• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Time Domain Analysis on Ship Motions in Waves with Translating-Pulsating Source Green Function

    2019-07-08 03:54:12SUNXiaoshuaiYAOChaobangXIONGYingYEQing
    船舶力學 2019年6期

    SUN Xiao-shuai,YAO Chao-bang,XIONG Ying,YE Qing

    (1.China Marine Development and Research Center,Beijing 100000,China;2.School of Naval Architecture and Ocean Engineering,Huazhong University of Science and Technology,Wuhan 430074,China;3.School of Naval Architecture and Ocean Engineering,Naval University of Engineering,Wuhan 430033,China)

    Abstract:The seakeeping performance of a ship in waves was investigated in time domain,with the retardation function computed from transforms of frequency hydrodynamic data evaluated based on the Three Dimensional Translating-Pulsating source Green function(3DTP).The motion equations were referenced to both the equilibrium axis system and the body fixed axis system.Comparisons were made among the present time domain method,the frequency domain method and the experiment.The results indicate that it is highly efficient to calculate the retardation function by the frequency to time domain transformation method.The motion responses obtained from equations referenced to the equilibrium axis system indicate shifts when compared with the frequency domain results,especially for the pitch motion,while motion responses obtained from equations referenced to the body fixed axis system indicate satisfactory agreement with both the frequency domain results and experimental results.

    Key words:three dimensional translating and pulsating source Green function;seakeeping;time domain;retardation function

    0 Introduction

    The seakeeping performance of ships in seaway is one of the most significant aspects of ship design and designers have proposed a wide variety of arrangements to reduce ship motions in waves.A lot of efforts have been focused on using both linear and nonlinear potential flow for seakeeping problems.In the early 2 000s,the majority of all seakeeping computations at forward speeds were carried out based on strip theory[1].The use of 3D panel method to study seakeeping problem is becoming more common in recent years,since it overcomes the deficiencies in the strip theory methods[2-3].

    The 3D Green function and Rankine singularities are the most popular in the 3D potential theory[4].The Green function method has advantages in that it requires distribution of sin-gularities only on the wetted hull surface,and it satisfies the far field radiation condition automatically.The 3D Translating-Pulsating source Green function(3DTP)which satisfies the classical linearized free surface condition with a forward speed may be more genuine and stricter than the other methods.In contrast,the Rankine source method has the advantage of the flexible choice of free surface conditions.However,the Rankine panel method needs special attention in satisfying the radiation condition when the Brard number τ(τ=uωe/g)is less than 0.25.Besides,more panels will be needed since the free surface should also be discretized.

    The frequency domain method provided good solutions for problems of steady-state sinusoidal motions with small amplitudes.However,when it comes to large amplitude motions with strong nonlinear hydrodynamic phenomenon like slamming,the time domain method may give better results.The retardation function that contains all the memory of the fluid response should be included in the equations of motions in time domain[5].It can be solved either by the direct time domain method(DTM)or the frequency to time domain transformation method(FTTM)[6].The DTM means that the initial-boundary value problem in time domain is directly established and the velocity potential is divided into a transient-effect part and a memory-effect part based on the impulse response function.Then each part is solved respectively by utilizing different forms of Green function,such as pulsating source Green function,translatingpulsating source Green function and Rankine source Green function.The FTTM refers that the retardation function is evaluated using a series of hydrodynamic coefficients calculated in frequency domain.Kim et al(2007)[7]and Jiang et al(2015)[8]investigated the coupling effects of ship motions and sloshing with the FTTM.Rajendran et al(2015)[9]applied FTTM to obtain the retardation function and developed a partially nonlinear time domain code based on strip theory to include body nonlinearity in the calculation of radiation and diffraction forces.Ballard et al(2003)[10]compared the results obtained from motion equations referenced to both equilibrium and body fixed axis system.

    The present study primarily focuses on the development of a time domain method to investigate the seakeeping behavior of a ship in waves.The retardation functions are computed from transformations of frequency hydrodynamic data evaluated based on the Three Dimensional Translating-Pulsating source Green function(3DTP).The motion equations were referenced to both the equilibrium axis system and the body fixed axis system.Comparisons were made among the present time domain method,the frequency domain method and the experiment.

    1 Time domain method for seakeeping investigation

    1.1 Coordinate system

    Let Oxyz be the Cartesian right-handed coordinate system,with origin O in the plane of the undisturbed free surface Z0=0 with positive z-axis pointing upwards through the center of gravity(COG).The coordinate system Oxyz is fixed with respect to the mean oscillatory position of the vessel which means that it does not oscillate with the ship.The coordinate system Oxyz moves forward with the same speed U of the vessel.In addition,Fig.1 shows a body-fixed coordinate system O′x′y′z′which coincides with the coordinate system Oxyz when the ship does not oscillate.O0X0Y0Z0is an earth-fixed coordinate system with positive Z0-axis pointing upwards.The position of the body-fixed coordinate system O′x′y′z′in the coordinate system Oxyz indicates the vessel's motion responses ηj,where j=1,2,… ,6 refer to surge,sway,heave,roll,pitch and yaw,respectively.In order to avoid any possible confusion due to the different coordinate systems which will be introduced next,the coordinate system Oxyz will be called the seakeeping coordinate system.

    Bailey et al(1998)[11]developed a unified mathematical model describing the maneuvering of a ship travelling in a seaway.In his study,the motion equations were referenced to the maneuvering body-fixed coordinate system as shown in Fig.2.The Cartesian right-handed maneuvering body-fixed coordinate system Gxyz with positive z-axis pointing upwards is defined with respect to the ship's center of gravity.The center of gravity is in the origin G of the coordinate system Gxyz in the body lateral symmetry plane with the arbitrary vertical position zg.

    Fig.1 Coordinate systems of seakeeping investigation

    Fig.2 Maneuvering body-fixed coordinate system

    By imposing the small disturbances in the form of velocities u,v,w,p,q,r,the ship is disturbed from its equilibrium position.The save level of disturbances is experienced by the maneuvering body-fixed coordinate system Gxyz.Since the seakeeping coordinate system Oxyz is fixed with respect to the mean oscillatory position of the vessel,the relationship between the velocities in the seakeeping coordinate system Oxyz and the maneuvering body-fixed coordinate system Gxyz can be shown as follows[12]:

    For the center of gravity,the velocities in respect to the seakeeping coordinate system can be expressed as

    where

    1.2 Motion equations

    According to Cummins(1962)[5]and Ogilvie(1964)[13],the 6-DOF motion equations of a vessel defined in respect to the seakeeping coordinate system Oxyz in time domain can be expressed as

    where Mijis the mass matrix,Aijand Bijare the matrices of the added mass and damping coefficients,respectively.∞means that the wave encounter frequency is infinite.Cijis the restoring matrix.Kijare the response impulse functions(the retardation functions).Fiis the wave excitation force and moment.

    According to Ogilvie[13],after some manipulations with the Eq.(7)by using the Eqs.(4)-(6),the 6-DOF motion equations of a vessel defined in respect to the maneuvering body-fixed coordinate system Gxyz in time domain can be expressed as

    1.3 Retardation functions

    The retardation functions Kij(t)defined in respect to the seakeeping coordinate system could be calculated from the added mass and damping coefficient in frequency domain.

    The Three Dimensional Translating-Pulsating source Green function(3DTP)which satisfies the classical linearized free surface condition with a forward speed may be more genuine and stricter than other methods such as the pulsating source Green function and Rankine source Green function in the 3D potential theory.Based on the variable substitution and the steepest descent integration method,a fast numerical calculation method can be obtained for the 3DTP[14-15].The added mass Aijand damping coefficient Bijin this paper are all calculated based on the 3DTP.

    In an actual numerical calculation of the retardation function,a truncation error is inevitable since the integral of Eqs.(11)and(12)is generally carried out in a finite-frequency range.To minimize this truncation error,a special treatment developed by Kim et al(2007)[7]is applied here.

    By considering the inverse transform of the retardation function,it is found that

    For a sufficiently large cut-off frequency Ω,the retardation function with a correction of the truncation error can be approximated by using Eq.(13):

    where

    1.4 Calculation of retardation functions

    In Eqs.(11)and(12),the term sinωt and cosωt can be found and may result in oscillation of the integrand.Assuming Dij(ω, t )=[Bij(ω )-Bij(∞ )]cos( ωt),Fig.3 illustrates the D33(ω, t ) of Wigley III at different time.It can be seen that the oscillation of the integrand intensifies with the increase of time.

    Fig.3 Typical images of integrand D33(ω, )t

    Since the integral of Eqs.(11)and(12)is generally carried out in a finite-frequency range and the integrand indicates an oscillatory property,the direct application of trapezoidal integration would result in significant numerical error.The following steps were carried out to improve degree of accuracy:

    (1)Conduct cubic regression of all the damping coefficients evaluated in frequency;

    (2)Obtain more damping coefficients by interpolation and we could get B1,B2,…,Bn;

    (3)The damping coefficients between Biand Bi+1can be expressed as Bi(ω) =aiω+bi.where

    (4)The integration between Biand Bi+1can be solved analytically and the Kij(t)is calculated by

    The comparison between the trapezoidal integration and the present method is shown below.The numbers of damping coefficients obtained by interpolation n1 and n2 are 200 and 1 000,respectively.The result of K33obtained by the present method is more stable with the increase of time,while the result calculated by the trapezoidal integration indicates oscillation at t>10 s when n1=200 and at t>140 s when n2=1 000.It implies that the oscillation of the integrand can be reduced when more damping coefficients are used to calculate the retardation function by the trapezoidal integration.However,the oscillation of the integrand does not disappear and will show again in the future.In contrast,the result of the retardation function evaluated by the present method is always convergent by using fewer damping coefficients.

    Fig.4 Effect of integral method on retard function

    2 Validation of the present method

    Numerical calculations were made to evaluate the retardation function and motion responses of Wigley III and S60 by the present method.Comparisons with other researchers'results are shown as follows.The main parameters of Wigley III and S60 are given in Tab.1.

    Tab.1 Main parameters of hull models

    At present,the heave motions are non-dimensionalized by wave amplitude ζ,while pitch motions are non-dimensionalized by wave slope k0ζ.

    The retardation functions of Wigley III at different forward speed are illustrated in Fig.5 and Fig.6,in which‘3DP'means the results are evaluated based on the three dimensional pulsating source Green function.It can be seen that the present results based on 3DP show very good agreement with those calculated by Tang et al(2013)[6]based on 3DP when t>0.5 s,while differences could be found when t<0.5 s for the reason that different cut-off frequency was selected.Minimal discrepancy is observed for K33when comparing the present results based on 3DP with those based on 3DTP,while the discrepancy is much more pronounced for K55.The reason may lie in the differences between the pitch-pitch damping coefficients evaluated from different kind of Green functions.Since the 3DTP directly takes the speed effect into account,the results based on 3DTP seem to be more reasonable.

    Fig.5 Comparison of retard function of Wigley III at Fn=0.2

    Fig.6 Comparison of retard function of Wigley III at Fn=0.3

    Fig.7 and Fig.8 show the motion transfer functions of Wigley III at different advancing speed.‘Exp'means the results obtained by experiment carried out by DUT[16]and ‘FD'means the results calculated based on 3DTP in frequency domain.‘TD-Oxyz'means the results calculated in respect to the seakeeping coordinate system in time domain,while‘TD-Gxyz'means the results calculated in respect to the maneuvering body-fixed coordinate system in time domain.Satisfactory agreement is observed between the results evaluated based on 3DTP in frequency domain and those obtained from experiment.

    Comparisons of results between ‘FD'and ‘TD-Oxyz'depict differences,especially for the pitch transfer functions.Good agreement is achieved for heave transfer functions at Fn=0.2,while obvious difference could be found in resonant zone at Fn=0.3.The discrepancy of the results between ‘FD'and ‘TD-Oxyz'is more pronounced with the increasing advancing speed.

    The comparison of motion transfer functions between‘TD-Gxyz'and experiment shows very good agreement at different forward speed,so it implies that the motion equations in time domain should be solved in respect to the body-fixed coordinate system to obtain accurate results.

    Fig.7 Comparison of the transfer function of Wigley III at Fn=0.2

    Fig.8 Comparison of the transfer function of Wigley III at Fn=0.3

    Fig.9 and Fig.10 indicate the retardation functions of S60 with respect to the seakeeping coordinate system and the maneuvering body-fixed coordinate system,respectively.The present results agree well with those obtained by Ballard et al(2003)[10],which validates the present numerical method.The retardation functions see a drop trend at beginning and trend to zero when t>2 s,which implies that the memory effect disappear.

    The motion transfer functions of S60 at different advancing speed are shown in Fig.11.The results presented by Ballard et al(2003)[10]are based on the 3DP.It can be seen that the results in frequency domain based on 3DP and those based on 3DTP indicate minimal difference for the reason that the vessel advances with moderate forward speed.

    Fig.9 Comparison of the retardation function of S60 referenced to the seakeeping axis system

    Fig.10 Comparison of the retardation function of S60 referenced to the body-fixed axis system

    The heave transfer functions calculated by the present method with respect to the seakeeping coordinate system illustrate differences in the resonant zone when compared with those obtained by Ballard et al(2003)[10],while the pitch transfer functions indicate good agreement.A shift could be found in both the present results and Ballard's results when comparing the results in frequency domain and time domain with respect to the seakeeping coordinate system.

    The present results and Ballard's results show that good agreement is observed when comparing the results in frequency domain and those in time domain with respect to the maneuvering body-fixed coordinate system.It illustrates that accurate results can be obtained by solving motion equations referenced to the body-fixed axis system.

    Fig.11 Comparison of the transfer functions of S60 at Fn=0.2

    Ballard et al(2003)[10]explained the reason for the differences found between the results with respect to the seakeeping equilibrium axis system and maneuvering body-fixed axis system.He found that some equilibrium axis added mass coefficients,such as A55,tend to infinitely high values at low frequency when the forward speed is not zero,which results in the difficulty to accurately calculate the retardation functions that can adequately represent such trends.However,hydrodynamic coefficients referenced to the maneuvering body-fixed axis system do not display similar trends.

    The above numerical simulations on Wigley III and S60 validated the time domain method for seakeeping investigation on monohulls.It can be found that motion equations referenced to the body-fixed axis system in time domain result in more accurate motion responses.

    3 Conclusions

    In the present work,the ship motions in regular waves were investigated in time domain numerically,with the retardation function computed from transforms of frequency hydrodynamic data evaluated based on the Three Dimensional Translating-Pulsating source Green function(3DTP).A new integral method was established to calculate the retardation functions that contain memory effect.The retardation functions can be calculated from hydrodynamic coefficients referenced to either the seakeeping equilibrium axis system or the maneuvering body-fixed axis system.The results indicate that it is highly efficient to calculate the retardation function by the frequency to time domain transformation method.

    The motion responses obtained by solving the motion equations referenced to the bodyfixed axis system show minimal difference compared with the frequency domain results,while the motion responses obtained by solving the motion equations referenced to the equilibrium axis system indicate shifts compared with the frequency domain results,especially for the pitch motion.

    The present study in time domain can then be further extended to investigate nonlinear hydrodynamic forces,such as the nonlinear wave excitation forces and nonlinear restoring forces.

    男人操女人黄网站| 精品久久久精品久久久| 亚洲一码二码三码区别大吗| 老司机靠b影院| 脱女人内裤的视频| √禁漫天堂资源中文www| 一区在线观看完整版| 亚洲人成77777在线视频| 女人高潮潮喷娇喘18禁视频| 国产精品久久久久久精品电影小说| 亚洲欧洲日产国产| 最黄视频免费看| 91成年电影在线观看| 国产精品亚洲一级av第二区| 50天的宝宝边吃奶边哭怎么回事| 十分钟在线观看高清视频www| av福利片在线| 香蕉国产在线看| 亚洲一区二区三区欧美精品| 日韩欧美免费精品| 男女床上黄色一级片免费看| 日韩视频在线欧美| 伊人久久大香线蕉亚洲五| 国产精品98久久久久久宅男小说| 欧美精品av麻豆av| e午夜精品久久久久久久| 久久国产精品大桥未久av| 丁香欧美五月| 久热爱精品视频在线9| av不卡在线播放| 女性被躁到高潮视频| 一边摸一边抽搐一进一出视频| 亚洲色图综合在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲国产av新网站| 午夜老司机福利片| av网站免费在线观看视频| 国产男女超爽视频在线观看| 亚洲成人国产一区在线观看| 久久久精品国产亚洲av高清涩受| 国产黄频视频在线观看| 久久久欧美国产精品| 国产伦理片在线播放av一区| 手机成人av网站| 精品国产乱子伦一区二区三区| 亚洲第一欧美日韩一区二区三区 | 极品少妇高潮喷水抽搐| 久热爱精品视频在线9| 多毛熟女@视频| 老司机福利观看| 满18在线观看网站| 两个人免费观看高清视频| 丝袜喷水一区| 午夜91福利影院| 国产高清videossex| 久久这里只有精品19| 露出奶头的视频| 大香蕉久久网| 国产高清视频在线播放一区| 美女国产高潮福利片在线看| 窝窝影院91人妻| 亚洲人成伊人成综合网2020| 操美女的视频在线观看| 波多野结衣一区麻豆| 两人在一起打扑克的视频| 嫁个100分男人电影在线观看| 国产精品国产av在线观看| 脱女人内裤的视频| 高清欧美精品videossex| 亚洲av成人一区二区三| 啦啦啦视频在线资源免费观看| 国产精品一区二区在线不卡| 久久人妻av系列| 91老司机精品| 国产免费视频播放在线视频| 日日摸夜夜添夜夜添小说| 午夜日韩欧美国产| 国产av国产精品国产| 精品少妇久久久久久888优播| 怎么达到女性高潮| 91精品国产国语对白视频| 九色亚洲精品在线播放| 男人舔女人的私密视频| 久久精品国产亚洲av香蕉五月 | 99精品欧美一区二区三区四区| 一夜夜www| 美女主播在线视频| 国产亚洲欧美精品永久| xxxhd国产人妻xxx| 国产xxxxx性猛交| av天堂在线播放| 国产精品麻豆人妻色哟哟久久| av在线播放免费不卡| 热99久久久久精品小说推荐| 国产av精品麻豆| 久久精品人人爽人人爽视色| 日本a在线网址| 国产精品偷伦视频观看了| 一区二区av电影网| 制服人妻中文乱码| 99国产精品一区二区三区| 午夜两性在线视频| 日本五十路高清| 一区福利在线观看| 啦啦啦免费观看视频1| 色在线成人网| 成人国产一区最新在线观看| 老熟妇仑乱视频hdxx| 国产日韩欧美视频二区| 夜夜骑夜夜射夜夜干| 亚洲精品久久午夜乱码| 少妇的丰满在线观看| 99久久国产精品久久久| 亚洲成a人片在线一区二区| 精品熟女少妇八av免费久了| 成年人黄色毛片网站| 午夜精品久久久久久毛片777| 亚洲一区二区三区欧美精品| 国产免费福利视频在线观看| 19禁男女啪啪无遮挡网站| 久久精品aⅴ一区二区三区四区| 国产在线观看jvid| 日韩欧美三级三区| 欧美变态另类bdsm刘玥| 国产日韩欧美在线精品| 12—13女人毛片做爰片一| 动漫黄色视频在线观看| 国产精品一区二区精品视频观看| 久久精品亚洲熟妇少妇任你| 一区二区三区乱码不卡18| 真人做人爱边吃奶动态| 久久久久精品国产欧美久久久| 熟女少妇亚洲综合色aaa.| 亚洲avbb在线观看| 亚洲欧洲日产国产| 午夜成年电影在线免费观看| 三级毛片av免费| 国产成人av教育| 99热国产这里只有精品6| 国产黄频视频在线观看| 超色免费av| 国产成人影院久久av| 最新的欧美精品一区二区| 视频在线观看一区二区三区| 狠狠婷婷综合久久久久久88av| 女人久久www免费人成看片| 捣出白浆h1v1| 老汉色av国产亚洲站长工具| 亚洲男人天堂网一区| 日韩欧美三级三区| 99精品欧美一区二区三区四区| 日韩欧美三级三区| 日韩熟女老妇一区二区性免费视频| 久久久水蜜桃国产精品网| 啦啦啦 在线观看视频| 在线天堂中文资源库| 国产一区二区三区在线臀色熟女 | 老司机福利观看| 国产亚洲欧美精品永久| 91麻豆av在线| 王馨瑶露胸无遮挡在线观看| 亚洲色图av天堂| 午夜91福利影院| 一本大道久久a久久精品| 国产精品久久久久成人av| 一本大道久久a久久精品| 色综合婷婷激情| 淫妇啪啪啪对白视频| 伦理电影免费视频| 多毛熟女@视频| 久久午夜综合久久蜜桃| 色视频在线一区二区三区| 国产精品电影一区二区三区 | 久久ye,这里只有精品| 9色porny在线观看| 看免费av毛片| 精品国产国语对白av| 中文字幕精品免费在线观看视频| 国产精品熟女久久久久浪| 欧美日韩精品网址| 少妇 在线观看| 91字幕亚洲| 搡老岳熟女国产| 国产精品.久久久| 成年人黄色毛片网站| 精品欧美一区二区三区在线| 免费不卡黄色视频| 精品国产乱子伦一区二区三区| 国产精品电影一区二区三区 | 亚洲欧洲精品一区二区精品久久久| 一级毛片精品| 欧美日韩国产mv在线观看视频| 亚洲精品国产一区二区精华液| 日韩人妻精品一区2区三区| 一个人免费在线观看的高清视频| 国产精品影院久久| 国产无遮挡羞羞视频在线观看| 757午夜福利合集在线观看| 99国产精品一区二区三区| 可以免费在线观看a视频的电影网站| 免费在线观看黄色视频的| 精品午夜福利视频在线观看一区 | 窝窝影院91人妻| 丰满少妇做爰视频| 我要看黄色一级片免费的| 成年版毛片免费区| 亚洲精品中文字幕在线视频| 极品少妇高潮喷水抽搐| 80岁老熟妇乱子伦牲交| 国产亚洲欧美在线一区二区| 亚洲一区二区三区欧美精品| 久久久国产一区二区| 国产aⅴ精品一区二区三区波| 少妇猛男粗大的猛烈进出视频| 亚洲色图av天堂| 乱人伦中国视频| 最近最新中文字幕大全免费视频| 老司机午夜福利在线观看视频 | av免费在线观看网站| www.自偷自拍.com| 欧美精品高潮呻吟av久久| 美女高潮到喷水免费观看| 国产熟女午夜一区二区三区| 熟女少妇亚洲综合色aaa.| 黄色毛片三级朝国网站| 黄色成人免费大全| 男女午夜视频在线观看| 一二三四社区在线视频社区8| 国产伦人伦偷精品视频| 亚洲精品自拍成人| 99久久精品国产亚洲精品| 精品少妇久久久久久888优播| 建设人人有责人人尽责人人享有的| 亚洲视频免费观看视频| 久久精品人人爽人人爽视色| 一边摸一边抽搐一进一小说 | 中国美女看黄片| 别揉我奶头~嗯~啊~动态视频| 成人三级做爰电影| 国产成人免费无遮挡视频| 五月天丁香电影| 亚洲中文字幕日韩| 黑人巨大精品欧美一区二区蜜桃| 女人高潮潮喷娇喘18禁视频| 日韩三级视频一区二区三区| 欧美激情高清一区二区三区| 欧美人与性动交α欧美精品济南到| 桃花免费在线播放| 91老司机精品| 精品卡一卡二卡四卡免费| 麻豆国产av国片精品| 亚洲一区二区三区欧美精品| 久久久久久久精品吃奶| 又大又爽又粗| 久久久久国产一级毛片高清牌| 日本av手机在线免费观看| 大片免费播放器 马上看| 国产亚洲一区二区精品| 美女午夜性视频免费| 黄色视频不卡| 久久免费观看电影| 日本vs欧美在线观看视频| 亚洲第一欧美日韩一区二区三区 | 色婷婷久久久亚洲欧美| 国产在线观看jvid| 天堂动漫精品| 国产免费av片在线观看野外av| 欧美日韩中文字幕国产精品一区二区三区 | 欧美激情 高清一区二区三区| 亚洲精品国产精品久久久不卡| 亚洲一区二区三区欧美精品| 国产单亲对白刺激| 美国免费a级毛片| 亚洲中文字幕日韩| h视频一区二区三区| 51午夜福利影视在线观看| 久久九九热精品免费| 久久久精品94久久精品| 侵犯人妻中文字幕一二三四区| 亚洲av成人不卡在线观看播放网| 精品乱码久久久久久99久播| 51午夜福利影视在线观看| 日韩一卡2卡3卡4卡2021年| 天堂8中文在线网| 国产精品99久久99久久久不卡| 亚洲av成人不卡在线观看播放网| 黑丝袜美女国产一区| 午夜精品久久久久久毛片777| 国产精品一区二区在线不卡| 国产精品国产高清国产av | 三上悠亚av全集在线观看| 精品少妇黑人巨大在线播放| 男女下面插进去视频免费观看| 亚洲成a人片在线一区二区| 老司机亚洲免费影院| 12—13女人毛片做爰片一| 国产一卡二卡三卡精品| av超薄肉色丝袜交足视频| 淫妇啪啪啪对白视频| 欧美+亚洲+日韩+国产| 亚洲国产欧美一区二区综合| 99国产精品99久久久久| 他把我摸到了高潮在线观看 | videos熟女内射| 欧美精品人与动牲交sv欧美| av国产精品久久久久影院| 天天躁狠狠躁夜夜躁狠狠躁| 夜夜爽天天搞| 久久国产亚洲av麻豆专区| 一个人免费看片子| 在线观看免费日韩欧美大片| 国产在视频线精品| 国产精品久久久人人做人人爽| bbb黄色大片| 又黄又粗又硬又大视频| 国产精品免费一区二区三区在线 | 国产精品 国内视频| 久久青草综合色| 99国产极品粉嫩在线观看| cao死你这个sao货| 国精品久久久久久国模美| 欧美+亚洲+日韩+国产| 亚洲精华国产精华精| 成人精品一区二区免费| 国产av一区二区精品久久| 欧美乱妇无乱码| 免费在线观看视频国产中文字幕亚洲| av欧美777| av网站免费在线观看视频| 成人18禁高潮啪啪吃奶动态图| 亚洲伊人色综图| 一边摸一边抽搐一进一小说 | 少妇被粗大的猛进出69影院| 亚洲中文av在线| 波多野结衣一区麻豆| 咕卡用的链子| 老汉色∧v一级毛片| 热99久久久久精品小说推荐| 1024视频免费在线观看| 一级毛片电影观看| 手机成人av网站| 亚洲成人国产一区在线观看| 电影成人av| 国产亚洲午夜精品一区二区久久| 动漫黄色视频在线观看| 成人免费观看视频高清| e午夜精品久久久久久久| 亚洲av成人一区二区三| 亚洲少妇的诱惑av| 国内毛片毛片毛片毛片毛片| 国产成人欧美在线观看 | 国产一区二区 视频在线| 手机成人av网站| 欧美黑人精品巨大| 欧美精品人与动牲交sv欧美| 久久久久国产一级毛片高清牌| 在线观看免费视频日本深夜| 一区二区日韩欧美中文字幕| 啪啪无遮挡十八禁网站| 高清av免费在线| 亚洲色图av天堂| 国产免费av片在线观看野外av| 久久天躁狠狠躁夜夜2o2o| 国产高清国产精品国产三级| 女同久久另类99精品国产91| 精品人妻在线不人妻| 午夜福利在线观看吧| 777米奇影视久久| av免费在线观看网站| 精品人妻在线不人妻| 亚洲精品自拍成人| av国产精品久久久久影院| av线在线观看网站| 性高湖久久久久久久久免费观看| 99久久国产精品久久久| www日本在线高清视频| 男女无遮挡免费网站观看| 久久久久久久久久久久大奶| 在线播放国产精品三级| 亚洲熟女毛片儿| 国产免费现黄频在线看| 亚洲五月婷婷丁香| 精品国内亚洲2022精品成人 | 久久国产亚洲av麻豆专区| 亚洲精品在线观看二区| 亚洲一码二码三码区别大吗| 国产高清国产精品国产三级| 18禁观看日本| 免费观看av网站的网址| 亚洲情色 制服丝袜| 亚洲 国产 在线| 性色av乱码一区二区三区2| 男女高潮啪啪啪动态图| 亚洲专区中文字幕在线| 丝袜美腿诱惑在线| 亚洲第一欧美日韩一区二区三区 | tube8黄色片| 亚洲av欧美aⅴ国产| 欧美久久黑人一区二区| 12—13女人毛片做爰片一| 久久中文字幕一级| 久久人妻av系列| 日韩制服丝袜自拍偷拍| 高清黄色对白视频在线免费看| 黑人欧美特级aaaaaa片| 丝瓜视频免费看黄片| 精品福利永久在线观看| 久久99热这里只频精品6学生| 国产成人系列免费观看| 最近最新免费中文字幕在线| 久久人妻av系列| 女人高潮潮喷娇喘18禁视频| 高清黄色对白视频在线免费看| 国产高清videossex| 久久久久久久国产电影| 亚洲人成77777在线视频| 精品久久蜜臀av无| 女同久久另类99精品国产91| 亚洲av日韩精品久久久久久密| 丰满迷人的少妇在线观看| 搡老岳熟女国产| 夜夜爽天天搞| 50天的宝宝边吃奶边哭怎么回事| 午夜福利欧美成人| 1024视频免费在线观看| 美女福利国产在线| avwww免费| 欧美人与性动交α欧美精品济南到| 五月天丁香电影| 一二三四社区在线视频社区8| 欧美日韩一级在线毛片| 亚洲自偷自拍图片 自拍| 日本黄色日本黄色录像| 精品久久蜜臀av无| 国产无遮挡羞羞视频在线观看| 一个人免费在线观看的高清视频| 大片电影免费在线观看免费| 一区二区三区激情视频| 人人妻人人澡人人爽人人夜夜| 老司机福利观看| 国产亚洲一区二区精品| 男女免费视频国产| 日日夜夜操网爽| 一区福利在线观看| 欧美日韩一级在线毛片| 女性被躁到高潮视频| 视频区欧美日本亚洲| 亚洲国产中文字幕在线视频| 超碰97精品在线观看| 亚洲av欧美aⅴ国产| 黄色怎么调成土黄色| a在线观看视频网站| 91成年电影在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲国产欧美日韩在线播放| 香蕉丝袜av| 欧美久久黑人一区二区| 91成人精品电影| 国产精品美女特级片免费视频播放器 | 热re99久久精品国产66热6| 久久久久久久精品吃奶| 99国产精品一区二区三区| 欧美日韩中文字幕国产精品一区二区三区 | 妹子高潮喷水视频| 亚洲人成77777在线视频| 午夜成年电影在线免费观看| 日本五十路高清| 日本av免费视频播放| 精品福利观看| 人人妻人人澡人人爽人人夜夜| 免费在线观看日本一区| 老汉色av国产亚洲站长工具| 中文字幕最新亚洲高清| 欧美在线黄色| 亚洲精品乱久久久久久| 久久精品国产a三级三级三级| 亚洲五月婷婷丁香| av免费在线观看网站| 国产免费福利视频在线观看| 色综合婷婷激情| 十八禁网站免费在线| 亚洲欧洲精品一区二区精品久久久| 一个人免费看片子| av福利片在线| 欧美成人午夜精品| 狠狠狠狠99中文字幕| 国产免费视频播放在线视频| 亚洲av美国av| √禁漫天堂资源中文www| 日本五十路高清| 日韩大码丰满熟妇| 两个人看的免费小视频| 精品亚洲成国产av| 日本av免费视频播放| av不卡在线播放| 大香蕉久久网| 亚洲免费av在线视频| 亚洲午夜精品一区,二区,三区| 欧美成人午夜精品| 精品国产一区二区三区久久久樱花| 国产99久久九九免费精品| 国产精品香港三级国产av潘金莲| 99热网站在线观看| 12—13女人毛片做爰片一| 制服诱惑二区| 一二三四在线观看免费中文在| 免费观看人在逋| 免费久久久久久久精品成人欧美视频| 国产日韩欧美亚洲二区| 日本一区二区免费在线视频| 在线观看免费视频日本深夜| 久久免费观看电影| 成年人午夜在线观看视频| 18禁美女被吸乳视频| 夜夜骑夜夜射夜夜干| 国产一区二区三区在线臀色熟女 | 久久毛片免费看一区二区三区| 国产成人欧美在线观看 | 亚洲国产成人一精品久久久| 免费看十八禁软件| 色老头精品视频在线观看| 久久人妻熟女aⅴ| 欧美日韩国产mv在线观看视频| 美女高潮到喷水免费观看| 亚洲色图综合在线观看| 精品人妻在线不人妻| 91麻豆av在线| 97在线人人人人妻| 午夜老司机福利片| 精品国产亚洲在线| 亚洲精品自拍成人| 亚洲午夜精品一区,二区,三区| 在线看a的网站| 两性午夜刺激爽爽歪歪视频在线观看 | tube8黄色片| 亚洲人成伊人成综合网2020| 亚洲全国av大片| 国产熟女午夜一区二区三区| 国产视频一区二区在线看| 视频在线观看一区二区三区| a级毛片黄视频| 男女之事视频高清在线观看| 一级毛片精品| 99re6热这里在线精品视频| 正在播放国产对白刺激| 欧美黑人精品巨大| 午夜激情久久久久久久| 国产又爽黄色视频| av又黄又爽大尺度在线免费看| 亚洲成人免费av在线播放| 久久这里只有精品19| 亚洲精品中文字幕在线视频| 国产欧美日韩一区二区精品| 久久婷婷成人综合色麻豆| 日韩大码丰满熟妇| 亚洲五月色婷婷综合| a在线观看视频网站| 五月天丁香电影| 18禁美女被吸乳视频| 亚洲自偷自拍图片 自拍| 欧美激情极品国产一区二区三区| 精品一区二区三区av网在线观看 | 欧美激情高清一区二区三区| 9191精品国产免费久久| 午夜福利免费观看在线| 国精品久久久久久国模美| 国产三级黄色录像| 亚洲精品久久午夜乱码| 在线天堂中文资源库| 亚洲 欧美一区二区三区| 19禁男女啪啪无遮挡网站| 一区二区三区国产精品乱码| 黑丝袜美女国产一区| 国产在视频线精品| 叶爱在线成人免费视频播放| 欧美乱码精品一区二区三区| 国产一区二区三区在线臀色熟女 | 19禁男女啪啪无遮挡网站| 日本av手机在线免费观看| 国产一区二区三区综合在线观看| 黑人猛操日本美女一级片| 午夜福利视频在线观看免费| 可以免费在线观看a视频的电影网站| 亚洲第一av免费看| 夜夜夜夜夜久久久久| 日韩成人在线观看一区二区三区| 国产成人免费观看mmmm| 亚洲成人免费av在线播放| 国产精品久久久久久精品古装| 最新的欧美精品一区二区| 妹子高潮喷水视频| 后天国语完整版免费观看| 老汉色∧v一级毛片| 操出白浆在线播放| 狠狠精品人妻久久久久久综合| 在线观看免费午夜福利视频| 91字幕亚洲| 久久这里只有精品19| 97在线人人人人妻| 老司机福利观看| 精品视频人人做人人爽| 多毛熟女@视频| 国产精品久久久人人做人人爽| www.熟女人妻精品国产| 久久天堂一区二区三区四区| 最近最新中文字幕大全电影3 | 久久中文字幕人妻熟女| 一区二区三区乱码不卡18| 久久中文字幕人妻熟女| 欧美国产精品va在线观看不卡| 老鸭窝网址在线观看| 午夜激情av网站| 中国美女看黄片| 妹子高潮喷水视频| 欧美日韩一级在线毛片|