• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical and Experimental Studies of the Acoustic Scattering from an Externally Ring-Stiffened Cylindrical Shell

    2019-07-08 03:54:44ZHOUFulinFANJunWANGBinTANGWeilin
    船舶力學(xué) 2019年6期

    ZHOU Fu-lin,FAN Jun,WANG Bin,TANG Wei-lin

    (1.Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration,Shanghai Jiao Tong University,Shanghai 200240,China;2.State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)

    Abstract:Studying the interaction of sound with double shells immersed in water is essential for improving existing underwater target detection and classification algorithms.To identify the key physics,a hybrid 2-D/3-D finite element modeling technique was employed to calculate and analyze the acoustic scattering from an externally ring-stiffened cylindrical shell.Approximate analytical expressions were explicitly derived to identify Bragg and Bloch-Floquet wave scattering in frequency-angle spectra.Monostatic scattering measurements were performed for validation.In contrast to the case of a plate,there are three kinds of elastic waves in a thin cylindrical shell:the flexural wave a0,compressional wave s0and shear wave T0.The flexural wave makes an important contribution to Bloch-Floquet wave scattering.The rings indirectly influence the exterior acoustic scattered field through the dynamic response of the shell,and serve as direct acoustic scatterers that increase the target cross section,especially at oblique incidence.For the external rings at an incident angle of 45°,the geometrical scattering is enhanced due to their influence as corner reflectors.Compared with the analytical method and physical acoustic method,the hybrid 2-D/3-D FE method considers the elasticity of structure,the occlusion and multiple scattering between the rib and the shell,and the interaction between the rib and the water.It has the advantages of high computing efficiency and accuracy,which is suitable for the structural-acoustic coupling analysis of complex stiffened structure in low and middle frequency.

    Key words:acoustic scattering;cylindrical shell;external ring;finite element method

    0 Introduction

    Elastic cylindrical shells often occur as part of double-shell constructions and have been widely used in marine and aerospace research.Double shells are structurally connected to each other by common frames or rings which significantly affect the sound scattered by or radiated from the shells.Based on thin shell theory,Skelton(1992)[1-3]examined the sound scattering from two concentric cylindrical shells,in which the internal rings indirectly influence the exterior acoustic scattered field through the dynamic response of the shell.In target detection,a-coustic waves are easily transmitted through the outer shell to the interior,especially at low frequencies,and the waves are then scattered by the inner shell and the rings in the water area between double shells.In contrast to the inner shell,the outer shell can occasionally be neglected;thus,the externally stiffened shell becomes the main scatterer.Additional factors,including the coupling of water and rings,occlusion and multiple scatterings,remain to be considered[4].In this paper,the acoustic scattering from an externally ring-stiffened cylindrical shell is investigated as a simplification of double shells.

    Numerical methods are generally used to calculate the structural-acoustic response of complex structures,such as the planar element method(PEM)based on the Kirchhoff approximation[5-7]and the finite element method(FEM)[8].Notably,the Kirchhoff approximation is applicable only for geometrical scattering at high frequencies[7].For the FEM,an efficient model with perfectly matched layers(PMLs)was proposed for calculating the radiation and scattering from axisymmetric objects[8].It is called the hybrid 2-D/3-D FE model and has been applied in ocean acoustics and scattering from complex objects[9-10].

    In this study,the scattering characteristics of an externally ring-stiffened cylindrical shell are investigated.Chap.1 introduces hybrid 2-D/3-D FE modeling and presents a numerical calculation of scattering from an externally ring-stiffened cylindrical shell and a uniform shell for comparison.For the case of a finite periodically ribbed cylindrical shell,Chap.2 describes approximate analytical expressions to identify the elastic waves in the frequency-angle spectrum.Chap.3 analyzes the scattering characteristics of an externally ring-stiffened cylindrical shell.The results of a tank experiment are compared with the numerical solutions in Chap.4.Finally,conclusions are presented in Chap.5.

    1 Hybrid 2-D/3-D finite element modeling

    Considering a harmonic plane wave incident upon a thin cylindrical shell submerged in water,the incident wave is assumed to be parallel to the xOz plane with an incident angle θi(see Fig.1).The origin O is located at the center of the shell.The interior of the shell is in vacuo,and the ends of the shell are closed by flat endcaps.A set of rings is attached to the outside surface of the cylinder and seamlessly connected to the cylindrical shell.Therefore,the focus of the present research is the acoustic scattering of axisymmetric fluid-loaded structures subject to a nonsymmetric forcing field.The harmonic time dependence in eiωtwill be omitted.

    Fig.1 Schematic diagram of the externally ringstiffened cylindrical shell model

    Considering Zampolli's method[8],the model superposition technique breaks the 3-D wave equations in the fluid and linear elastodynamic equations in the solid into Fourier series in cylindrical coordinates.The 3-D problem is decomposed into 2-D Fourier modal subproblems to solve the target scattering in the near field.A generic incident acoustic field pinccan be expressed in the following form:

    where n represents the circumferential order and φ is the circumferential angle(0≤φ<2π).Consistent with the decomposition of the applied load,the solid displacement (u,v, )w and pressure p are decomposed in the same manner:

    To simulate the free field,a Berenger PML with cylindrical coordinates is implemented in the azimuthal modal decomposition FE scheme[11].Next,the partial differential equations,the PML and the vibro-acoustic coupling boundary conditions are expressed in a weak form by the variational principle[12].To enable a solution via the FE scheme,these expressions are assembled into an algebraic form that includes a stiffness matrix and mass matrix.Finally,the FE model is built up and solved in the vibro-acoustic coupling module of the software COMSOL.

    Next,the scattered pressure in the far field is calculated by using a 3-D propagation model.In accordance with the discrete form of the Helmholtz integral,the far-field pressure can be calculated as follows[10]:

    where rijis the distance between the jth point on the surface S and the far field observation point i,with the surface normal pointing outwards from the surface S;(pj, dpj/dnj)denotes the scattered pressure as well as its derivative on the surface and Gijis the Green's function in the free field.Finally,the target strength(TS)takes the following form:

    2 Approximate theoretical analysis

    Considering an infinite thin cylindrical shell insonified by acoustic plane waves,in line with the consistency condition of the wave trajectory,the vibration of the cylindrical shell should be the traveling wave in the form of eiKzin the z-direction and symmetric in the circumferential direction for the circumferential angle φ.Thus,a general solution for the shell vibration can be expressed as follows:

    where kφand K denote the circumferential and axial wavenumbers,respectively.Substituting Eq.(5)into the Donnell equations[13]for the displacements of the cylindrical shell yields the following equation containing the coefficient (u~,v~,w~)

    The characteristic matrix is written as follows[13]:

    The characteristic equation for elastic waves is given as follows:

    which is used to solve the phase velocity of elastic waves.Unlike with a thin plate,three types of elastic waves might exist in a thin cylindrical shell because Eq.(8)has three solutions.They correspond to the flexural wave a0,compressional wave s0and shear wave T0.

    At oblique incidence,the elastic waves in a cylindrical shell can be helical,and the corresponding wavenumbers are composited by the axial and circumferential wavenumbers:

    The corresponding phase velocity is cph=ω/kl.The frequency dispersion curves shown in Fig.2(a)can be obtained by solving the characteristic equation.The detailed parameters for the calculation are presented in Chap.4.

    Circumferential resonance occurs for helical waves when the azimuthal wave path equals an integer number of wavelengths,i.e.,kφ=n,where n=1,2,3….Based on the phase velocities of the elastic waves in Fig.2(a),the theoretical trajectories of the three types of circumferential waves are shown in Fig.2(b).

    Fig.2(a)Phase velocities of three types of circumferential waves in an infinite cylindrical shell:flexural wave a0(red dot),compressional wave s0(black dashed-dot)and shear wave T0(blue solid)and(b)Their theoretical trajectories in the frequency-angle spectrum.Each family of curves is identified as follows:a0(n=27~3 2 ),s0(n=1~ 4 )and T0(n=1~ 4 )

    When the infinite cylindrical shell is stiffened periodically by rings,the Bloch-Floquet waves appear in the z-direction.Consistent with the Bloch-Floquet theorem[14],the wavenumber becomes the following:

    where m=-∞,…,0,…∞ is the order of the Bloch-Floquet wave.The flexural waves can be scattered as a meridional leaky ray(in the z-direction)and then contribute to the Bloch-Floquet waves.Like a thin plate,the diagram of the flexural wave propagation is shown in Fig.3(a).The resonance condition of the Bloch-Floquet flexural wave scattering is the following:

    Fig.3(a)Diagram of the Bloch-Floquet flexural wave propagation[(1)forward and(2)backward]in an infinite stiffened cylindrical shell and(b)Its theoretical trajectories in the frequency-angle spectrum

    where the symbols(‘+'and ‘-')represent the forward and backward BFWs,respectively,as shown in Fig.3(a).The Bloch-Floquet trajectories of the flexural waves are shown in Fig.3(b).

    Notably,for the above approximate method,certain deficiencies could not be avoided:(i)the thin shell theory is not applicable to high frequencies;(ii)the detailed sizes and shapes of rings cannot be distinguished;and(iii)the radiation efficiencies of the three elastic waves are distinct but cannot be obtained here because of the neglected fluid loading.

    3 Numerical analysis

    Based on the above FE modeling technique and the approximate theoretical solutions,this chapter provides a numerical analysis of an externally ring-stiffened cylindrical shell.The externally ring-stiffened cylindrical shell used for the computations has similar parameters to those of Ref.[15].The shell has an outer radius a=3.12 cm,total length L=42 cm,thickness h1=1 mm,and ratios of h1/a=0.032 and a/L=0.149.The rings have a height H=1.3 cm,thickness h2=0.9 mm,and rib spacing d=2.1 cm.The elastic parameters are consistent with 304 stainless steel with E=191 GPa,σ=0.279 and ρ=7 570 kg/m3,and the corresponding longitudinal-wave velocity cLand transverse-wave velocity cTare 5 675 m/s and 3 141 m/s,respectively.The external fluid is water,with c0=1 470 m/s and ρ0=1 000 kg/m3.The dimensionless frequency range is 2.7<ka<32.0.

    3.1 Helical waves

    For a comparative analysis,the frequency-angle spectra of the TS for a uniform cylindrical shell and an externally ring-stiffened cylindrical shell are numerically calculated by using Eq.(4),as presented in Fig.4(a)and(b),respectively.The uniform cylindrical shell has no rings in comparison with the externally ring-stiffened cylindrical shell,but they have the same shell parameters.

    Fig.4 Numerical frequency-angle spectra of the target strength for(a)A uniform cylindrical shell and(b)An externally ring-stiffened cylindrical shell

    In the response of the uniform cylindrical shell,bright arcs are prevalent near broadside incidence.Consistent with the circumferential resonance conditions(see Eq.(1)in Ref.[16]),these arcs are identified as the circumferential coupling loci for the helical propagation of the three elastic waves,as indicated in Fig.4(a).The compressional waves and shear waves,whose behaviors at low frequencies are similar to those in a plate,can be launched within the region from a broadside incidence to cutoff angles γL=sin-1(c0/ cL)=15.0°and γT=sin-1(c0/ cT)=27.9°,where cLand cTare the compressional and shear velocities in the shell material,respectively.High backscattering levels arise from the launching of helical leaky waves,which are reflected off the shell truncation and reradiated in the backscattering direction.The coupling loci for the a0and T0waves are more visible than those for the s0wave.Further,the bright arcs for the low-order T0waves are wider and stronger while those for s0waves are covered easily.Besides,for metal shells with external fluid loading,the a0wave is divided into two waves,namely,a0+and a0-.The a0+wave is similar to the a0wave,whereas an additional a0-wave is derived from the fluid loading and is also called the Scholte-Stoneley wave.Above the critical frequency corresponding to the sound speed in ambient fluid,a0+is a flexural and a0-a fluid-borne wave,and vice versa below the frequency[14].Further details on the scattering characteristics of helical waves in a finite cylindrical shell are discussed in Refs.[16-18].

    Compared with the helical wave coupling loci in a uniform cylindrical shell,such as those in Fig.4(a),most helical waves become weak in Fig.4(b)for an externally ring-stiffened cylindrical shell because the helical propagation is blocked by rings.Near broadside incidence(0°-30°),helical waves at low frequencies(ka<15)have more influence on the exterior scattered field than those at high frequencies(ka>15).The bright arcs for the low-order T0waves are still visible.Additionally,many bright arcs appear in other regions.Considering previous studies on ribbed structures(e.g.,Refs.[3,14]),most of the waves are naturally considered to be generated via Bragg and BFW scattering,which will be discussed in the next section.

    3.2 Bragg scattering and Bloch-Floquet wave scattering

    To identify their trajectories,approximate theoretical solutions of Bragg and Bloch-Floquet scattering from an infinite ring-stiffened cylindrical shell are helpful.The same mechanisms exist for a finite cylindrical shell,with the only difference being the energy strongly scattered from the ends of the shell.According to the theoretical analysis in Chap.3,the bright arcs in Fig.4(b)can be identified as shown in Fig.5(a).

    Fig.5 Numerical frequency-angle spectra of the target strength for(a)An externally ring-stiffened cylindrical shell and(b)An internally ring-stiffened cylindrical shell

    First,Bragg scattering arises from the geometrical reflections of an incident wave on the inner and outer edges of the rings.These two parts have different arrival times,and their trajectories on the frequency-angle spectrum are consistent and can be evaluated as follows:

    where k0is the wavenumber of the incident plane wave and d is the rib spacing.A number of marked bright arcs show excellent agreement with the theoretical Bragg trajectories of the first six orders.

    Then,according to the theoretical trajectories in Fig.3(b),the Bloch-Floquet flexural waves with two low orders can be identified,as denoted as BFW ( a0)in Fig.5(a).The trajectories of flexural waves with high orders are more obvious than those with low orders.The same phenomenon occurs in the case of the internally ring-stiffened shell in Fig.5(b).In addition,according to the geometrical relationship of the ring height and ring spacing,sound waves are reflected by external rings and cannot be directly incident on the cylindrical shell when the incident angle is greater than 58°.Although the transmitted and diffracted waves can arrive on the cylindrical shell,the received echoes are weakened slightly.

    According to the theoretical analysis in Chap.2,three types of elastic waves exist in the cylindrical shell.In the frequency-angle spectrum of the ring-stiffened shell,not all of the bright arcs can be identified for various reasons.Many factors make the scattering problem more complex,such as the coupling between the rings and the shell and the blocking or partition effect of rings on the surface helical waves.The rings transmit the coupling forces and moments to the shell and contribute to the dynamic response,which indirectly influences the exterior acoustic field.Moreover,external rings become direct elastic scatterers in water.

    3.3 Effects of external rings

    To identify the contributions of the external rings,an internally ring-stiffened cylindrical shell and an externally ring-stiffened cylindrical shell with a perfectly rigid surface are numerically modeled for comparison.Other parameters,such as the ring spacing,are the same for the both shells.For the quantitative analysis,the target strength as a function of the incident angle for the three models is shown in Fig.6.

    Compared with the results for a uniform shell,the TS of the externally ring-stiffened shell is stronger as a whole and has more peaks at oblique incidence.These peaks are caused by the geometrical and elastic scattering from the rings,including the shielding effects and multiple scatterings between the rings and the shell.According to the frequency-angle spectrum in Fig.4(a),helical waves in the uniform shell can be labeled as HW in Fig.6(a)and(b),which appear in small incident angle range.

    Fig.6 Comparison of the target strength for the backscattering of sound by an externally ringstiffened shell(black solid),an internally ring-stiffened shell(red solid),and a uniform cylindrical shell(blue dot)at(a)100 kHz(ka=13.3)and(b)200 kHz(ka=26.7)

    For the two ring-stiffened shells,bright arcs of Bragg scattering from periodic rings are observed in Fig.5(a)and(b).Their peaks in Fig.6 are also labeled as Bragg orders.As expected,Bragg scattering from the external rings is generally stronger than it is from internal rings.The difference value of the TS between the two cases exceeds 10 dB at several incident angles and frequencies(e.g.,m=2~4 at 200 kHz).There are several reasons for this result.An external ring has two edges that directly reflect sound waves and contribute to strong Bragg scattering.For an internal ring,the incident waves need to be transmitted through the shell twice to encounter the ring,and thus more sound energy has to be consumed.From the aspect of mechanics,internal rings exert only forces and bending moments on the shell,thereby indirectly influencing the exterior scattered field.In addition to the indirect influence,the external rings as direct acoustic scatterers increase the target cross section,especially at oblique incidence.Moreover,a remarkable difference is observed in which the amplitude of the Bragg scattering from external rings increases progressively in the range of 0°-45°.In addition to the geometrical scattering,more peaks appear due to the elasticity of the rings,some of which are identified in Secs.4.1 and 4.2.Generally,the external rings enhance the target strength.

    In addition,the TS of the externally ringstiffened cylindrical shell at 45°is less than those at broadside and end-on but much larger than those of the internally ring-stiffened and uniform cylindrical shells.This is because the external rings at 45°serve as corner reflectors and enhance the geometrical scattering,as shown in Fig.7.Furthermore,by comparing the average TS over the frequency band(20-240 kHz)of the three models,an enhancement near 45°is also observable for the case of the externally ring-stiffened cylindrical shell.

    Fig.7 Corner reflector at an incident angle of 45°

    4 Experiment

    4.1 Experimental program and data processing

    An experiment was conducted in an acoustic water tank with dimensions of 5×5×5 m3.The experimental configuration is shown in Fig.8.A ring-stiffened cylindrical steel shell was manufactured.In consideration of the limited space of the tank and the convenience of model machining,the length of the cylindrical shell is L=21 cm,and the other parameters of the material and geometry are presented in Chap.3.The trajectories of the Bragg scattering and Bloch-Floquet wave scattering are not changed.Considering the broad bandwidth of 20-240 kHz(ka=2.7-32.0),we employed four transducers with bandwidths of 20-40 kHz,40-80 kHz,60-120 kHz,and 120-240 kHz.Tab.1 summarizes their specifications.Each transducer outputs a linear-phase finite impulse response(FIR)signal.A standard Teledyne RESON hydrophone(TC4014)was used,and its sensitivity is-186 dB±3 dB re1V/μPa over the frequency range 15 Hz to 480 kHz.The whole experimental spectra were completed by overlapping and stitching together the four slices of data.

    Fig.8 Experimental configuration

    Tab.1 Specifications of the four transducers used in the tank experiment

    To obtain the full-azimuth scattering characteristics,the model was automatically rotated in the horizontal xOz plane by drivers at a rotational speed of 60°/min.Continuous data acquisition was achieved in a time interval of 0.5 s to ensure adequate resolution of the experimental spectra and avoid measurement errors from the model's waggle to the greatest extent possible.Having obtained the direct waves and reflections from the model through appropriate time windows,we performed an FFT on the time signals for each incidence angle to obtain the experimental frequency-angle spectrum.

    4.2 Experimental analysis

    Based on previous data processing methods,the experimental frequency-angle spectrum of the externally ring-stiffened cylindrical shell is shown in Fig.9(a).For comparison,the simulated result of a model with the same size is shown in Fig.9(b).The scattering characteristics of the simulated and experimental results are generally consistent.Distinct highlights are observed in both figures that are consistent with the theoretical Bragg scattering trajectories of the first six orders in Fig.4.According to the theoretical Bloch-Floquet condition,we identi-fied the experimental spectrum,as labeled in Fig.9.Some highlights in the experimental spectrum are ambiguous because of the relatively weak echoes from rings and the low signal-tonoise ratio.

    Fig.9 Frequency-angle spectra of the externally ring-stiffened cylindrical shell(a)Experiment and(b)Simulation

    5 Conclusions

    A hybrid 2-D/3-D finite element modeling technique was employed to investigate the scattering characteristics of an externally ring-stiffened cylindrical shell.For a contrastive analysis,relevant FE models were also designed,including a nonribbed model and an internally ring-stiffened model.To identify the Bragg and Bloch-Floquet trajectories in the frequencyangle spectra,approximate analytical expressions for a periodically ring-stiffened cylindrical shell were derived.The combination of the hybrid FE model and the approximate solution revealed different aspects of the physics driving the target response.

    The effects of external rings and the structural elasticity on scattering were analyzed by comparison with a uniform elastic FE model and a perfectly rigid FE model.In addition to the indirect influence of the forces and bending moments on the shell similar to internal rings,the external rings in water act as direct acoustic objects that increase the target cross section,especially at oblique incidence.For the external rings at 45°,the geometrical scattering is greatly enhanced via their influence as corner reflectors.

    The validity of the hybrid FE models of the externally ring-stiffened cylindrical shell was confirmed by comparing the simulated frequency-angle spectrum with the monostatic scattering measured data.The Bragg and Bloch-Floquet trajectories were generally consistent,and any discrepancies might arise from the effects of the external rings.Some highlights in the experimental spectrum are ambiguous because of the relatively weak echoes from the rings and a somewhat low signal-noise-ratio during the measurement.

    Acknowledgements

    We thank Dr.Peng Zilong and Dr.Tong Yunzhe for their helpful discussions.We also appreciate the help of Xu Kai,Dr.Zhao Kaiqi and Dr.Liu Bo in performing the tank experiments.

    国产精品三级大全| 少妇人妻 视频| 亚洲av综合色区一区| av.在线天堂| 中国国产av一级| 亚洲成人国产一区在线观看 | 波野结衣二区三区在线| xxx大片免费视频| 亚洲视频免费观看视频| 免费在线观看完整版高清| 国产成人a∨麻豆精品| 波野结衣二区三区在线| 一级黄片播放器| 国产精品 国内视频| 最近2019中文字幕mv第一页| √禁漫天堂资源中文www| 免费高清在线观看视频在线观看| 国产1区2区3区精品| 一本一本久久a久久精品综合妖精| 中文字幕色久视频| 亚洲精品美女久久久久99蜜臀 | 午夜影院在线不卡| 一级毛片 在线播放| 亚洲男人天堂网一区| 啦啦啦视频在线资源免费观看| 成人毛片60女人毛片免费| 黄色 视频免费看| 亚洲国产av影院在线观看| 亚洲精品一二三| 亚洲国产最新在线播放| 电影成人av| av在线app专区| 9色porny在线观看| 又大又爽又粗| 一级黄片播放器| 亚洲精品国产一区二区精华液| 赤兔流量卡办理| 超碰成人久久| 男人操女人黄网站| 久久精品aⅴ一区二区三区四区| 丁香六月欧美| 男女免费视频国产| 国产乱人偷精品视频| 欧美久久黑人一区二区| 国产精品.久久久| 中文乱码字字幕精品一区二区三区| 交换朋友夫妻互换小说| 无遮挡黄片免费观看| xxxhd国产人妻xxx| 在线天堂最新版资源| 国产片特级美女逼逼视频| 两性夫妻黄色片| 日本91视频免费播放| 色婷婷久久久亚洲欧美| 波多野结衣一区麻豆| 国产精品麻豆人妻色哟哟久久| 久久久久久久精品精品| 大香蕉久久成人网| 精品亚洲成国产av| 天美传媒精品一区二区| 岛国毛片在线播放| 亚洲精品中文字幕在线视频| 精品一区在线观看国产| 亚洲精品视频女| 午夜福利,免费看| 亚洲欧美一区二区三区国产| 观看av在线不卡| 国产av一区二区精品久久| 亚洲精品日本国产第一区| 女人精品久久久久毛片| 欧美激情高清一区二区三区 | 最近2019中文字幕mv第一页| 日韩av在线免费看完整版不卡| 女人被躁到高潮嗷嗷叫费观| 熟女少妇亚洲综合色aaa.| 看十八女毛片水多多多| 成年av动漫网址| 日韩中文字幕视频在线看片| 亚洲精华国产精华液的使用体验| 国产精品久久久久成人av| 成人影院久久| 久久热在线av| 日韩制服骚丝袜av| 午夜福利网站1000一区二区三区| 日韩av不卡免费在线播放| 久久精品亚洲av国产电影网| 免费观看a级毛片全部| 亚洲国产欧美一区二区综合| av在线观看视频网站免费| 成人黄色视频免费在线看| 久久性视频一级片| 观看av在线不卡| 少妇的丰满在线观看| 国产成人啪精品午夜网站| 青青草视频在线视频观看| 色播在线永久视频| 无限看片的www在线观看| 国产精品免费视频内射| 色播在线永久视频| 精品少妇一区二区三区视频日本电影 | 五月天丁香电影| 一级a爱视频在线免费观看| 99久国产av精品国产电影| 男人爽女人下面视频在线观看| 欧美人与性动交α欧美软件| √禁漫天堂资源中文www| 久久久久久久精品精品| 免费久久久久久久精品成人欧美视频| 精品久久蜜臀av无| 日韩av免费高清视频| 欧美日韩亚洲综合一区二区三区_| 亚洲一区二区三区欧美精品| 母亲3免费完整高清在线观看| 成人手机av| 制服诱惑二区| 久久久久久久久久久免费av| 美女脱内裤让男人舔精品视频| 看十八女毛片水多多多| 日韩人妻精品一区2区三区| 亚洲精品久久久久久婷婷小说| 中文欧美无线码| 国产精品成人在线| 亚洲美女黄色视频免费看| 最近最新中文字幕免费大全7| 国产成人免费观看mmmm| 欧美国产精品va在线观看不卡| 女人爽到高潮嗷嗷叫在线视频| 国产成人精品在线电影| 国产精品成人在线| 亚洲欧美精品自产自拍| 天天操日日干夜夜撸| 免费观看av网站的网址| 人成视频在线观看免费观看| 亚洲美女黄色视频免费看| 亚洲精品乱久久久久久| 两性夫妻黄色片| 免费人妻精品一区二区三区视频| 亚洲激情五月婷婷啪啪| 美女主播在线视频| 操出白浆在线播放| 制服诱惑二区| 可以免费在线观看a视频的电影网站 | 人人妻人人澡人人爽人人夜夜| 91精品三级在线观看| 巨乳人妻的诱惑在线观看| 亚洲在久久综合| 中文字幕另类日韩欧美亚洲嫩草| 亚洲七黄色美女视频| 亚洲激情五月婷婷啪啪| 亚洲av成人精品一二三区| 久久精品国产亚洲av高清一级| 欧美激情极品国产一区二区三区| 欧美精品人与动牲交sv欧美| 国产精品成人在线| 日本黄色日本黄色录像| 一区福利在线观看| 免费黄网站久久成人精品| 亚洲精品日本国产第一区| 99久久综合免费| 一二三四中文在线观看免费高清| 激情五月婷婷亚洲| 婷婷色综合大香蕉| 在线观看免费午夜福利视频| 国产一卡二卡三卡精品 | 国产爽快片一区二区三区| 最近手机中文字幕大全| 国产精品久久久久成人av| 免费看av在线观看网站| 国产亚洲精品第一综合不卡| 久久鲁丝午夜福利片| 人体艺术视频欧美日本| 黄片无遮挡物在线观看| 狂野欧美激情性xxxx| 国产精品 欧美亚洲| 最近中文字幕高清免费大全6| 大片免费播放器 马上看| 老司机影院成人| 一二三四在线观看免费中文在| 伊人久久大香线蕉亚洲五| 午夜免费男女啪啪视频观看| 亚洲av日韩精品久久久久久密 | 中文字幕亚洲精品专区| 久久久欧美国产精品| 免费女性裸体啪啪无遮挡网站| 最黄视频免费看| 欧美少妇被猛烈插入视频| 国产人伦9x9x在线观看| 国产精品嫩草影院av在线观看| 亚洲精品一区蜜桃| av有码第一页| 汤姆久久久久久久影院中文字幕| 国产97色在线日韩免费| 亚洲精品av麻豆狂野| 国产乱来视频区| 精品人妻一区二区三区麻豆| 老汉色av国产亚洲站长工具| 亚洲精品视频女| 亚洲国产av影院在线观看| netflix在线观看网站| 女的被弄到高潮叫床怎么办| 亚洲第一青青草原| 母亲3免费完整高清在线观看| 午夜激情久久久久久久| 欧美乱码精品一区二区三区| 丝瓜视频免费看黄片| 久久毛片免费看一区二区三区| 精品国产一区二区三区久久久樱花| 久久久久精品久久久久真实原创| 久久影院123| 王馨瑶露胸无遮挡在线观看| 日韩中文字幕欧美一区二区 | 亚洲专区中文字幕在线 | 国产精品成人在线| 一区在线观看完整版| 亚洲国产av新网站| 欧美日韩亚洲国产一区二区在线观看 | 久久久久久人妻| 久久久欧美国产精品| 麻豆av在线久日| 日本猛色少妇xxxxx猛交久久| 国产老妇伦熟女老妇高清| 免费黄频网站在线观看国产| 黄频高清免费视频| 极品人妻少妇av视频| 男男h啪啪无遮挡| 另类精品久久| 精品一品国产午夜福利视频| 精品免费久久久久久久清纯 | 国产一区有黄有色的免费视频| 岛国毛片在线播放| 日韩精品有码人妻一区| 青青草视频在线视频观看| 中文字幕精品免费在线观看视频| 亚洲av在线观看美女高潮| 国产日韩欧美亚洲二区| 51午夜福利影视在线观看| 久久性视频一级片| 男女之事视频高清在线观看 | 中文字幕亚洲精品专区| 亚洲成人国产一区在线观看 | 欧美精品一区二区大全| 久久久久国产一级毛片高清牌| 丰满迷人的少妇在线观看| a 毛片基地| 欧美变态另类bdsm刘玥| 美女大奶头黄色视频| 大码成人一级视频| 一区二区三区四区激情视频| 丰满饥渴人妻一区二区三| 亚洲第一青青草原| 汤姆久久久久久久影院中文字幕| 亚洲欧洲日产国产| 老司机在亚洲福利影院| 成年动漫av网址| 一区二区三区精品91| 中文字幕最新亚洲高清| 国产黄色视频一区二区在线观看| 美女中出高潮动态图| 男的添女的下面高潮视频| 亚洲国产欧美在线一区| 看免费av毛片| 丰满饥渴人妻一区二区三| 不卡视频在线观看欧美| 日本色播在线视频| 免费av中文字幕在线| 亚洲成人手机| 丁香六月天网| 51午夜福利影视在线观看| 女人精品久久久久毛片| 午夜福利影视在线免费观看| 精品亚洲乱码少妇综合久久| 精品人妻熟女毛片av久久网站| 久久精品国产亚洲av高清一级| 欧美国产精品一级二级三级| 国产亚洲av高清不卡| 免费看不卡的av| 最新的欧美精品一区二区| 欧美日韩视频精品一区| 夫妻午夜视频| 晚上一个人看的免费电影| 欧美日韩亚洲综合一区二区三区_| 色综合欧美亚洲国产小说| 超碰97精品在线观看| 日韩,欧美,国产一区二区三区| 满18在线观看网站| 欧美日韩福利视频一区二区| 啦啦啦中文免费视频观看日本| 亚洲精品av麻豆狂野| 国产国语露脸激情在线看| 嫩草影院入口| 国产亚洲精品第一综合不卡| 亚洲,欧美,日韩| 免费人妻精品一区二区三区视频| 久久人人爽av亚洲精品天堂| 中文字幕制服av| 亚洲av日韩精品久久久久久密 | 人人妻人人爽人人添夜夜欢视频| 日本av免费视频播放| 人人澡人人妻人| 亚洲成人一二三区av| 国产成人一区二区在线| 国产精品一国产av| 中文字幕色久视频| 日韩精品有码人妻一区| 日韩,欧美,国产一区二区三区| 国产精品 欧美亚洲| 九九爱精品视频在线观看| 成人手机av| 美女福利国产在线| 中文字幕人妻丝袜一区二区 | 亚洲美女搞黄在线观看| 只有这里有精品99| 欧美成人午夜精品| 电影成人av| 国产精品嫩草影院av在线观看| 老司机影院毛片| 天堂8中文在线网| 成年动漫av网址| 狂野欧美激情性xxxx| 久久人人97超碰香蕉20202| 日韩av在线免费看完整版不卡| 免费日韩欧美在线观看| 99精国产麻豆久久婷婷| 欧美久久黑人一区二区| 国产毛片在线视频| 少妇被粗大猛烈的视频| 亚洲av综合色区一区| 免费观看av网站的网址| 又黄又粗又硬又大视频| 久久国产精品大桥未久av| 观看美女的网站| 午夜免费男女啪啪视频观看| 丰满乱子伦码专区| 国产日韩欧美亚洲二区| 最近最新中文字幕免费大全7| 成年av动漫网址| 国产 一区精品| 丰满饥渴人妻一区二区三| 日韩一本色道免费dvd| 女性被躁到高潮视频| 黑丝袜美女国产一区| 久久精品久久精品一区二区三区| 亚洲在久久综合| 两个人看的免费小视频| 高清视频免费观看一区二区| 我的亚洲天堂| 在线精品无人区一区二区三| 久久青草综合色| 久久精品国产亚洲av涩爱| 男女高潮啪啪啪动态图| 亚洲精品一二三| 欧美中文综合在线视频| 国产精品久久久人人做人人爽| 亚洲精品国产一区二区精华液| 国产成人系列免费观看| 一本色道久久久久久精品综合| videos熟女内射| 日韩精品有码人妻一区| 飞空精品影院首页| bbb黄色大片| 成年av动漫网址| 日本一区二区免费在线视频| 18禁动态无遮挡网站| 免费高清在线观看视频在线观看| 久久精品久久久久久久性| 国产黄频视频在线观看| 亚洲精品成人av观看孕妇| 日韩av不卡免费在线播放| 国产精品一区二区精品视频观看| 一级,二级,三级黄色视频| 国产精品99久久99久久久不卡 | 一边摸一边做爽爽视频免费| 国产精品偷伦视频观看了| 日韩中文字幕欧美一区二区 | 欧美日韩视频高清一区二区三区二| 亚洲,欧美精品.| 激情五月婷婷亚洲| 亚洲国产精品999| 亚洲情色 制服丝袜| 深夜精品福利| 国产av国产精品国产| 黄色一级大片看看| 99久久综合免费| 色网站视频免费| 咕卡用的链子| 狠狠婷婷综合久久久久久88av| 一本大道久久a久久精品| 老司机影院毛片| netflix在线观看网站| 黑丝袜美女国产一区| 日韩欧美精品免费久久| 精品免费久久久久久久清纯 | 午夜福利一区二区在线看| 激情五月婷婷亚洲| 亚洲成av片中文字幕在线观看| 看免费av毛片| 国产男女超爽视频在线观看| 国产精品嫩草影院av在线观看| 午夜福利网站1000一区二区三区| 一区二区三区乱码不卡18| 中文字幕人妻丝袜制服| 男人爽女人下面视频在线观看| 天天躁夜夜躁狠狠久久av| 亚洲精品第二区| 国产精品成人在线| 久久人人97超碰香蕉20202| 男人添女人高潮全过程视频| 亚洲精品久久久久久婷婷小说| 亚洲精品在线美女| 人人妻人人澡人人看| 亚洲伊人色综图| bbb黄色大片| 亚洲少妇的诱惑av| 美女扒开内裤让男人捅视频| 尾随美女入室| 91精品伊人久久大香线蕉| 久久女婷五月综合色啪小说| 久久精品亚洲熟妇少妇任你| 亚洲精品视频女| 久久久久久免费高清国产稀缺| 亚洲一卡2卡3卡4卡5卡精品中文| 丝瓜视频免费看黄片| 成人国产av品久久久| 人人妻人人澡人人爽人人夜夜| 女人爽到高潮嗷嗷叫在线视频| 亚洲欧美一区二区三区黑人| 秋霞在线观看毛片| 18在线观看网站| 久久久久久免费高清国产稀缺| 麻豆av在线久日| 亚洲成人一二三区av| 人人妻人人澡人人看| 在线观看人妻少妇| 精品一区二区免费观看| 日韩 欧美 亚洲 中文字幕| 精品一区在线观看国产| 亚洲在久久综合| 亚洲成人手机| 国产成人精品无人区| 狂野欧美激情性bbbbbb| 久久国产亚洲av麻豆专区| 日韩精品免费视频一区二区三区| 亚洲国产av新网站| 日韩电影二区| 伦理电影免费视频| 亚洲精品一二三| 啦啦啦在线免费观看视频4| 国产欧美亚洲国产| 午夜福利影视在线免费观看| 久久天躁狠狠躁夜夜2o2o | 亚洲视频免费观看视频| av在线播放精品| 人人妻人人澡人人爽人人夜夜| 女人爽到高潮嗷嗷叫在线视频| 在线看a的网站| 97精品久久久久久久久久精品| 波多野结衣一区麻豆| 亚洲一区中文字幕在线| 满18在线观看网站| 另类精品久久| 精品一区二区免费观看| 欧美黑人精品巨大| 我的亚洲天堂| 亚洲成人av在线免费| 男人爽女人下面视频在线观看| 十八禁人妻一区二区| 日韩 亚洲 欧美在线| 免费观看a级毛片全部| 精品亚洲成a人片在线观看| 一区在线观看完整版| 成年av动漫网址| 日韩大片免费观看网站| 日本欧美视频一区| 精品一区二区三区av网在线观看 | av天堂久久9| 成人三级做爰电影| 欧美黑人精品巨大| 色视频在线一区二区三区| 亚洲成人av在线免费| 下体分泌物呈黄色| 91国产中文字幕| 亚洲专区中文字幕在线 | 80岁老熟妇乱子伦牲交| 最近中文字幕高清免费大全6| 国产精品一区二区在线观看99| 久久 成人 亚洲| 大话2 男鬼变身卡| 狂野欧美激情性bbbbbb| 中文字幕人妻熟女乱码| 无遮挡黄片免费观看| 在线观看三级黄色| 国产精品久久久av美女十八| 成人漫画全彩无遮挡| 国产在线免费精品| 欧美 亚洲 国产 日韩一| 1024视频免费在线观看| 午夜福利乱码中文字幕| 观看美女的网站| 久久女婷五月综合色啪小说| 女人爽到高潮嗷嗷叫在线视频| 一级毛片黄色毛片免费观看视频| 热99国产精品久久久久久7| 在线天堂中文资源库| 日本爱情动作片www.在线观看| 免费在线观看完整版高清| 啦啦啦视频在线资源免费观看| 成年美女黄网站色视频大全免费| 麻豆乱淫一区二区| 日韩av在线免费看完整版不卡| 成年av动漫网址| 日韩制服骚丝袜av| 人妻 亚洲 视频| 久久久久国产一级毛片高清牌| 免费在线观看完整版高清| 午夜福利视频精品| 大陆偷拍与自拍| 日韩 亚洲 欧美在线| 久久性视频一级片| 国产精品麻豆人妻色哟哟久久| av网站在线播放免费| 亚洲精华国产精华液的使用体验| 嫩草影院入口| 精品免费久久久久久久清纯 | 香蕉国产在线看| 女人被躁到高潮嗷嗷叫费观| 可以免费在线观看a视频的电影网站 | 亚洲欧美一区二区三区黑人| 在线观看www视频免费| 天天躁夜夜躁狠狠久久av| 欧美 日韩 精品 国产| 日韩精品有码人妻一区| 亚洲精品久久成人aⅴ小说| 亚洲精品国产一区二区精华液| 亚洲视频免费观看视频| 午夜日韩欧美国产| 精品国产一区二区三区久久久樱花| 亚洲五月色婷婷综合| av在线观看视频网站免费| 亚洲成人免费av在线播放| 国产男女内射视频| 午夜福利,免费看| 国产一区亚洲一区在线观看| 中文字幕人妻丝袜一区二区 | 天天操日日干夜夜撸| 精品少妇一区二区三区视频日本电影 | 男女高潮啪啪啪动态图| 亚洲精品美女久久久久99蜜臀 | 中文字幕亚洲精品专区| 成人国产麻豆网| 欧美97在线视频| 国产精品一区二区在线不卡| 叶爱在线成人免费视频播放| 色婷婷久久久亚洲欧美| 别揉我奶头~嗯~啊~动态视频 | 丁香六月欧美| 一级片免费观看大全| 国产精品国产三级国产专区5o| 最新在线观看一区二区三区 | 老司机亚洲免费影院| 黑丝袜美女国产一区| 最近2019中文字幕mv第一页| 91国产中文字幕| 在线观看人妻少妇| 国产高清国产精品国产三级| 亚洲国产日韩一区二区| 下体分泌物呈黄色| 最近最新中文字幕免费大全7| 欧美激情 高清一区二区三区| 欧美人与性动交α欧美软件| 欧美人与性动交α欧美精品济南到| 波多野结衣av一区二区av| 国产片内射在线| 日韩熟女老妇一区二区性免费视频| 高清欧美精品videossex| 亚洲精品,欧美精品| 中文字幕制服av| 免费av中文字幕在线| 国产精品国产av在线观看| 男男h啪啪无遮挡| 久久免费观看电影| 国产精品久久久久久精品古装| 亚洲熟女精品中文字幕| 精品国产一区二区三区四区第35| 亚洲精品久久午夜乱码| 国产成人精品在线电影| 国产精品一二三区在线看| 亚洲国产av影院在线观看| 免费在线观看完整版高清| 丝袜美足系列| 国产精品国产三级专区第一集| 久久久久久久大尺度免费视频| 一边亲一边摸免费视频| 十八禁网站网址无遮挡| 日韩 亚洲 欧美在线| 国产一区二区三区av在线| 精品亚洲成国产av| 国产高清国产精品国产三级| 成人免费观看视频高清| 侵犯人妻中文字幕一二三四区| 亚洲精品自拍成人| 日本91视频免费播放| 国产视频首页在线观看| 欧美激情极品国产一区二区三区| 毛片一级片免费看久久久久| 午夜福利网站1000一区二区三区| 99久久人妻综合| 一级片'在线观看视频| 欧美激情极品国产一区二区三区| 少妇 在线观看| 国产欧美日韩综合在线一区二区| 国产av一区二区精品久久| 高清欧美精品videossex| 久久久亚洲精品成人影院| 精品少妇一区二区三区视频日本电影 | 亚洲一级一片aⅴ在线观看|