裴佳佳 劉媛華
摘 要:建立分級診療制度是我國醫(yī)改“十三五”規(guī)劃五大任務之首,而基層醫(yī)療衛(wèi)生機構(gòu)承擔著分級診療的基礎(chǔ)任務,是基本醫(yī)療衛(wèi)生服務和公共衛(wèi)生服務的雙重承載,如何提高基層醫(yī)療衛(wèi)生機構(gòu)服務水平具有重大研究意義。選取上海市2010 -2016年基層醫(yī)療機構(gòu)診療數(shù)據(jù),建立基于多因素影響的上海市基層醫(yī)療機構(gòu)診療量預測組合模型。首先運用灰色關(guān)聯(lián)分析對各影響因素與診療量的相關(guān)性進行排序,篩選出主要影響因素變量;然后應用GM(1,N)模型對各年度診療量進行預測,并利用改進粒子群算法進行背景值優(yōu)化,以提高預測準確性;最后運用該模型預測2017 -2020年診療量。仿真實驗結(jié)果表明,該模型較單一的GM(1,N)模型準確性更高,預測有效可行。
關(guān)鍵詞:醫(yī)療機構(gòu)診療量預測;灰色關(guān)聯(lián)分析;GM(1,N)模型;PSO;背景值優(yōu)化
DOI:10. 11907/rjdk. 182517
中圖分類號:TP319
文獻標識碼:A文章編號:1672-7800(2019)006-0130-05
Abstract: The establishment of a grading diagnosis and treatment system is the first of the five major tasks of the 13th Five-Year Plan for medical reform in China. The primary health care institutions are responsible for the basic tasks of grading diagnosis and treatment. They are the dual burdens of basic medical and public health services and how to improve the primary health care institutions. Service levels have significant research implications. This paper selects the data of primary and secondary medical institutions in Shanghai from 2010 to 2016, and establishes a combined model for the diagnosis and treatment of primary care institutions in Shanghai based on multi-factor effects. Firstly, the gray correlation analysis is used to sort the correlation between each influencing factor and the amount of diagnosis and treatment, and the main influencing factors are selected. Then the GM(1,N) model is used to predict the annual diagnosis and treatment, and the improved particle swarm optimization algorithm is used. The background value is optimized to improve the accuracy of the predicted value; finally, the model is used to predict the amount of medical treatment from 2017 to 2020. The simulation results show that the model has higher accuracy than the single GM(1,N) model, which indicates that the model is effective and feasible.
Key Words: forecast of diagnosis and treatment volume of medical institutions; grey relational analysis; GM(1,N) model; PSO; background value optimization
0 引言
基層醫(yī)療機構(gòu)是整個醫(yī)療體系的根基,承擔著提供基本醫(yī)療衛(wèi)生服務和基本公共衛(wèi)生服務的責任,對保障和改善居民健康狀況具有重要作用,是國家實施分級診療、雙向轉(zhuǎn)診制度很重要的一環(huán),對緩解“看病難、看病貴”問題具有重要意義[1]。2015年9月,國務院辦公廳出臺《關(guān)于推進分級診療制度建設(shè)的指導意見》(國發(fā)辦[2015]70號),強調(diào)以提高基層醫(yī)療服務能力為重點,以常見病、多發(fā)病、慢性病分級診療為突破口,引導優(yōu)質(zhì)醫(yī)療資源下沉,形成科學合理的就醫(yī)秩序,逐步建立符合國情的分級診療制度[2]。為此,上海加大了醫(yī)療資源投入,實施“5+3+1”工程,建成102個示范性社區(qū)衛(wèi)生服務中心,基層醫(yī)療機構(gòu)診療效率和服務水平有了很大提高。分析上海市基層醫(yī)療機構(gòu)未來發(fā)展趨勢,對提高上海市醫(yī)療綜合服務水平,保障人民健康有著重要意義。
目前對于基層醫(yī)療機構(gòu)的研究方法主要是實地調(diào)研和統(tǒng)計學分析[3],建立模型進行分析的甚少。本文應用灰色系統(tǒng)理論對總診療量進行預測研究。首先,總診療量可以反映醫(yī)療服務能力、患者就醫(yī)取向。從分級診療構(gòu)建角度看,基層醫(yī)療機構(gòu)的診療量可以反映患者就診的選擇變化,從而體現(xiàn)分級診療是否有效[4]?;疑到y(tǒng)理論是鄧聚龍教授[5]于1982年創(chuàng)立的,以部分信息已知、信息未知的小數(shù)據(jù)、貧信息不確定性問題為研究對象,通過提取已知信息,實現(xiàn)對未來變化的定量預測,其特點是少數(shù)據(jù)建模,模型構(gòu)造簡單,計算方便。