• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Time Domain Analysis on Ship Motions in Waves with Translating-Pulsating Source Green Function

    2019-07-08 03:54:12SUNXiaoshuaiYAOChaobangXIONGYingYEQing
    船舶力學 2019年6期

    SUN Xiao-shuai,YAO Chao-bang,XIONG Ying,YE Qing

    (1.China Marine Development and Research Center,Beijing 100000,China;2.School of Naval Architecture and Ocean Engineering,Huazhong University of Science and Technology,Wuhan 430074,China;3.School of Naval Architecture and Ocean Engineering,Naval University of Engineering,Wuhan 430033,China)

    Abstract:The seakeeping performance of a ship in waves was investigated in time domain,with the retardation function computed from transforms of frequency hydrodynamic data evaluated based on the Three Dimensional Translating-Pulsating source Green function(3DTP).The motion equations were referenced to both the equilibrium axis system and the body fixed axis system.Comparisons were made among the present time domain method,the frequency domain method and the experiment.The results indicate that it is highly efficient to calculate the retardation function by the frequency to time domain transformation method.The motion responses obtained from equations referenced to the equilibrium axis system indicate shifts when compared with the frequency domain results,especially for the pitch motion,while motion responses obtained from equations referenced to the body fixed axis system indicate satisfactory agreement with both the frequency domain results and experimental results.

    Key words:three dimensional translating and pulsating source Green function;seakeeping;time domain;retardation function

    0 Introduction

    The seakeeping performance of ships in seaway is one of the most significant aspects of ship design and designers have proposed a wide variety of arrangements to reduce ship motions in waves.A lot of efforts have been focused on using both linear and nonlinear potential flow for seakeeping problems.In the early 2 000s,the majority of all seakeeping computations at forward speeds were carried out based on strip theory[1].The use of 3D panel method to study seakeeping problem is becoming more common in recent years,since it overcomes the deficiencies in the strip theory methods[2-3].

    The 3D Green function and Rankine singularities are the most popular in the 3D potential theory[4].The Green function method has advantages in that it requires distribution of sin-gularities only on the wetted hull surface,and it satisfies the far field radiation condition automatically.The 3D Translating-Pulsating source Green function(3DTP)which satisfies the classical linearized free surface condition with a forward speed may be more genuine and stricter than the other methods.In contrast,the Rankine source method has the advantage of the flexible choice of free surface conditions.However,the Rankine panel method needs special attention in satisfying the radiation condition when the Brard number τ(τ=uωe/g)is less than 0.25.Besides,more panels will be needed since the free surface should also be discretized.

    The frequency domain method provided good solutions for problems of steady-state sinusoidal motions with small amplitudes.However,when it comes to large amplitude motions with strong nonlinear hydrodynamic phenomenon like slamming,the time domain method may give better results.The retardation function that contains all the memory of the fluid response should be included in the equations of motions in time domain[5].It can be solved either by the direct time domain method(DTM)or the frequency to time domain transformation method(FTTM)[6].The DTM means that the initial-boundary value problem in time domain is directly established and the velocity potential is divided into a transient-effect part and a memory-effect part based on the impulse response function.Then each part is solved respectively by utilizing different forms of Green function,such as pulsating source Green function,translatingpulsating source Green function and Rankine source Green function.The FTTM refers that the retardation function is evaluated using a series of hydrodynamic coefficients calculated in frequency domain.Kim et al(2007)[7]and Jiang et al(2015)[8]investigated the coupling effects of ship motions and sloshing with the FTTM.Rajendran et al(2015)[9]applied FTTM to obtain the retardation function and developed a partially nonlinear time domain code based on strip theory to include body nonlinearity in the calculation of radiation and diffraction forces.Ballard et al(2003)[10]compared the results obtained from motion equations referenced to both equilibrium and body fixed axis system.

    The present study primarily focuses on the development of a time domain method to investigate the seakeeping behavior of a ship in waves.The retardation functions are computed from transformations of frequency hydrodynamic data evaluated based on the Three Dimensional Translating-Pulsating source Green function(3DTP).The motion equations were referenced to both the equilibrium axis system and the body fixed axis system.Comparisons were made among the present time domain method,the frequency domain method and the experiment.

    1 Time domain method for seakeeping investigation

    1.1 Coordinate system

    Let Oxyz be the Cartesian right-handed coordinate system,with origin O in the plane of the undisturbed free surface Z0=0 with positive z-axis pointing upwards through the center of gravity(COG).The coordinate system Oxyz is fixed with respect to the mean oscillatory position of the vessel which means that it does not oscillate with the ship.The coordinate system Oxyz moves forward with the same speed U of the vessel.In addition,Fig.1 shows a body-fixed coordinate system O′x′y′z′which coincides with the coordinate system Oxyz when the ship does not oscillate.O0X0Y0Z0is an earth-fixed coordinate system with positive Z0-axis pointing upwards.The position of the body-fixed coordinate system O′x′y′z′in the coordinate system Oxyz indicates the vessel's motion responses ηj,where j=1,2,… ,6 refer to surge,sway,heave,roll,pitch and yaw,respectively.In order to avoid any possible confusion due to the different coordinate systems which will be introduced next,the coordinate system Oxyz will be called the seakeeping coordinate system.

    Bailey et al(1998)[11]developed a unified mathematical model describing the maneuvering of a ship travelling in a seaway.In his study,the motion equations were referenced to the maneuvering body-fixed coordinate system as shown in Fig.2.The Cartesian right-handed maneuvering body-fixed coordinate system Gxyz with positive z-axis pointing upwards is defined with respect to the ship's center of gravity.The center of gravity is in the origin G of the coordinate system Gxyz in the body lateral symmetry plane with the arbitrary vertical position zg.

    Fig.1 Coordinate systems of seakeeping investigation

    Fig.2 Maneuvering body-fixed coordinate system

    By imposing the small disturbances in the form of velocities u,v,w,p,q,r,the ship is disturbed from its equilibrium position.The save level of disturbances is experienced by the maneuvering body-fixed coordinate system Gxyz.Since the seakeeping coordinate system Oxyz is fixed with respect to the mean oscillatory position of the vessel,the relationship between the velocities in the seakeeping coordinate system Oxyz and the maneuvering body-fixed coordinate system Gxyz can be shown as follows[12]:

    For the center of gravity,the velocities in respect to the seakeeping coordinate system can be expressed as

    where

    1.2 Motion equations

    According to Cummins(1962)[5]and Ogilvie(1964)[13],the 6-DOF motion equations of a vessel defined in respect to the seakeeping coordinate system Oxyz in time domain can be expressed as

    where Mijis the mass matrix,Aijand Bijare the matrices of the added mass and damping coefficients,respectively.∞means that the wave encounter frequency is infinite.Cijis the restoring matrix.Kijare the response impulse functions(the retardation functions).Fiis the wave excitation force and moment.

    According to Ogilvie[13],after some manipulations with the Eq.(7)by using the Eqs.(4)-(6),the 6-DOF motion equations of a vessel defined in respect to the maneuvering body-fixed coordinate system Gxyz in time domain can be expressed as

    1.3 Retardation functions

    The retardation functions Kij(t)defined in respect to the seakeeping coordinate system could be calculated from the added mass and damping coefficient in frequency domain.

    The Three Dimensional Translating-Pulsating source Green function(3DTP)which satisfies the classical linearized free surface condition with a forward speed may be more genuine and stricter than other methods such as the pulsating source Green function and Rankine source Green function in the 3D potential theory.Based on the variable substitution and the steepest descent integration method,a fast numerical calculation method can be obtained for the 3DTP[14-15].The added mass Aijand damping coefficient Bijin this paper are all calculated based on the 3DTP.

    In an actual numerical calculation of the retardation function,a truncation error is inevitable since the integral of Eqs.(11)and(12)is generally carried out in a finite-frequency range.To minimize this truncation error,a special treatment developed by Kim et al(2007)[7]is applied here.

    By considering the inverse transform of the retardation function,it is found that

    For a sufficiently large cut-off frequency Ω,the retardation function with a correction of the truncation error can be approximated by using Eq.(13):

    where

    1.4 Calculation of retardation functions

    In Eqs.(11)and(12),the term sinωt and cosωt can be found and may result in oscillation of the integrand.Assuming Dij(ω, t )=[Bij(ω )-Bij(∞ )]cos( ωt),Fig.3 illustrates the D33(ω, t ) of Wigley III at different time.It can be seen that the oscillation of the integrand intensifies with the increase of time.

    Fig.3 Typical images of integrand D33(ω, )t

    Since the integral of Eqs.(11)and(12)is generally carried out in a finite-frequency range and the integrand indicates an oscillatory property,the direct application of trapezoidal integration would result in significant numerical error.The following steps were carried out to improve degree of accuracy:

    (1)Conduct cubic regression of all the damping coefficients evaluated in frequency;

    (2)Obtain more damping coefficients by interpolation and we could get B1,B2,…,Bn;

    (3)The damping coefficients between Biand Bi+1can be expressed as Bi(ω) =aiω+bi.where

    (4)The integration between Biand Bi+1can be solved analytically and the Kij(t)is calculated by

    The comparison between the trapezoidal integration and the present method is shown below.The numbers of damping coefficients obtained by interpolation n1 and n2 are 200 and 1 000,respectively.The result of K33obtained by the present method is more stable with the increase of time,while the result calculated by the trapezoidal integration indicates oscillation at t>10 s when n1=200 and at t>140 s when n2=1 000.It implies that the oscillation of the integrand can be reduced when more damping coefficients are used to calculate the retardation function by the trapezoidal integration.However,the oscillation of the integrand does not disappear and will show again in the future.In contrast,the result of the retardation function evaluated by the present method is always convergent by using fewer damping coefficients.

    Fig.4 Effect of integral method on retard function

    2 Validation of the present method

    Numerical calculations were made to evaluate the retardation function and motion responses of Wigley III and S60 by the present method.Comparisons with other researchers'results are shown as follows.The main parameters of Wigley III and S60 are given in Tab.1.

    Tab.1 Main parameters of hull models

    At present,the heave motions are non-dimensionalized by wave amplitude ζ,while pitch motions are non-dimensionalized by wave slope k0ζ.

    The retardation functions of Wigley III at different forward speed are illustrated in Fig.5 and Fig.6,in which‘3DP'means the results are evaluated based on the three dimensional pulsating source Green function.It can be seen that the present results based on 3DP show very good agreement with those calculated by Tang et al(2013)[6]based on 3DP when t>0.5 s,while differences could be found when t<0.5 s for the reason that different cut-off frequency was selected.Minimal discrepancy is observed for K33when comparing the present results based on 3DP with those based on 3DTP,while the discrepancy is much more pronounced for K55.The reason may lie in the differences between the pitch-pitch damping coefficients evaluated from different kind of Green functions.Since the 3DTP directly takes the speed effect into account,the results based on 3DTP seem to be more reasonable.

    Fig.5 Comparison of retard function of Wigley III at Fn=0.2

    Fig.6 Comparison of retard function of Wigley III at Fn=0.3

    Fig.7 and Fig.8 show the motion transfer functions of Wigley III at different advancing speed.‘Exp'means the results obtained by experiment carried out by DUT[16]and ‘FD'means the results calculated based on 3DTP in frequency domain.‘TD-Oxyz'means the results calculated in respect to the seakeeping coordinate system in time domain,while‘TD-Gxyz'means the results calculated in respect to the maneuvering body-fixed coordinate system in time domain.Satisfactory agreement is observed between the results evaluated based on 3DTP in frequency domain and those obtained from experiment.

    Comparisons of results between ‘FD'and ‘TD-Oxyz'depict differences,especially for the pitch transfer functions.Good agreement is achieved for heave transfer functions at Fn=0.2,while obvious difference could be found in resonant zone at Fn=0.3.The discrepancy of the results between ‘FD'and ‘TD-Oxyz'is more pronounced with the increasing advancing speed.

    The comparison of motion transfer functions between‘TD-Gxyz'and experiment shows very good agreement at different forward speed,so it implies that the motion equations in time domain should be solved in respect to the body-fixed coordinate system to obtain accurate results.

    Fig.7 Comparison of the transfer function of Wigley III at Fn=0.2

    Fig.8 Comparison of the transfer function of Wigley III at Fn=0.3

    Fig.9 and Fig.10 indicate the retardation functions of S60 with respect to the seakeeping coordinate system and the maneuvering body-fixed coordinate system,respectively.The present results agree well with those obtained by Ballard et al(2003)[10],which validates the present numerical method.The retardation functions see a drop trend at beginning and trend to zero when t>2 s,which implies that the memory effect disappear.

    The motion transfer functions of S60 at different advancing speed are shown in Fig.11.The results presented by Ballard et al(2003)[10]are based on the 3DP.It can be seen that the results in frequency domain based on 3DP and those based on 3DTP indicate minimal difference for the reason that the vessel advances with moderate forward speed.

    Fig.9 Comparison of the retardation function of S60 referenced to the seakeeping axis system

    Fig.10 Comparison of the retardation function of S60 referenced to the body-fixed axis system

    The heave transfer functions calculated by the present method with respect to the seakeeping coordinate system illustrate differences in the resonant zone when compared with those obtained by Ballard et al(2003)[10],while the pitch transfer functions indicate good agreement.A shift could be found in both the present results and Ballard's results when comparing the results in frequency domain and time domain with respect to the seakeeping coordinate system.

    The present results and Ballard's results show that good agreement is observed when comparing the results in frequency domain and those in time domain with respect to the maneuvering body-fixed coordinate system.It illustrates that accurate results can be obtained by solving motion equations referenced to the body-fixed axis system.

    Fig.11 Comparison of the transfer functions of S60 at Fn=0.2

    Ballard et al(2003)[10]explained the reason for the differences found between the results with respect to the seakeeping equilibrium axis system and maneuvering body-fixed axis system.He found that some equilibrium axis added mass coefficients,such as A55,tend to infinitely high values at low frequency when the forward speed is not zero,which results in the difficulty to accurately calculate the retardation functions that can adequately represent such trends.However,hydrodynamic coefficients referenced to the maneuvering body-fixed axis system do not display similar trends.

    The above numerical simulations on Wigley III and S60 validated the time domain method for seakeeping investigation on monohulls.It can be found that motion equations referenced to the body-fixed axis system in time domain result in more accurate motion responses.

    3 Conclusions

    In the present work,the ship motions in regular waves were investigated in time domain numerically,with the retardation function computed from transforms of frequency hydrodynamic data evaluated based on the Three Dimensional Translating-Pulsating source Green function(3DTP).A new integral method was established to calculate the retardation functions that contain memory effect.The retardation functions can be calculated from hydrodynamic coefficients referenced to either the seakeeping equilibrium axis system or the maneuvering body-fixed axis system.The results indicate that it is highly efficient to calculate the retardation function by the frequency to time domain transformation method.

    The motion responses obtained by solving the motion equations referenced to the bodyfixed axis system show minimal difference compared with the frequency domain results,while the motion responses obtained by solving the motion equations referenced to the equilibrium axis system indicate shifts compared with the frequency domain results,especially for the pitch motion.

    The present study in time domain can then be further extended to investigate nonlinear hydrodynamic forces,such as the nonlinear wave excitation forces and nonlinear restoring forces.

    亚洲欧美日韩高清在线视频| 久久午夜综合久久蜜桃| 国产精品亚洲美女久久久| 亚洲人成电影免费在线| 日日爽夜夜爽网站| 欧美日本亚洲视频在线播放| 岛国在线观看网站| 亚洲一区二区三区不卡视频| 日韩欧美在线二视频| 精品午夜福利视频在线观看一区| 99热6这里只有精品| 日本一区二区免费在线视频| 亚洲人与动物交配视频| 亚洲成人久久爱视频| 丰满人妻一区二区三区视频av | 国产精品免费一区二区三区在线| 午夜福利欧美成人| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品久久久久久亚洲av鲁大| 国产av在哪里看| 国产精品一区二区精品视频观看| 香蕉久久夜色| 真人做人爱边吃奶动态| 99国产精品99久久久久| 中文资源天堂在线| 免费在线观看视频国产中文字幕亚洲| 欧美 亚洲 国产 日韩一| 亚洲最大成人中文| 亚洲精品一卡2卡三卡4卡5卡| 色哟哟哟哟哟哟| 最好的美女福利视频网| av中文乱码字幕在线| 亚洲自拍偷在线| 一a级毛片在线观看| 国产精品av视频在线免费观看| av在线播放免费不卡| 丁香欧美五月| av欧美777| 岛国视频午夜一区免费看| 久久精品影院6| 亚洲国产欧美人成| 黄色视频,在线免费观看| 久久中文字幕人妻熟女| 欧美日韩亚洲综合一区二区三区_| 亚洲人成77777在线视频| 黄色视频,在线免费观看| 母亲3免费完整高清在线观看| 亚洲黑人精品在线| 国产精品久久视频播放| 最近最新免费中文字幕在线| av超薄肉色丝袜交足视频| 国产精品久久久久久人妻精品电影| 久久久久久久精品吃奶| 色播亚洲综合网| 好看av亚洲va欧美ⅴa在| АⅤ资源中文在线天堂| 99国产综合亚洲精品| 最近最新中文字幕大全免费视频| 99精品久久久久人妻精品| 国产成人欧美在线观看| 国产精品亚洲av一区麻豆| 99热6这里只有精品| 久久久久精品国产欧美久久久| 久久久精品大字幕| 女人爽到高潮嗷嗷叫在线视频| 欧美高清成人免费视频www| 天天一区二区日本电影三级| 可以在线观看的亚洲视频| 久久九九热精品免费| aaaaa片日本免费| 精品欧美一区二区三区在线| 首页视频小说图片口味搜索| 人妻久久中文字幕网| 欧美日韩亚洲国产一区二区在线观看| 亚洲欧洲精品一区二区精品久久久| 精品国内亚洲2022精品成人| 午夜日韩欧美国产| 女人爽到高潮嗷嗷叫在线视频| 成人国产综合亚洲| 久久久久国产精品人妻aⅴ院| 久热爱精品视频在线9| 法律面前人人平等表现在哪些方面| √禁漫天堂资源中文www| 两个人看的免费小视频| netflix在线观看网站| 看免费av毛片| 50天的宝宝边吃奶边哭怎么回事| 日日夜夜操网爽| 亚洲免费av在线视频| 久久久国产成人免费| 精品一区二区三区四区五区乱码| 可以免费在线观看a视频的电影网站| svipshipincom国产片| 久久人妻av系列| 精品日产1卡2卡| 日本三级黄在线观看| 老司机午夜福利在线观看视频| 亚洲avbb在线观看| 久久九九热精品免费| 可以在线观看的亚洲视频| 亚洲av美国av| 宅男免费午夜| 国产一区二区三区视频了| 色综合站精品国产| 国产主播在线观看一区二区| 久久精品国产清高在天天线| 女生性感内裤真人,穿戴方法视频| 日本免费a在线| a在线观看视频网站| 很黄的视频免费| 黄色丝袜av网址大全| 国产99久久九九免费精品| 可以在线观看毛片的网站| 9191精品国产免费久久| 亚洲精品一卡2卡三卡4卡5卡| 欧美又色又爽又黄视频| 宅男免费午夜| 国产亚洲精品久久久久5区| 一本久久中文字幕| 午夜老司机福利片| 国产黄片美女视频| 不卡一级毛片| 丁香欧美五月| 欧美性猛交黑人性爽| 人成视频在线观看免费观看| 亚洲一卡2卡3卡4卡5卡精品中文| 可以免费在线观看a视频的电影网站| 国产aⅴ精品一区二区三区波| 窝窝影院91人妻| 日韩精品中文字幕看吧| 成人国产综合亚洲| 精品人妻1区二区| 男女床上黄色一级片免费看| 舔av片在线| 母亲3免费完整高清在线观看| 可以在线观看的亚洲视频| www.精华液| 免费一级毛片在线播放高清视频| 天天一区二区日本电影三级| 午夜视频精品福利| 99久久精品热视频| 欧美性猛交╳xxx乱大交人| 久久精品成人免费网站| 狂野欧美白嫩少妇大欣赏| 国产成人啪精品午夜网站| 成人欧美大片| 欧美精品亚洲一区二区| 精品国产超薄肉色丝袜足j| 日韩精品免费视频一区二区三区| 亚洲精品粉嫩美女一区| 久久精品综合一区二区三区| 亚洲七黄色美女视频| 成人av在线播放网站| 国内久久婷婷六月综合欲色啪| 久久热在线av| 香蕉久久夜色| 亚洲一区二区三区色噜噜| 99久久精品热视频| 国产精品av久久久久免费| 国产熟女午夜一区二区三区| 亚洲男人的天堂狠狠| 亚洲成av人片在线播放无| 老汉色∧v一级毛片| 成人一区二区视频在线观看| 色综合婷婷激情| 又紧又爽又黄一区二区| 亚洲真实伦在线观看| 午夜免费观看网址| 欧美性猛交黑人性爽| 又大又爽又粗| 校园春色视频在线观看| 中文字幕av在线有码专区| 12—13女人毛片做爰片一| 国产乱人伦免费视频| 午夜视频精品福利| 久久精品国产亚洲av香蕉五月| 欧美性猛交╳xxx乱大交人| 亚洲欧美日韩高清专用| www.精华液| 国产伦在线观看视频一区| 悠悠久久av| 99热只有精品国产| 久久精品国产亚洲av高清一级| 97超级碰碰碰精品色视频在线观看| 午夜成年电影在线免费观看| 亚洲av五月六月丁香网| 亚洲精品在线观看二区| 久久精品国产亚洲av香蕉五月| 女人爽到高潮嗷嗷叫在线视频| 日本免费一区二区三区高清不卡| 久久人人精品亚洲av| 日韩欧美国产一区二区入口| 久久中文看片网| 日日干狠狠操夜夜爽| av片东京热男人的天堂| 国产探花在线观看一区二区| 一二三四在线观看免费中文在| 成人三级黄色视频| 免费高清视频大片| 久久天躁狠狠躁夜夜2o2o| 久久久久性生活片| 国产成人av教育| 久久精品国产99精品国产亚洲性色| 中文字幕久久专区| 在线观看66精品国产| 成人永久免费在线观看视频| 我的老师免费观看完整版| 搡老岳熟女国产| videosex国产| 国产av又大| 日本在线视频免费播放| 欧美乱色亚洲激情| 午夜福利高清视频| 久久久水蜜桃国产精品网| 色精品久久人妻99蜜桃| 校园春色视频在线观看| 精品福利观看| 久久久久久九九精品二区国产 | 欧美性猛交黑人性爽| 精品欧美国产一区二区三| 久久午夜综合久久蜜桃| 久久久久国产精品人妻aⅴ院| 成年版毛片免费区| 老司机靠b影院| 亚洲激情在线av| 大型av网站在线播放| 狂野欧美激情性xxxx| 国产午夜精品论理片| 亚洲真实伦在线观看| 琪琪午夜伦伦电影理论片6080| 99精品久久久久人妻精品| 久久久久久久久中文| 国产高清视频在线播放一区| 久久精品夜夜夜夜夜久久蜜豆 | 国产精品日韩av在线免费观看| 国产精品美女特级片免费视频播放器 | av天堂在线播放| 色综合站精品国产| av片东京热男人的天堂| 91在线观看av| 村上凉子中文字幕在线| 亚洲精品中文字幕一二三四区| 两人在一起打扑克的视频| 亚洲专区字幕在线| 精品久久久久久,| 国产高清有码在线观看视频 | 女人爽到高潮嗷嗷叫在线视频| 久久欧美精品欧美久久欧美| www.999成人在线观看| 国产亚洲av嫩草精品影院| 国产在线精品亚洲第一网站| 熟女电影av网| 国产91精品成人一区二区三区| 午夜福利视频1000在线观看| 高清在线国产一区| 精品福利观看| 一区福利在线观看| 人成视频在线观看免费观看| 亚洲av电影不卡..在线观看| 亚洲欧美日韩东京热| 午夜a级毛片| 久久亚洲真实| 亚洲男人的天堂狠狠| 又黄又爽又免费观看的视频| 成人国产一区最新在线观看| 成人手机av| 久久久国产成人精品二区| 久久精品国产综合久久久| 国产男靠女视频免费网站| 99国产综合亚洲精品| 亚洲免费av在线视频| 老司机深夜福利视频在线观看| av天堂在线播放| 国产亚洲精品久久久久5区| 免费看日本二区| 欧美日韩瑟瑟在线播放| 欧美乱码精品一区二区三区| www.自偷自拍.com| 久久久久久久午夜电影| 美女 人体艺术 gogo| 免费一级毛片在线播放高清视频| 99久久久亚洲精品蜜臀av| av有码第一页| 日韩有码中文字幕| 中文字幕久久专区| 男人舔女人的私密视频| 亚洲av日韩精品久久久久久密| www国产在线视频色| 成年版毛片免费区| 99精品欧美一区二区三区四区| 日本一区二区免费在线视频| 又大又爽又粗| 日日摸夜夜添夜夜添小说| 99国产极品粉嫩在线观看| 狠狠狠狠99中文字幕| 亚洲欧洲精品一区二区精品久久久| 日韩精品青青久久久久久| av在线天堂中文字幕| 欧美国产日韩亚洲一区| 好男人电影高清在线观看| 人成视频在线观看免费观看| 夜夜躁狠狠躁天天躁| 亚洲精品一区av在线观看| 大型av网站在线播放| 观看免费一级毛片| 人妻夜夜爽99麻豆av| 性色av乱码一区二区三区2| 国产人伦9x9x在线观看| 亚洲中文字幕一区二区三区有码在线看 | 一级毛片精品| 神马国产精品三级电影在线观看 | 日韩精品中文字幕看吧| 精品国产美女av久久久久小说| 狂野欧美白嫩少妇大欣赏| www日本在线高清视频| 久久天堂一区二区三区四区| 亚洲色图 男人天堂 中文字幕| 国产成人av激情在线播放| 最好的美女福利视频网| 岛国在线免费视频观看| 成人18禁高潮啪啪吃奶动态图| 国产一级毛片七仙女欲春2| 男女床上黄色一级片免费看| 国产麻豆成人av免费视频| 特级一级黄色大片| 久久婷婷人人爽人人干人人爱| 久久精品国产亚洲av高清一级| 国产v大片淫在线免费观看| 欧美不卡视频在线免费观看 | 亚洲第一欧美日韩一区二区三区| 亚洲欧美精品综合一区二区三区| 久久中文字幕人妻熟女| 国产视频内射| 又黄又爽又免费观看的视频| 免费在线观看完整版高清| 久久久久性生活片| 精品少妇一区二区三区视频日本电影| 国产高清视频在线观看网站| 亚洲精华国产精华精| 丁香六月欧美| 欧美又色又爽又黄视频| 国产乱人伦免费视频| 亚洲熟妇熟女久久| 欧美成人免费av一区二区三区| 少妇粗大呻吟视频| 男女视频在线观看网站免费 | 免费在线观看完整版高清| 精品一区二区三区四区五区乱码| 老熟妇乱子伦视频在线观看| 亚洲18禁久久av| 黄色片一级片一级黄色片| 777久久人妻少妇嫩草av网站| 久久精品aⅴ一区二区三区四区| 淫秽高清视频在线观看| www国产在线视频色| 久久久久久久久中文| 伊人久久大香线蕉亚洲五| 俄罗斯特黄特色一大片| svipshipincom国产片| 国内少妇人妻偷人精品xxx网站 | 两个人视频免费观看高清| √禁漫天堂资源中文www| 国产精品综合久久久久久久免费| 大型av网站在线播放| 精品高清国产在线一区| 男人舔女人下体高潮全视频| 后天国语完整版免费观看| 欧美乱码精品一区二区三区| 免费在线观看完整版高清| 中出人妻视频一区二区| 12—13女人毛片做爰片一| 中亚洲国语对白在线视频| 黑人操中国人逼视频| 免费电影在线观看免费观看| 国产真实乱freesex| 色老头精品视频在线观看| 在线免费观看的www视频| 久久天躁狠狠躁夜夜2o2o| 亚洲av片天天在线观看| 国产高清激情床上av| 精品无人区乱码1区二区| 黑人巨大精品欧美一区二区mp4| 90打野战视频偷拍视频| 可以免费在线观看a视频的电影网站| 国产一级毛片七仙女欲春2| 69av精品久久久久久| 后天国语完整版免费观看| 国产精品国产高清国产av| 91麻豆精品激情在线观看国产| 国产成人aa在线观看| 国产精品乱码一区二三区的特点| www.999成人在线观看| 欧美一级毛片孕妇| 身体一侧抽搐| а√天堂www在线а√下载| 黄色a级毛片大全视频| 中文字幕人成人乱码亚洲影| 十八禁人妻一区二区| 欧美精品啪啪一区二区三区| 床上黄色一级片| 中文字幕最新亚洲高清| 亚洲av成人不卡在线观看播放网| 免费看十八禁软件| 熟妇人妻久久中文字幕3abv| 床上黄色一级片| 法律面前人人平等表现在哪些方面| 少妇人妻一区二区三区视频| 中国美女看黄片| 欧美日韩国产亚洲二区| 五月玫瑰六月丁香| 国产v大片淫在线免费观看| 午夜福利在线在线| 母亲3免费完整高清在线观看| 亚洲av成人一区二区三| 国产男靠女视频免费网站| 叶爱在线成人免费视频播放| 成人三级做爰电影| 人妻夜夜爽99麻豆av| 亚洲五月天丁香| 窝窝影院91人妻| 久久久久亚洲av毛片大全| 黄色视频,在线免费观看| 欧美另类亚洲清纯唯美| 黄色成人免费大全| 国产亚洲欧美在线一区二区| 高清在线国产一区| 日韩欧美精品v在线| 精品欧美国产一区二区三| 757午夜福利合集在线观看| 亚洲精品粉嫩美女一区| 国产人伦9x9x在线观看| 日韩成人在线观看一区二区三区| 国产精华一区二区三区| 99在线视频只有这里精品首页| 天天一区二区日本电影三级| 午夜老司机福利片| 欧美一级毛片孕妇| 一区二区三区高清视频在线| 免费搜索国产男女视频| 亚洲人成网站高清观看| 国产真人三级小视频在线观看| 一级作爱视频免费观看| 国产乱人伦免费视频| 久久中文字幕人妻熟女| 亚洲欧美日韩高清在线视频| 日韩 欧美 亚洲 中文字幕| 国产成人一区二区三区免费视频网站| 女同久久另类99精品国产91| 欧美日韩亚洲综合一区二区三区_| 日本一本二区三区精品| 丁香欧美五月| 性欧美人与动物交配| 色哟哟哟哟哟哟| 中亚洲国语对白在线视频| 看黄色毛片网站| 长腿黑丝高跟| 国产av一区在线观看免费| 亚洲成人中文字幕在线播放| 三级毛片av免费| 三级男女做爰猛烈吃奶摸视频| 在线观看美女被高潮喷水网站 | 成人三级做爰电影| 一进一出抽搐gif免费好疼| 精品久久久久久久末码| 不卡av一区二区三区| 琪琪午夜伦伦电影理论片6080| 高清在线国产一区| 啦啦啦免费观看视频1| 夜夜夜夜夜久久久久| 老司机靠b影院| 亚洲成av人片免费观看| 国产乱人伦免费视频| 狠狠狠狠99中文字幕| 国产精品亚洲美女久久久| 琪琪午夜伦伦电影理论片6080| xxx96com| 99久久精品热视频| 欧美中文日本在线观看视频| 午夜福利在线在线| 午夜老司机福利片| 国产亚洲av高清不卡| 丝袜美腿诱惑在线| 啦啦啦韩国在线观看视频| 色综合亚洲欧美另类图片| 熟女少妇亚洲综合色aaa.| 身体一侧抽搐| 欧美黑人巨大hd| 亚洲专区字幕在线| 视频区欧美日本亚洲| 亚洲第一电影网av| 久久亚洲精品不卡| 久久精品国产99精品国产亚洲性色| 91字幕亚洲| 日韩有码中文字幕| 女同久久另类99精品国产91| 免费搜索国产男女视频| 欧美不卡视频在线免费观看 | 9191精品国产免费久久| 精品乱码久久久久久99久播| 丰满人妻熟妇乱又伦精品不卡| 国产精品av视频在线免费观看| 欧美另类亚洲清纯唯美| 国产亚洲精品第一综合不卡| 黄频高清免费视频| 99国产精品99久久久久| 国产欧美日韩精品亚洲av| 亚洲国产精品久久男人天堂| 国产在线观看jvid| 首页视频小说图片口味搜索| 好男人电影高清在线观看| 国产欧美日韩一区二区三| 久久性视频一级片| 看片在线看免费视频| 亚洲自拍偷在线| a在线观看视频网站| 麻豆一二三区av精品| av国产免费在线观看| 亚洲五月婷婷丁香| 9191精品国产免费久久| 久久这里只有精品中国| 午夜精品久久久久久毛片777| 国产成+人综合+亚洲专区| 国产91精品成人一区二区三区| 别揉我奶头~嗯~啊~动态视频| 成人高潮视频无遮挡免费网站| 久久亚洲真实| 日本一本二区三区精品| 亚洲国产精品999在线| 国产亚洲av嫩草精品影院| 婷婷亚洲欧美| 舔av片在线| xxx96com| 18禁国产床啪视频网站| 最近最新中文字幕大全电影3| 亚洲男人天堂网一区| 两个人看的免费小视频| 最好的美女福利视频网| 99久久精品国产亚洲精品| 欧美一区二区精品小视频在线| 欧美乱妇无乱码| 久久婷婷成人综合色麻豆| 国产精华一区二区三区| 久久久久久免费高清国产稀缺| 毛片女人毛片| 成人av一区二区三区在线看| 后天国语完整版免费观看| 一区二区三区高清视频在线| 成人av在线播放网站| 91字幕亚洲| 亚洲免费av在线视频| 日韩成人在线观看一区二区三区| 久久久久国产一级毛片高清牌| 亚洲成人中文字幕在线播放| 又爽又黄无遮挡网站| 美女免费视频网站| 美女扒开内裤让男人捅视频| 国产精品av视频在线免费观看| 国产精品 欧美亚洲| 99热只有精品国产| 啦啦啦观看免费观看视频高清| 色综合站精品国产| 亚洲av成人一区二区三| 男女之事视频高清在线观看| 又黄又粗又硬又大视频| 精品国产乱码久久久久久男人| 欧美精品啪啪一区二区三区| 免费搜索国产男女视频| 又紧又爽又黄一区二区| 在线观看免费日韩欧美大片| 久久婷婷成人综合色麻豆| 国产麻豆成人av免费视频| 神马国产精品三级电影在线观看 | 好男人电影高清在线观看| 最新在线观看一区二区三区| 18禁黄网站禁片免费观看直播| 在线播放国产精品三级| 十八禁网站免费在线| 一区二区三区国产精品乱码| 听说在线观看完整版免费高清| 亚洲专区字幕在线| 色播亚洲综合网| 国产精品久久久久久久电影 | 97人妻精品一区二区三区麻豆| 国产单亲对白刺激| 久久这里只有精品中国| 91大片在线观看| 亚洲国产欧美人成| 欧美乱色亚洲激情| 日韩av在线大香蕉| 全区人妻精品视频| 18禁黄网站禁片午夜丰满| 人人妻人人澡欧美一区二区| 一卡2卡三卡四卡精品乱码亚洲| 欧美黑人精品巨大| xxx96com| 国产一区二区三区在线臀色熟女| 中文资源天堂在线| 国产成人精品久久二区二区91| 又紧又爽又黄一区二区| 亚洲色图 男人天堂 中文字幕| 日本一区二区免费在线视频| 久久久久亚洲av毛片大全| 亚洲第一欧美日韩一区二区三区| 日韩精品免费视频一区二区三区| 黑人欧美特级aaaaaa片| 久久久水蜜桃国产精品网| 真人做人爱边吃奶动态| 在线观看一区二区三区| 级片在线观看| 午夜福利免费观看在线| 手机成人av网站| 一本一本综合久久| 日韩欧美 国产精品| 国产单亲对白刺激| 国产精品久久久久久精品电影|