡视频在线免费观看 | 亚洲五月色婷婷综合| 国内少妇人妻偷人精品xxx网站 | 99热6这里只有精品| 欧美中文综合在线视频| 热re99久久国产66热| 亚洲专区国产一区二区| 精品人妻1区二区| 亚洲熟妇中文字幕五十中出| 国产精品av久久久久免费| 两性夫妻黄色片| 欧美丝袜亚洲另类 | 久久久久国产一级毛片高清牌| 黄色丝袜av网址大全| 国产精品美女特级片免费视频播放器 | 中文字幕最新亚洲高清| 欧美性长视频在线观看| 黄网站色视频无遮挡免费观看| 自线自在国产av| 国产精品免费一区二区三区在线| 欧美日韩亚洲综合一区二区三区_| 国产高清有码在线观看视频 | 一二三四社区在线视频社区8| 国产一区二区三区在线臀色熟女| 给我免费播放毛片高清在线观看| 一本一本综合久久| 在线观看免费日韩欧美大片| 国产片内射在线| 欧美激情久久久久久爽电影| 美女免费视频网站| 免费观看人在逋| 女警被强在线播放| 国产aⅴ精品一区二区三区波| 亚洲va日本ⅴa欧美va伊人久久| 国产精品影院久久| 国产一区二区激情短视频| 欧美乱妇无乱码| 日韩欧美国产在线观看| 日韩国内少妇激情av| 精品少妇一区二区三区视频日本电影| 国产亚洲精品第一综合不卡| 国产三级黄色录像| 黄片大片在线免费观看| 在线播放国产精品三级| 欧美精品亚洲一区二区| 久久久国产欧美日韩av| 国产黄a三级三级三级人| 久久久久国内视频| 欧美黄色淫秽网站| 成人精品一区二区免费| 午夜激情av网站| 在线视频色国产色| 国产三级黄色录像| 亚洲五月婷婷丁香| 婷婷丁香在线五月| 在线观看舔阴道视频| 亚洲人成网站在线播放欧美日韩| 国产高清视频在线播放一区| 美女大奶头视频| 十八禁网站免费在线| 久久人妻福利社区极品人妻图片| 在线观看午夜福利视频| 欧美中文日本在线观看视频| 成人一区二区视频在线观看| 国产高清视频在线播放一区| 深夜精品福利| 欧美zozozo另类| 少妇的丰满在线观看| 久久国产亚洲av麻豆专区| 成人特级黄色片久久久久久久| 国产欧美日韩一区二区三| 一个人观看的视频www高清免费观看 | av在线播放免费不卡| 国产精品自产拍在线观看55亚洲| 三级毛片av免费| 久久午夜综合久久蜜桃| 老熟妇乱子伦视频在线观看| 亚洲国产欧美日韩在线播放| avwww免费| 国内毛片毛片毛片毛片毛片| 狠狠狠狠99中文字幕| 首页视频小说图片口味搜索| 欧美最黄视频在线播放免费| 身体一侧抽搐| 深夜精品福利| 18禁裸乳无遮挡免费网站照片 | 国产精品亚洲美女久久久| 精品人妻1区二区| 国产精品自产拍在线观看55亚洲| 日本撒尿小便嘘嘘汇集6| 脱女人内裤的视频| 欧美亚洲日本最大视频资源| 欧美激情 高清一区二区三区| 国产精品av久久久久免费| 热99re8久久精品国产| 欧美最黄视频在线播放免费| 日韩中文字幕欧美一区二区| 久久精品aⅴ一区二区三区四区| 欧美在线一区亚洲| www国产在线视频色| 成人精品一区二区免费| 欧美又色又爽又黄视频| 女生性感内裤真人,穿戴方法视频| 久久午夜亚洲精品久久| 亚洲国产中文字幕在线视频| 久久久久国产精品人妻aⅴ院| 亚洲国产精品999在线| 俄罗斯特黄特色一大片| 一进一出抽搐动态| 久久青草综合色| 国产午夜福利久久久久久| 亚洲,欧美精品.| 国产精品久久久久久人妻精品电影| 成人国语在线视频| 国产激情偷乱视频一区二区| 99久久久亚洲精品蜜臀av| 视频区欧美日本亚洲| 亚洲欧美激情综合另类| 亚洲av成人一区二区三| 国产男靠女视频免费网站| 99在线人妻在线中文字幕| 一本一本综合久久| 久久人妻av系列| 一进一出抽搐gif免费好疼| 在线天堂中文资源库| 欧美日韩福利视频一区二区| 一级毛片女人18水好多| 亚洲一区二区三区色噜噜| 国产精品一区二区三区四区久久 | 美国免费a级毛片| 一区二区三区高清视频在线| 亚洲中文av在线| 一级作爱视频免费观看| 亚洲午夜理论影院| 精品久久久久久,| 久久人妻福利社区极品人妻图片| 国产区一区二久久| 亚洲国产精品合色在线| 国产精品久久久人人做人人爽| 男人的好看免费观看在线视频 | 国产av一区在线观看免费| 亚洲熟女毛片儿| 亚洲中文av在线| 很黄的视频免费| 欧美国产精品va在线观看不卡| 国产精品免费一区二区三区在线| 久久香蕉激情| 欧美色视频一区免费| 男男h啪啪无遮挡| 国产又爽黄色视频| 久久久久国内视频| 99精品在免费线老司机午夜| 欧美+亚洲+日韩+国产| 香蕉丝袜av| 亚洲国产中文字幕在线视频| 精品一区二区三区视频在线观看免费| 在线视频色国产色| 99久久99久久久精品蜜桃| 给我免费播放毛片高清在线观看| 一区二区日韩欧美中文字幕| 麻豆国产av国片精品| 久久精品夜夜夜夜夜久久蜜豆 | 免费在线观看视频国产中文字幕亚洲| 精华霜和精华液先用哪个| 日韩视频一区二区在线观看| 中出人妻视频一区二区| 女同久久另类99精品国产91| 在线免费观看的www视频| 丝袜人妻中文字幕| 日日摸夜夜添夜夜添小说| 国产精品影院久久| 久久久久久久精品吃奶| 伦理电影免费视频| 国产成人欧美| 精品国产乱码久久久久久男人| 国产单亲对白刺激| 亚洲人成网站在线播放欧美日韩| 99在线人妻在线中文字幕| 成人国语在线视频| 女同久久另类99精品国产91| 香蕉丝袜av| 一级毛片女人18水好多| 国产精品影院久久| 日本a在线网址| 日韩欧美国产在线观看| 日本免费一区二区三区高清不卡| 男女之事视频高清在线观看| 色综合欧美亚洲国产小说| 亚洲人成网站在线播放欧美日韩| 黄片小视频在线播放| bbb黄色大片| 又黄又粗又硬又大视频| 97人妻精品一区二区三区麻豆 | 97超级碰碰碰精品色视频在线观看| 日韩国内少妇激情av| 婷婷六月久久综合丁香| 在线观看免费午夜福利视频| 亚洲自偷自拍图片 自拍| 久久精品夜夜夜夜夜久久蜜豆 | 深夜精品福利| 国产极品粉嫩免费观看在线| 亚洲自偷自拍图片 自拍| 国产精品久久久人人做人人爽| 久9热在线精品视频| 色播在线永久视频| 美女午夜性视频免费| 母亲3免费完整高清在线观看| 精品国内亚洲2022精品成人| 欧美黑人精品巨大| x7x7x7水蜜桃| 国语自产精品视频在线第100页| 久久久精品欧美日韩精品| 久久人妻av系列| 无遮挡黄片免费观看| 国产成人精品无人区| 两个人看的免费小视频| 97碰自拍视频| 女生性感内裤真人,穿戴方法视频| 亚洲一区高清亚洲精品| 少妇 在线观看| 久久久久久国产a免费观看| 国产精品永久免费网站| 午夜福利在线在线| 欧美成人一区二区免费高清观看 | av在线天堂中文字幕| 中文在线观看免费www的网站 | 此物有八面人人有两片| 最近最新中文字幕大全免费视频| 久久午夜综合久久蜜桃| 婷婷精品国产亚洲av在线| 夜夜爽天天搞| 中文字幕av电影在线播放| 亚洲国产精品999在线| 久久天躁狠狠躁夜夜2o2o| 国产精品野战在线观看| 欧美黑人精品巨大| 国内精品久久久久久久电影| 激情在线观看视频在线高清| 在线天堂中文资源库| 免费看日本二区| 欧美成人午夜精品| 90打野战视频偷拍视频| 国产又黄又爽又无遮挡在线| 亚洲精品一区av在线观看| 一个人观看的视频www高清免费观看 | 欧美大码av| 精品人妻1区二区| 黄片大片在线免费观看| 亚洲va日本ⅴa欧美va伊人久久| 久久中文看片网| 老司机午夜十八禁免费视频| 国产亚洲精品久久久久久毛片| 啦啦啦 在线观看视频| 成熟少妇高潮喷水视频| 无限看片的www在线观看| 久久久久久久久久黄片| 国产成人一区二区三区免费视频网站| 欧美绝顶高潮抽搐喷水| 人成视频在线观看免费观看| 亚洲精华国产精华精| 色播在线永久视频| 宅男免费午夜| 久久天躁狠狠躁夜夜2o2o| 亚洲午夜理论影院| 国产精品二区激情视频| 夜夜夜夜夜久久久久| 一级a爱视频在线免费观看| 99精品欧美一区二区三区四区| 人妻久久中文字幕网| 国产男靠女视频免费网站| 99精品久久久久人妻精品| 国产午夜福利久久久久久| 一夜夜www| 黄色a级毛片大全视频| 日韩欧美一区视频在线观看| 中文字幕精品亚洲无线码一区 | 天天躁夜夜躁狠狠躁躁| 免费观看人在逋| 国产精品野战在线观看| 日韩精品免费视频一区二区三区| 一进一出抽搐动态| 日本成人三级电影网站| 搡老妇女老女人老熟妇| 波多野结衣巨乳人妻| 18禁国产床啪视频网站| 国产亚洲欧美精品永久| 日韩欧美 国产精品| 波多野结衣高清作品| 国产激情久久老熟女| 国内少妇人妻偷人精品xxx网站 | 色婷婷久久久亚洲欧美| 免费av毛片视频| 在线观看日韩欧美| 亚洲精品av麻豆狂野| 美女免费视频网站| 国产日本99.免费观看| 国产99白浆流出| 夜夜爽天天搞| 欧美不卡视频在线免费观看 | 99精品欧美一区二区三区四区| 亚洲av电影不卡..在线观看| 嫩草影视91久久| 成年人黄色毛片网站| 在线十欧美十亚洲十日本专区| 亚洲熟妇熟女久久| 亚洲欧美精品综合久久99| 久久久久久免费高清国产稀缺| 一夜夜www| 免费观看精品视频网站| 亚洲精品久久成人aⅴ小说| 国产国语露脸激情在线看| 两性午夜刺激爽爽歪歪视频在线观看 | 黄色毛片三级朝国网站| 国产精品久久久人人做人人爽| 黄色片一级片一级黄色片| 婷婷精品国产亚洲av| 欧美性猛交╳xxx乱大交人| svipshipincom国产片| 亚洲真实伦在线观看| 久久精品91无色码中文字幕| 免费在线观看视频国产中文字幕亚洲| 一二三四社区在线视频社区8| 亚洲av电影不卡..在线观看| 欧美又色又爽又黄视频| 很黄的视频免费| 欧美绝顶高潮抽搐喷水| 免费在线观看完整版高清| www.精华液| 久久久国产欧美日韩av| 日本撒尿小便嘘嘘汇集6| 久久久久久人人人人人| www.www免费av| 老熟妇乱子伦视频在线观看| 午夜亚洲福利在线播放| 91在线观看av| 久久香蕉国产精品| 免费在线观看日本一区| 99精品欧美一区二区三区四区| 成人18禁高潮啪啪吃奶动态图| 国产一卡二卡三卡精品| 丰满人妻熟妇乱又伦精品不卡| 欧美黑人精品巨大| 法律面前人人平等表现在哪些方面| 精品国产一区二区三区四区第35| 亚洲人成伊人成综合网2020| 精品电影一区二区在线| 免费搜索国产男女视频| 日韩精品中文字幕看吧| 欧美激情高清一区二区三区| 精品高清国产在线一区| 美女高潮喷水抽搐中文字幕| www.精华液| 男女午夜视频在线观看| xxxwww97欧美| 国产亚洲精品久久久久久毛片| а√天堂www在线а√下载| 欧美日本视频| 亚洲人成77777在线视频| 久久青草综合色| 亚洲av成人av| 国产aⅴ精品一区二区三区波| 日韩精品免费视频一区二区三区| 国产单亲对白刺激| 嫩草影视91久久| 美女 人体艺术 gogo| ponron亚洲| 制服诱惑二区| 亚洲va日本ⅴa欧美va伊人久久| 制服丝袜大香蕉在线| 国产伦在线观看视频一区| 露出奶头的视频| 中文字幕av电影在线播放| 变态另类丝袜制服| 可以在线观看毛片的网站| 在线免费观看的www视频| 91大片在线观看| 国产av一区二区精品久久| 精品无人区乱码1区二区| 亚洲精品一卡2卡三卡4卡5卡| а√天堂www在线а√下载| 怎么达到女性高潮| 久久人人精品亚洲av| 国内精品久久久久久久电影| 亚洲av成人不卡在线观看播放网| 国产av又大| 每晚都被弄得嗷嗷叫到高潮| 久9热在线精品视频| 99久久久亚洲精品蜜臀av| 久久久国产成人免费| 久久久久久九九精品二区国产 | 十八禁人妻一区二区| 国产午夜福利久久久久久| 国产熟女午夜一区二区三区| 久久久久久人人人人人| 最近在线观看免费完整版| 免费在线观看影片大全网站| 久久香蕉激情| 每晚都被弄得嗷嗷叫到高潮| 一本一本综合久久| 成人av一区二区三区在线看| 在线观看日韩欧美| 男人舔女人的私密视频| 久久这里只有精品19| 亚洲真实伦在线观看| 无人区码免费观看不卡| 国产精品一区二区免费欧美| 亚洲av成人av| 一级毛片精品| 欧美性猛交╳xxx乱大交人| 成人永久免费在线观看视频| 少妇裸体淫交视频免费看高清 | 国产精品 欧美亚洲| 亚洲,欧美精品.| 精品国内亚洲2022精品成人| 露出奶头的视频| 99国产精品一区二区三区| 一个人观看的视频www高清免费观看 | 一级a爱视频在线免费观看| 十八禁人妻一区二区| 老汉色∧v一级毛片| 99久久国产精品久久久| 91成人精品电影| 狂野欧美激情性xxxx| 久久国产乱子伦精品免费另类| 欧美成人免费av一区二区三区| 国产免费av片在线观看野外av| 亚洲欧美激情综合另类| 男人舔女人的私密视频| 久久久久久亚洲精品国产蜜桃av| 久久国产乱子伦精品免费另类| 校园春色视频在线观看| 久久精品夜夜夜夜夜久久蜜豆 | 欧美成狂野欧美在线观看| 天天躁夜夜躁狠狠躁躁| 亚洲成国产人片在线观看| 久久婷婷人人爽人人干人人爱| 观看免费一级毛片| 国产精品爽爽va在线观看网站 | 欧美av亚洲av综合av国产av|