• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A New Scheme for Vortex Sheet Diffusion in Fast Vortex Methods

    2019-07-08 03:54:30GUXinzhongLIShunming
    船舶力學(xué) 2019年6期

    GU Xin-zhong,LI Shun-ming

    (1.College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;2.Department of Vehicle Engineering,Nanhang Jincheng College,Nanjing 211156,China)

    Abstract:Following Ploumhans,a fast vortex method was developed for the analyses of three-dimensional unsteady flow.A new diffusion method is proposed for the vorticity creation close to a 3D body surface,in which a number of vortex particles are introduced into the flow field to satisfy the nonslip boundary condition on the boundary.An adaptive Fast Multipole Method(FMM)is used for velocity and its gradient computing to achieve high accuracy at a reasonable cost.The new scheme is applied to the simulations of starting flow around a sphere at Re=300 and 500 for investigating the feasibility.

    Key words:vortex methods;vortex sheet diffusion;adaptive fast multipole method;unsteady flow

    0 Introduction

    In the past three decades,the vortex methods have been developed and been applied to the analysis of complex,unsteady flows.Leonard and Chua proposed the application of simulations for interaction between interlocked vortex rings and between two colliding vortex rings[1].Mas-Gallic[2]presented an accurate method to simulate viscous effect by using the particle strength exchange scheme.Mansfield et al[3]simulated the collision of coaxial vortex rings by using Lagrangian vortex element methods integrated with a dynamic eddy viscosity model.Baoshan et al[4]used the 2D vortex-boundary element method to simulate the unsteady im peller-diffuser interaction in a diffuser pump.Fukuda et al[5]calculated the inclined collision of a pair of vortex rings by using vortex method,with a redistribution model of core spreading method.

    For a practical computation,the number of vortex particles has to increase due to the requirement of higher resolution of turbulence structures.And it will lead to the computational time and storage cost increase drastically.To solve this problem,Koumoutsakos et al[6]and Winckelmans et al[7]introduced the fast multipole method(FMM)into the vortex methods,while Fernandez et al[8]and Ploumhans et al[9]enhanced the computation speed with the parallel computation technique.

    Many of those works have made the vortex methods applicable to high-resolution simulations of flow with viscous boundaries.Kamemoto and Ojima[10-11]applied the vortex method to the simulation of flow around a moving human body and a swimming fish.

    In this paper,we presented a new scheme for vortex particles creation in the vicinity of the body coupled with the adaptive fast multipole method,for further improving the computation speed and enhancing the calculation efficiency.

    1 Viscous vortex methods

    1.1 Basic formulas

    Three-dimensional incompressible flow is governed by the vorticity equation:

    where u( x, )

    t is the velocity vector,ν is the kinematic viscosity and ω=▽×u is the vorticity.

    In viscous vortex methods,the vorticity field is represented by a set of Gaussian smoothing vortex particles.

    where xi,αiand σidenote the position,strength and smoothing parameter of particle i.

    In order to satisfy the nonslip boundary condition on solid surfaces,a Dirichlet condition on the normal component of ω states that the tangential derivative of the velocity is zero at the solid boundary,

    And the Neumann conditions on the tangential components of ω express the cancellation of the slip velocity at the wall.The velocity can be written as:

    where U∞is the free stream velocity and ψ is the stream function.The relationship between ψ and ω is as follows,

    1.2 Numerical implementation of the method

    The vortex method described above is implemented essentially in following stages:

    (1)Computing the local velocity u and its gradient▽u follows from the Biot-Savart law.

    This is done efficiently by using the adaptive FMM and will be discussed in another section below.

    (2)Convecting all the particles and changing their strength according to the following formulas.

    The first term of right-hand side of Eq.(8)represents the contribution from particle stretching,and the second one involves the strength exchanging due to viscous diffusion.

    (3)After the vortex particles'convection and strength exchange,there is a slip velocity Uslip,induced by the free stream and by all vortex particles at the solid surface.Here we assume that a laminar boundary layer is created over the surface due to the Uslip.Once the slip velocity has been determined,the boundary layer is divided into a set of vorticity layers and then replaced by equivalent discrete vortex particles.

    (4)Direct application of the vortex dynamics yields the force F acting upon a body,approximating to the time derivative of the linear impulse[12]:

    where ρ is the density and V is the volume occupied by the fluid.Then the force coefficients can be obtained:

    (5)To keep overlap among vortices,the old particles must be replaced by new ones on a regular lattice every few steps.

    2 Adaptive FMM

    The original FMM enables calculation of long-ranged force in the n-body problems with high accuracy for an acceptable cost[13].The new version FMM in three dimensions is applicable to compute pairwise interactions between massive particles[14].Now,this method is used to compute the induced velocity of vortex particles.(Fig.1)

    Fig.1 Fast multipole algorithm

    In this section,the basic FMM formulas are listed,which will be used to implement the adaptive FMM.And the more detailed discussion can be found in Ref.[14].

    2.1 Basic FMM formulas

    The local velocity without smoothing function at x can be expanded as:

    The functions Sn,m,Un,m,Rn,mand Tn,mare solid harmonic functions[15].And the multipole expansion center can be shifted from ycto yc′according to the M2M translation:

    The multipole moments can be translated to the local expansion coefficients using the M2L translation:

    In the new FMM formulations,the multipole expansions can also be translated to local expansions via the exponential expansion.Then velocity at x can be computed by

    where S(ε) is determined by the required accuracy,αm,k=2πm/Mk,d is the cube length.And Wk,mis the exponential expansion coefficients,can be obtained from multipole moments using the M2X translation,

    where ωkis the weight,λkis the node and Mkis the integer array.The exponential expansion center is then shifted from point ycto point x1according to X2X translation:

    Then,the coefficients for local expansion centered at x1can be obtained from the exponential expansion using X2L translation:

    The local expansion centered at x1can be translated to x1′using the L2L formula:

    2.2 Adaptive FMM

    An adaptive FMM,based on the diagonal form translation and adaptive tree structure,enables accurate representation of a complex shape bluff body and can adapt to the changing of computation domain.Thus,it is suitable to vortex particle simulation.However,little such research has been conducted before.To address this gap,this study focuses on the efficient computation of velocity field and its gradient with the adaptive FMM.

    To run the algorithm,a hierarchical tree of boxes is constructed by dividing the 3D computational domain(a box containing all boundary elements and discrete vortices)into smaller and smaller sub-domains[15],as shown in Fig.2.

    For each box b on level l(l≥2),four interaction lists are defined as indicated in Fig.3.To perform M2X and X2L translations,boxes in list 2 need to be further divided into six sublists associated with six coordinate directions[16].

    Fig.2 The tree structure

    Fig.3 Four lists associated with box b

    Adaptive FMM Algorithm is as follows:

    (1)Initialization

    Choosing calculate precision ε,the order of the multipole expansions p and the maximum number s of vortex particles allowed in a childless box.

    (2)Step 0

    Loading the data files,defining the initial computational domain and building the adaptive tree structure.

    (3)Upward pass

    For each childless box b,calculating multipole moments at its center from all vortex particles in b according to Eq.(12a).Recursively move the moments from b's center to its parents'using M2M(Eq.13).Then,a pth-order multipole expansion is generated for each box b at its center,representing the contribution from all the vortex particles in box b to particles in its list 1 and 3.

    (4)Downward pass

    Step A:Starting from level 2 to the lowest level:

    (a)For each box b,if it contains more than p2particles,generate a local expansion at its center from all vortex particles in its list 4 boxes using Eq.(12b).Otherwise,directly valuate the induced velocity at each particle point according to Eq.(6).

    (b)For each box b,translate the multipole moments of b to the local coefficients of box c in list 2 of b using M2X,X2X and X2L.

    (c)Translating local coefficients of box b to the local coefficients of b's children using L2L translation.

    After the sub-step A,local coefficients for each childless box are formed and added together,which can be used to calculate the velocity and its gradient.

    Step B:

    (a)For each childless box b,calculate the velocity of each particle contained using local expansions,according to Eq.(11b).

    (b)For each childless box b,directly compute the velocity at each particle point due to all particles in b's list 1 boxes using Eq.(6).

    (c)For each box childless b,if the number of particles contained is greater than p2,calculate the velocity field by using multipole expansions of b's list 3 boxes using Eq.(11a).Otherwise,directly valuate the velocity at each particle point according to Eq.(6).

    3 Vortex sheet diffusion

    There are many numerical procedures simulating vortex sheet diffusion in vortex methods.The most widely used one,named Particle Strength Exchange(PSE)method,is performed by a kernel technique[17].Although the convergence of this method has been proved and its accuracy has been investigated[18-19].The PSE method has some disadvantages in practice:it is generally time-consuming to calculate the strength of vortex panels by solving the boundary integral equations;the circulation of particles is not always conservative for complicated geometries.Therefore,we propose a much simpler and more efficient method for vortex particles creating on the solid surface.

    3.1 Introduction of vortex sheets

    In vortex methods,the surface of the solid body is discretized by a number of computational panels with initial strength γ,determined by the free stream and by all vortex particles.Obviously,after the vortex particles'convection,stretch and diffusion,a slip velocity is presented on the body surface.The variation of panel strength Δγ caused by the slip velocity will result in a vorticity flux near the surface.To simulate the diffusion process,the vorticity is emitted into the flow by properly distributing of vortex particles in the vicinity of the body in present method.

    For simplification,the slip velocity is considered to be uniform over each panel here.Sup-posing further that all the vortex particles are created(due to slip velocity)in a laminar boundary layer over the flat computational panels.If assuming the velocity of potential flow is constant,the boundary-layer equations can be simplified to[20]:

    With the boundary conditions

    where u and v denote the velocity in the x and y direction,respectively.By introducing a new similarity variable η,we finally get the single ordinary differential equation,

    And the boundary conditions are given in term of η as:

    Fig.4 Introduction of vortex sheets

    The flow field is considered to be two-dimensional for convenience.The boundary layer is divided into n sub-layers with equal thickness and then replaced with n vortex sheets,as shown in Fig.4.According to the relation of continuity of flow and the nonslip condition on the solid surface,the circulation Γiof vortex sheet i is

    where L is the characteristic length of the surface panel.The distance yi0of vortex sheet i from the solid surface can be determined as:

    where s stands for the number of numerical solution between hiand hi+1.

    3.2 Replacement with vortex particles

    To simplify the evaluation of interaction between vortex sheets and particles,all the vortex sheets are replaced by equivalent discrete spherical vortex particles,with a Gaussian distribution of vorticity around their centers.

    As an example,a triangular vortex sheet is used to illustrate the computation as shown in Fig.5.The vortex sheet is replaced by three particles with equal strength α1=α2=α3=γi·Si/3.And their positions are given by:

    Fig.5 Replacement with vortex particles

    Further,all the particles on the same vortex sheet i are forced to have equal normal convective velocity vi0across the shear layer,which can be obtained based on the solution of Blasius'equation[20].

    3.3 PSE method versus the present method

    We will now test the new scheme on 2D vortex panels with uniform strength Δγ and length l,located on the x axis and diffused toward the positive y direction,as shown in Fig.6.The computational grid is established with dx=dy=0.01.The parameters of the simulation are:l=0.01,Δγ=0.4,Δt=0.05 and ν=0.002.

    Given Δγ,ν and l,we can figure out the thickness of laminar boundary layer h=0.05.Then the boundary layer is divided into five sub-layers and replaced with equivalent vortex sheets.The computed results of strength,position and normal velocity for each vortex sheet are shown in Tab.1.The sum of circulation is about 3.97×10-3,very close to the exact solution of 4.0×10-3.

    Fig.6 Vortex panels,vortex sheets and vortex particles

    Tab.1 Computed results of vortex sheets

    In the PSE method,the particle i located at(xi, yi)receives,from the vortex panel j,an amount of circulation given by[21]:

    As the number of vortex panels j=1,3,5 and 7,the computed results are provided in Tab.2.As shown by the data,the sum of received circulation is consistent with the previous result,when j is greater than 5.

    Tab.2 Computed results of vortex particles

    In conclusion,the two methods simulate the diffusion process by creating vortex particles in different ways.Comparing with the mathematically deduced method(PSE),the new one avoids solving a large-scale system of linear equations and has an explicit physical meaning.Besides,the proposed scheme has better convergence characteristics even for the irregular grid.Thus,a non-uniform meshing technique can be adopted to adaptive complex solid surface.It can not be denied that,due to ignoring of influence between nascent vortex particles,vorticity distribution around the boundary surface is not as‘smooth'as in the PSE methods.

    4 Application examples

    Simulations for an impulsively started sphere are performed to validate the present method,for these flows has been extensively studied[9,22-25].

    4.1 Re=300

    We first computed the flow at a Reynolds number Re=U∞D(zhuǎn)/v=300,with U∞along the positive x direction.The sphere surface was discretized into 1 180 triangular elements.And the covering vorticity layer was divided into five sub-layers for simulating the diffusion process.The time step was set as ΔT=ΔtU∞/D=0.005.To keep particles core overlap,redistribution was performed every five steps.The computation was completed at T=tU∞/D=75 as the number of particles reached about 365 000.

    As shown in Fig.7,a vortex ring adjacent to the rear surface of the sphere is formed at time T=3.Being convected,the axisymmetric vortex ring gradually becomes a non-axisymmetric,double-thread wake extended to the downstream.The hairpin vortex generated at time T=8 and the complete extent of wake at the end of simulation(T=75)are also provided in the figure.And the simulated wake of vortex structure is subject to the same trend as the experimental study conducted by Johnson[25].

    Fig.7 Instantaneous flow pattern represented by vortex particles at Re=300

    Fig.8 Time history of fluid force coefficients at Re=300

    Fig.8 shows the comparisons between measured and calculated force coefficients CDand CLversus time.The force acting on the sphere oscillates with the change of wake structure and gradually becomes clearly periodic.And the force coefficients are roughly consistent with previous numerical solutions and experimental investigation.

    Tab.3 Comparison of force coefficients and Strouhal number with previous results

    The computed average values of CDand CLare 0.702 and-0.069,with respective oscillation amplitudes of 1.53×10-2and 7.26×10-2,and the Strouhal number is St=fD/U∞=0.131.Comparing with the experimental data,the mean values of CD,CLand Stare calculated with a reasonable level of accuracy,but ΔCDand ΔCLare significantly overestimated.Because the hydrodynamic force excitation from the turbulent flow is computed by evaluating large numbers of particle interactions,which results in the incorrect high frequency components.Obviously,the simulation of Ploumhans et al can achieve a high accuracy,and Tomboulides et al gave a more accurate result,but our method can substantially improve the computing efficiency.

    4.2 Re=500

    The flow at Re=500 was also calculated with the same computational grid on the sphere surface as the former case.Most of the simulation parameters were identical to those used in Section 4.1 except the thickness of vorticity layer.The simulation was completed at T=70,with the number of particles remained within the computational domain up to about 759 500.

    Fig.9 Instantaneous flow pattern represented by vortex particles at Re=500

    Fig.10 Time history of fluid force coefficients at Re=500

    The time histories of drag and lift coefficients are provided in Fig.10.Clearly,they do not become periodic.The achieved CLmatches very well with the calculated lift coefficient in Ref.[9],but the CDis slightly higher than that obtained by Ploumhans et al.

    5 Conclusions

    An efficient vortex method with a new scheme for vortex sheet diffusion,accelerated by the adaptive fast multipole method,was proposed and applied to the computation of unsteady flows around a sphere.The following conclusions can be obtained:

    (1)The adaptive fast multipole method is used to calculate the velocity and its gradient from the vorticity in O (N p3/2)operations,computational efficiency is greatly improved.

    (2)The new diffusion scheme is used in three sub-steps:(i)vorticity layer computation(ii)equivalent to discrete vortex sheets and(iii)replaced with nascent vortex particles.

    (3)The flows past a sphere are computed at Reynolds number Re=300 and 500 using the proposed method.And a reasonable agreement between our results and that from previous experimental and numerical work is obtained.

    It is found that the method developed in the present study is very efficient and convenient for the investigation of bluff body-fluid interactions.For the sake of low discretization resolution and discontinuity of vorticity distribution,our results have slightly lower accuracy in contrast to other simulations.

    久久精品久久久久久久性| 女性生殖器流出的白浆| 热99久久久久精品小说推荐| 宅男免费午夜| 波野结衣二区三区在线| 国产男女超爽视频在线观看| 欧美xxⅹ黑人| 美女大奶头黄色视频| 欧美精品一区二区免费开放| 成人国产麻豆网| 一边亲一边摸免费视频| 日本猛色少妇xxxxx猛交久久| 久久99热这里只频精品6学生| 国产1区2区3区精品| 国语对白做爰xxxⅹ性视频网站| 99久久精品国产国产毛片| 国产亚洲精品久久久com| 一级黄片播放器| 新久久久久国产一级毛片| 久久久欧美国产精品| 人人妻人人澡人人爽人人夜夜| 熟女电影av网| av在线观看视频网站免费| 国产成人91sexporn| 国产精品熟女久久久久浪| 亚洲综合精品二区| 99热6这里只有精品| 久久久久久久大尺度免费视频| 下体分泌物呈黄色| 亚洲欧美日韩卡通动漫| 一级a做视频免费观看| 午夜av观看不卡| 满18在线观看网站| 亚洲在久久综合| 日本欧美视频一区| 女人被躁到高潮嗷嗷叫费观| 99久久精品国产国产毛片| 青春草亚洲视频在线观看| 亚洲av.av天堂| 欧美人与性动交α欧美精品济南到 | 国产在线免费精品| 久久这里有精品视频免费| 午夜福利视频在线观看免费| 三上悠亚av全集在线观看| 天堂俺去俺来也www色官网| av女优亚洲男人天堂| 欧美日韩av久久| 韩国高清视频一区二区三区| 在线观看www视频免费| 亚洲精品一区蜜桃| 欧美精品高潮呻吟av久久| 考比视频在线观看| a级片在线免费高清观看视频| 十八禁网站网址无遮挡| 99视频精品全部免费 在线| 亚洲精品视频女| 国产欧美日韩综合在线一区二区| 少妇的逼好多水| 午夜免费鲁丝| 国产在视频线精品| 99热这里只有是精品在线观看| av黄色大香蕉| 18禁国产床啪视频网站| 亚洲成色77777| 亚洲激情五月婷婷啪啪| 少妇的丰满在线观看| 综合色丁香网| 亚洲精品中文字幕在线视频| 国产在线视频一区二区| 少妇人妻久久综合中文| 精品久久久精品久久久| 国产又爽黄色视频| 午夜福利网站1000一区二区三区| 91午夜精品亚洲一区二区三区| 国产亚洲午夜精品一区二区久久| 日韩一区二区三区影片| av有码第一页| 日日撸夜夜添| 九色亚洲精品在线播放| 久久精品国产亚洲av涩爱| 最黄视频免费看| 啦啦啦视频在线资源免费观看| 美女视频免费永久观看网站| 99精国产麻豆久久婷婷| 色哟哟·www| 99热6这里只有精品| 欧美激情 高清一区二区三区| 91国产中文字幕| 欧美性感艳星| 久久久久久人妻| 夫妻性生交免费视频一级片| 我的女老师完整版在线观看| 亚洲国产最新在线播放| 99热这里只有是精品在线观看| 99久久人妻综合| h视频一区二区三区| 十八禁网站网址无遮挡| 90打野战视频偷拍视频| 最新的欧美精品一区二区| 一区二区av电影网| 国产精品一区二区在线不卡| 亚洲婷婷狠狠爱综合网| 亚洲欧美中文字幕日韩二区| 亚洲国产欧美日韩在线播放| 在线观看免费视频网站a站| 99国产精品免费福利视频| 夫妻性生交免费视频一级片| 男人操女人黄网站| 亚洲精品乱久久久久久| 亚洲色图综合在线观看| 韩国av在线不卡| 精品亚洲乱码少妇综合久久| 欧美+日韩+精品| 国产av精品麻豆| 日韩av在线免费看完整版不卡| 国产一区二区在线观看日韩| 久久热在线av| 人妻人人澡人人爽人人| 飞空精品影院首页| 又黄又爽又刺激的免费视频.| 日韩在线高清观看一区二区三区| 男女下面插进去视频免费观看 | 91成人精品电影| 免费观看av网站的网址| 亚洲欧洲日产国产| 国产成人欧美| 中文字幕另类日韩欧美亚洲嫩草| 亚洲欧洲精品一区二区精品久久久 | 亚洲精品日韩在线中文字幕| 亚洲 欧美一区二区三区| 狠狠精品人妻久久久久久综合| 国产一区二区激情短视频 | 性色avwww在线观看| 少妇精品久久久久久久| 免费高清在线观看视频在线观看| 国产av国产精品国产| 乱人伦中国视频| 中文字幕人妻丝袜制服| 色哟哟·www| 建设人人有责人人尽责人人享有的| 亚洲,欧美,日韩| 最新中文字幕久久久久| 女性被躁到高潮视频| 少妇的逼水好多| 国产精品成人在线| 精品久久久精品久久久| 尾随美女入室| 一级毛片 在线播放| 成年人午夜在线观看视频| 少妇被粗大的猛进出69影院 | 欧美日韩av久久| 国产毛片在线视频| 少妇的丰满在线观看| 最近的中文字幕免费完整| 久久av网站| 少妇人妻 视频| 最近手机中文字幕大全| 宅男免费午夜| 亚洲精品乱久久久久久| 亚洲精品456在线播放app| 日韩,欧美,国产一区二区三区| 亚洲美女视频黄频| 最近2019中文字幕mv第一页| 亚洲成色77777| 啦啦啦在线观看免费高清www| 欧美成人午夜精品| 99精国产麻豆久久婷婷| 免费大片18禁| 巨乳人妻的诱惑在线观看| 婷婷色麻豆天堂久久| 亚洲 欧美一区二区三区| 乱码一卡2卡4卡精品| 交换朋友夫妻互换小说| 一二三四中文在线观看免费高清| 国产又爽黄色视频| 中文欧美无线码| 毛片一级片免费看久久久久| 宅男免费午夜| 精品午夜福利在线看| 99热6这里只有精品| 久久久久久久久久久免费av| 各种免费的搞黄视频| 最近的中文字幕免费完整| 成年人免费黄色播放视频| 七月丁香在线播放| 最近的中文字幕免费完整| 黄色一级大片看看| 97在线视频观看| 飞空精品影院首页| 日韩av不卡免费在线播放| 亚洲欧美日韩卡通动漫| 欧美97在线视频| 国产黄频视频在线观看| 99九九在线精品视频| 久久这里有精品视频免费| av免费观看日本| 亚洲精品国产av成人精品| kizo精华| 亚洲av福利一区| 亚洲欧美日韩另类电影网站| 美女脱内裤让男人舔精品视频| av一本久久久久| 中文字幕亚洲精品专区| 日韩av在线免费看完整版不卡| 卡戴珊不雅视频在线播放| 国产免费又黄又爽又色| 亚洲欧洲国产日韩| 久久久久国产精品人妻一区二区| 久久女婷五月综合色啪小说| 国产精品麻豆人妻色哟哟久久| 1024视频免费在线观看| 一本久久精品| 日韩,欧美,国产一区二区三区| 国产精品人妻久久久影院| 欧美3d第一页| 永久免费av网站大全| av在线播放精品| 国产xxxxx性猛交| 如日韩欧美国产精品一区二区三区| 亚洲国产最新在线播放| 亚洲国产日韩一区二区| av天堂久久9| 黑人巨大精品欧美一区二区蜜桃 | 亚洲国产欧美日韩在线播放| 午夜老司机福利剧场| 久久久欧美国产精品| 极品人妻少妇av视频| 秋霞在线观看毛片| 亚洲av日韩在线播放| 日本爱情动作片www.在线观看| 国产精品久久久av美女十八| 搡女人真爽免费视频火全软件| 9热在线视频观看99| 黄色一级大片看看| 亚洲情色 制服丝袜| 久久久国产欧美日韩av| 久久精品国产自在天天线| 老司机影院成人| 亚洲国产日韩一区二区| 久久午夜综合久久蜜桃| 在线观看免费视频网站a站| 亚洲美女视频黄频| 亚洲国产欧美日韩在线播放| 日产精品乱码卡一卡2卡三| 精品久久久精品久久久| 国产精品.久久久| 亚洲欧洲精品一区二区精品久久久 | 中文精品一卡2卡3卡4更新| 国产无遮挡羞羞视频在线观看| 香蕉丝袜av| 天美传媒精品一区二区| 日韩在线高清观看一区二区三区| 国产激情久久老熟女| 日韩制服丝袜自拍偷拍| 如日韩欧美国产精品一区二区三区| 五月天丁香电影| 日韩熟女老妇一区二区性免费视频| 丰满乱子伦码专区| 亚洲第一av免费看| 色婷婷av一区二区三区视频| 激情视频va一区二区三区| 高清黄色对白视频在线免费看| 国产1区2区3区精品| 午夜免费男女啪啪视频观看| 久久久国产一区二区| 久久人人97超碰香蕉20202| 亚洲精品自拍成人| a 毛片基地| 久久女婷五月综合色啪小说| 亚洲欧美日韩卡通动漫| 亚洲精品美女久久久久99蜜臀 | 亚洲久久久国产精品| 国产精品人妻久久久影院| 午夜精品国产一区二区电影| 久久99蜜桃精品久久| a级毛片黄视频| 欧美最新免费一区二区三区| av国产精品久久久久影院| 人妻 亚洲 视频| 亚洲伊人久久精品综合| 中文字幕亚洲精品专区| 波多野结衣一区麻豆| 日韩 亚洲 欧美在线| 人体艺术视频欧美日本| 亚洲婷婷狠狠爱综合网| 看十八女毛片水多多多| 9色porny在线观看| 80岁老熟妇乱子伦牲交| 高清av免费在线| 丝瓜视频免费看黄片| 两性夫妻黄色片 | 亚洲成人av在线免费| 国产精品女同一区二区软件| a级片在线免费高清观看视频| 又粗又硬又长又爽又黄的视频| 欧美成人午夜免费资源| 26uuu在线亚洲综合色| 欧美日韩av久久| av.在线天堂| av卡一久久| 蜜桃在线观看..| av免费观看日本| 精品卡一卡二卡四卡免费| 免费黄频网站在线观看国产| 亚洲av国产av综合av卡| 美女内射精品一级片tv| 久热这里只有精品99| 亚洲精品乱码久久久久久按摩| 色哟哟·www| 99热这里只有是精品在线观看| 亚洲国产日韩一区二区| 亚洲综合色网址| 国产成人a∨麻豆精品| 91成人精品电影| 母亲3免费完整高清在线观看 | 成人国语在线视频| 韩国av在线不卡| 黄色配什么色好看| 大片电影免费在线观看免费| 如何舔出高潮| 男的添女的下面高潮视频| 青青草视频在线视频观看| 狠狠精品人妻久久久久久综合| av.在线天堂| 国产视频首页在线观看| 亚洲少妇的诱惑av| 欧美亚洲 丝袜 人妻 在线| 国产av国产精品国产| 免费黄频网站在线观看国产| 99热国产这里只有精品6| 国产无遮挡羞羞视频在线观看| 这个男人来自地球电影免费观看 | 又黄又粗又硬又大视频| 九九在线视频观看精品| 日韩欧美精品免费久久| 国产av码专区亚洲av| 亚洲婷婷狠狠爱综合网| 99视频精品全部免费 在线| 丝袜美足系列| 国产高清不卡午夜福利| 午夜福利影视在线免费观看| 成年美女黄网站色视频大全免费| 色婷婷久久久亚洲欧美| 交换朋友夫妻互换小说| 一二三四在线观看免费中文在 | 欧美人与性动交α欧美软件 | 麻豆精品久久久久久蜜桃| 视频在线观看一区二区三区| 亚洲五月色婷婷综合| 中文天堂在线官网| 久久精品夜色国产| 亚洲精品乱码久久久久久按摩| 午夜激情av网站| 亚洲一码二码三码区别大吗| 下体分泌物呈黄色| 亚洲精品自拍成人| 性色av一级| 日产精品乱码卡一卡2卡三| 少妇人妻精品综合一区二区| 免费人妻精品一区二区三区视频| 激情视频va一区二区三区| 只有这里有精品99| 妹子高潮喷水视频| 美女主播在线视频| 熟妇人妻不卡中文字幕| www.色视频.com| 日韩制服丝袜自拍偷拍| 一级毛片 在线播放| 丁香六月天网| 国产成人精品婷婷| 久久婷婷青草| 在线观看国产h片| 性高湖久久久久久久久免费观看| 亚洲成人手机| 国产av精品麻豆| 性色avwww在线观看| 熟女电影av网| a级毛片黄视频| 中文天堂在线官网| 国产日韩欧美视频二区| 成人手机av| 性色av一级| 亚洲色图 男人天堂 中文字幕 | a级毛片在线看网站| 亚洲人与动物交配视频| 久久99蜜桃精品久久| 热re99久久精品国产66热6| 如日韩欧美国产精品一区二区三区| 亚洲成人一二三区av| 街头女战士在线观看网站| 建设人人有责人人尽责人人享有的| 久久99蜜桃精品久久| 成人二区视频| 欧美bdsm另类| 乱人伦中国视频| av片东京热男人的天堂| 夜夜爽夜夜爽视频| √禁漫天堂资源中文www| av视频免费观看在线观看| 久久久精品94久久精品| 欧美变态另类bdsm刘玥| 欧美性感艳星| 国产又色又爽无遮挡免| xxx大片免费视频| 精品99又大又爽又粗少妇毛片| 男女啪啪激烈高潮av片| 2021少妇久久久久久久久久久| 成年人免费黄色播放视频| 男女边吃奶边做爰视频| 天天影视国产精品| 久久这里只有精品19| 激情视频va一区二区三区| 日本黄大片高清| 91在线精品国自产拍蜜月| 男人添女人高潮全过程视频| 日韩不卡一区二区三区视频在线| 欧美3d第一页| 国产黄色免费在线视频| 色婷婷久久久亚洲欧美| 精品国产一区二区三区久久久樱花| 美女xxoo啪啪120秒动态图| 巨乳人妻的诱惑在线观看| 又大又黄又爽视频免费| 免费看av在线观看网站| 男女啪啪激烈高潮av片| a级毛片黄视频| 久久国产精品大桥未久av| 欧美日韩视频高清一区二区三区二| 欧美97在线视频| www.色视频.com| 美女视频免费永久观看网站| 超色免费av| 女性被躁到高潮视频| 亚洲经典国产精华液单| 久久99热这里只频精品6学生| 午夜福利乱码中文字幕| 亚洲av福利一区| 国产乱人偷精品视频| 日本av免费视频播放| 久久久久精品性色| 中文字幕人妻丝袜制服| 久久精品国产综合久久久 | 亚洲精品久久午夜乱码| 亚洲欧美成人精品一区二区| 97在线视频观看| 在线观看免费视频网站a站| 制服人妻中文乱码| 伦理电影大哥的女人| 人妻人人澡人人爽人人| a级毛片在线看网站| 激情视频va一区二区三区| 久久精品国产自在天天线| 新久久久久国产一级毛片| 又粗又硬又长又爽又黄的视频| 青春草视频在线免费观看| 久久ye,这里只有精品| 不卡视频在线观看欧美| 欧美 亚洲 国产 日韩一| 日本-黄色视频高清免费观看| 欧美 亚洲 国产 日韩一| 天天躁夜夜躁狠狠久久av| 国产无遮挡羞羞视频在线观看| 成人国产麻豆网| 一级爰片在线观看| 狂野欧美激情性xxxx在线观看| 亚洲在久久综合| 好男人视频免费观看在线| 日本黄大片高清| 少妇熟女欧美另类| 免费在线观看黄色视频的| av在线app专区| 日本猛色少妇xxxxx猛交久久| 色5月婷婷丁香| av卡一久久| 亚洲av日韩在线播放| 麻豆乱淫一区二区| 亚洲美女视频黄频| 日韩电影二区| 久久久久久久精品精品| 最近中文字幕2019免费版| 中文乱码字字幕精品一区二区三区| 亚洲av中文av极速乱| 建设人人有责人人尽责人人享有的| 久久精品久久久久久噜噜老黄| 久久久a久久爽久久v久久| 多毛熟女@视频| 捣出白浆h1v1| 一本大道久久a久久精品| 一级片免费观看大全| 啦啦啦啦在线视频资源| 亚洲国产精品专区欧美| 成年女人在线观看亚洲视频| 色视频在线一区二区三区| 色网站视频免费| 国产精品99久久99久久久不卡 | 亚洲一区二区三区欧美精品| 中文字幕免费在线视频6| 国产精品国产三级国产av玫瑰| 美女中出高潮动态图| 亚洲av电影在线观看一区二区三区| 久久久久久久久久久免费av| 久久久久精品性色| 欧美日韩精品成人综合77777| 精品亚洲成国产av| 丰满乱子伦码专区| 成人亚洲精品一区在线观看| 国产 精品1| 婷婷色综合大香蕉| 国产精品久久久av美女十八| 美女xxoo啪啪120秒动态图| 夫妻性生交免费视频一级片| 最近的中文字幕免费完整| 精品国产乱码久久久久久小说| 免费少妇av软件| 9色porny在线观看| 香蕉丝袜av| 日韩一区二区三区影片| 美女国产视频在线观看| 热99久久久久精品小说推荐| 亚洲高清免费不卡视频| 天天躁夜夜躁狠狠久久av| 三上悠亚av全集在线观看| 午夜激情久久久久久久| 亚洲精品美女久久av网站| 亚洲欧美清纯卡通| 免费人妻精品一区二区三区视频| 国产日韩欧美亚洲二区| 国产视频首页在线观看| 国产高清不卡午夜福利| 最近2019中文字幕mv第一页| 精品国产一区二区久久| 男人添女人高潮全过程视频| 亚洲,一卡二卡三卡| 国产成人精品无人区| 国产精品久久久久久精品古装| 最近最新中文字幕免费大全7| 宅男免费午夜| 亚洲精品国产av成人精品| 亚洲精品,欧美精品| 国产亚洲精品第一综合不卡 | 亚洲av电影在线进入| 国产精品一区www在线观看| 日韩伦理黄色片| 日韩一区二区视频免费看| 91在线精品国自产拍蜜月| 国产成人精品无人区| 女人被躁到高潮嗷嗷叫费观| 亚洲内射少妇av| 少妇的逼水好多| 日本黄大片高清| 五月天丁香电影| 日韩av在线免费看完整版不卡| a级毛色黄片| av免费观看日本| 日日啪夜夜爽| 中文精品一卡2卡3卡4更新| h视频一区二区三区| 久久ye,这里只有精品| 亚洲在久久综合| 亚洲成人手机| 欧美xxⅹ黑人| 少妇人妻精品综合一区二区| 国产一区二区三区av在线| 18禁动态无遮挡网站| 亚洲国产精品专区欧美| 成人综合一区亚洲| 久久午夜综合久久蜜桃| 欧美激情极品国产一区二区三区 | 99精国产麻豆久久婷婷| a级毛片黄视频| av在线观看视频网站免费| 亚洲五月色婷婷综合| 五月伊人婷婷丁香| 高清在线视频一区二区三区| 亚洲av福利一区| 日韩在线高清观看一区二区三区| 亚洲色图综合在线观看| 熟女电影av网| 欧美xxxx性猛交bbbb| 日本av免费视频播放| 久久精品国产鲁丝片午夜精品| 爱豆传媒免费全集在线观看| 97超碰精品成人国产| 欧美 亚洲 国产 日韩一| 国产一区二区在线观看日韩| 久久毛片免费看一区二区三区| 亚洲综合精品二区| 一区在线观看完整版| 精品人妻在线不人妻| 美女内射精品一级片tv| 中文欧美无线码| 精品视频人人做人人爽| 丝袜美足系列| 欧美精品一区二区免费开放| 久久精品熟女亚洲av麻豆精品| 亚洲高清免费不卡视频| 成人手机av| 精品一品国产午夜福利视频| 美女内射精品一级片tv| 亚洲美女黄色视频免费看| 亚洲国产看品久久| 久久午夜福利片| 亚洲美女黄色视频免费看| 久久婷婷青草| 美国免费a级毛片| av福利片在线| 国产成人午夜福利电影在线观看| 欧美人与性动交α欧美软件 | 久久精品熟女亚洲av麻豆精品| 王馨瑶露胸无遮挡在线观看| 国产精品无大码| 成年女人在线观看亚洲视频| 咕卡用的链子| 欧美日韩精品成人综合77777| 热99久久久久精品小说推荐|