• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A New Scheme for Vortex Sheet Diffusion in Fast Vortex Methods

    2019-07-08 03:54:30GUXinzhongLIShunming
    船舶力學(xué) 2019年6期

    GU Xin-zhong,LI Shun-ming

    (1.College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;2.Department of Vehicle Engineering,Nanhang Jincheng College,Nanjing 211156,China)

    Abstract:Following Ploumhans,a fast vortex method was developed for the analyses of three-dimensional unsteady flow.A new diffusion method is proposed for the vorticity creation close to a 3D body surface,in which a number of vortex particles are introduced into the flow field to satisfy the nonslip boundary condition on the boundary.An adaptive Fast Multipole Method(FMM)is used for velocity and its gradient computing to achieve high accuracy at a reasonable cost.The new scheme is applied to the simulations of starting flow around a sphere at Re=300 and 500 for investigating the feasibility.

    Key words:vortex methods;vortex sheet diffusion;adaptive fast multipole method;unsteady flow

    0 Introduction

    In the past three decades,the vortex methods have been developed and been applied to the analysis of complex,unsteady flows.Leonard and Chua proposed the application of simulations for interaction between interlocked vortex rings and between two colliding vortex rings[1].Mas-Gallic[2]presented an accurate method to simulate viscous effect by using the particle strength exchange scheme.Mansfield et al[3]simulated the collision of coaxial vortex rings by using Lagrangian vortex element methods integrated with a dynamic eddy viscosity model.Baoshan et al[4]used the 2D vortex-boundary element method to simulate the unsteady im peller-diffuser interaction in a diffuser pump.Fukuda et al[5]calculated the inclined collision of a pair of vortex rings by using vortex method,with a redistribution model of core spreading method.

    For a practical computation,the number of vortex particles has to increase due to the requirement of higher resolution of turbulence structures.And it will lead to the computational time and storage cost increase drastically.To solve this problem,Koumoutsakos et al[6]and Winckelmans et al[7]introduced the fast multipole method(FMM)into the vortex methods,while Fernandez et al[8]and Ploumhans et al[9]enhanced the computation speed with the parallel computation technique.

    Many of those works have made the vortex methods applicable to high-resolution simulations of flow with viscous boundaries.Kamemoto and Ojima[10-11]applied the vortex method to the simulation of flow around a moving human body and a swimming fish.

    In this paper,we presented a new scheme for vortex particles creation in the vicinity of the body coupled with the adaptive fast multipole method,for further improving the computation speed and enhancing the calculation efficiency.

    1 Viscous vortex methods

    1.1 Basic formulas

    Three-dimensional incompressible flow is governed by the vorticity equation:

    where u( x, )

    t is the velocity vector,ν is the kinematic viscosity and ω=▽×u is the vorticity.

    In viscous vortex methods,the vorticity field is represented by a set of Gaussian smoothing vortex particles.

    where xi,αiand σidenote the position,strength and smoothing parameter of particle i.

    In order to satisfy the nonslip boundary condition on solid surfaces,a Dirichlet condition on the normal component of ω states that the tangential derivative of the velocity is zero at the solid boundary,

    And the Neumann conditions on the tangential components of ω express the cancellation of the slip velocity at the wall.The velocity can be written as:

    where U∞is the free stream velocity and ψ is the stream function.The relationship between ψ and ω is as follows,

    1.2 Numerical implementation of the method

    The vortex method described above is implemented essentially in following stages:

    (1)Computing the local velocity u and its gradient▽u follows from the Biot-Savart law.

    This is done efficiently by using the adaptive FMM and will be discussed in another section below.

    (2)Convecting all the particles and changing their strength according to the following formulas.

    The first term of right-hand side of Eq.(8)represents the contribution from particle stretching,and the second one involves the strength exchanging due to viscous diffusion.

    (3)After the vortex particles'convection and strength exchange,there is a slip velocity Uslip,induced by the free stream and by all vortex particles at the solid surface.Here we assume that a laminar boundary layer is created over the surface due to the Uslip.Once the slip velocity has been determined,the boundary layer is divided into a set of vorticity layers and then replaced by equivalent discrete vortex particles.

    (4)Direct application of the vortex dynamics yields the force F acting upon a body,approximating to the time derivative of the linear impulse[12]:

    where ρ is the density and V is the volume occupied by the fluid.Then the force coefficients can be obtained:

    (5)To keep overlap among vortices,the old particles must be replaced by new ones on a regular lattice every few steps.

    2 Adaptive FMM

    The original FMM enables calculation of long-ranged force in the n-body problems with high accuracy for an acceptable cost[13].The new version FMM in three dimensions is applicable to compute pairwise interactions between massive particles[14].Now,this method is used to compute the induced velocity of vortex particles.(Fig.1)

    Fig.1 Fast multipole algorithm

    In this section,the basic FMM formulas are listed,which will be used to implement the adaptive FMM.And the more detailed discussion can be found in Ref.[14].

    2.1 Basic FMM formulas

    The local velocity without smoothing function at x can be expanded as:

    The functions Sn,m,Un,m,Rn,mand Tn,mare solid harmonic functions[15].And the multipole expansion center can be shifted from ycto yc′according to the M2M translation:

    The multipole moments can be translated to the local expansion coefficients using the M2L translation:

    In the new FMM formulations,the multipole expansions can also be translated to local expansions via the exponential expansion.Then velocity at x can be computed by

    where S(ε) is determined by the required accuracy,αm,k=2πm/Mk,d is the cube length.And Wk,mis the exponential expansion coefficients,can be obtained from multipole moments using the M2X translation,

    where ωkis the weight,λkis the node and Mkis the integer array.The exponential expansion center is then shifted from point ycto point x1according to X2X translation:

    Then,the coefficients for local expansion centered at x1can be obtained from the exponential expansion using X2L translation:

    The local expansion centered at x1can be translated to x1′using the L2L formula:

    2.2 Adaptive FMM

    An adaptive FMM,based on the diagonal form translation and adaptive tree structure,enables accurate representation of a complex shape bluff body and can adapt to the changing of computation domain.Thus,it is suitable to vortex particle simulation.However,little such research has been conducted before.To address this gap,this study focuses on the efficient computation of velocity field and its gradient with the adaptive FMM.

    To run the algorithm,a hierarchical tree of boxes is constructed by dividing the 3D computational domain(a box containing all boundary elements and discrete vortices)into smaller and smaller sub-domains[15],as shown in Fig.2.

    For each box b on level l(l≥2),four interaction lists are defined as indicated in Fig.3.To perform M2X and X2L translations,boxes in list 2 need to be further divided into six sublists associated with six coordinate directions[16].

    Fig.2 The tree structure

    Fig.3 Four lists associated with box b

    Adaptive FMM Algorithm is as follows:

    (1)Initialization

    Choosing calculate precision ε,the order of the multipole expansions p and the maximum number s of vortex particles allowed in a childless box.

    (2)Step 0

    Loading the data files,defining the initial computational domain and building the adaptive tree structure.

    (3)Upward pass

    For each childless box b,calculating multipole moments at its center from all vortex particles in b according to Eq.(12a).Recursively move the moments from b's center to its parents'using M2M(Eq.13).Then,a pth-order multipole expansion is generated for each box b at its center,representing the contribution from all the vortex particles in box b to particles in its list 1 and 3.

    (4)Downward pass

    Step A:Starting from level 2 to the lowest level:

    (a)For each box b,if it contains more than p2particles,generate a local expansion at its center from all vortex particles in its list 4 boxes using Eq.(12b).Otherwise,directly valuate the induced velocity at each particle point according to Eq.(6).

    (b)For each box b,translate the multipole moments of b to the local coefficients of box c in list 2 of b using M2X,X2X and X2L.

    (c)Translating local coefficients of box b to the local coefficients of b's children using L2L translation.

    After the sub-step A,local coefficients for each childless box are formed and added together,which can be used to calculate the velocity and its gradient.

    Step B:

    (a)For each childless box b,calculate the velocity of each particle contained using local expansions,according to Eq.(11b).

    (b)For each childless box b,directly compute the velocity at each particle point due to all particles in b's list 1 boxes using Eq.(6).

    (c)For each box childless b,if the number of particles contained is greater than p2,calculate the velocity field by using multipole expansions of b's list 3 boxes using Eq.(11a).Otherwise,directly valuate the velocity at each particle point according to Eq.(6).

    3 Vortex sheet diffusion

    There are many numerical procedures simulating vortex sheet diffusion in vortex methods.The most widely used one,named Particle Strength Exchange(PSE)method,is performed by a kernel technique[17].Although the convergence of this method has been proved and its accuracy has been investigated[18-19].The PSE method has some disadvantages in practice:it is generally time-consuming to calculate the strength of vortex panels by solving the boundary integral equations;the circulation of particles is not always conservative for complicated geometries.Therefore,we propose a much simpler and more efficient method for vortex particles creating on the solid surface.

    3.1 Introduction of vortex sheets

    In vortex methods,the surface of the solid body is discretized by a number of computational panels with initial strength γ,determined by the free stream and by all vortex particles.Obviously,after the vortex particles'convection,stretch and diffusion,a slip velocity is presented on the body surface.The variation of panel strength Δγ caused by the slip velocity will result in a vorticity flux near the surface.To simulate the diffusion process,the vorticity is emitted into the flow by properly distributing of vortex particles in the vicinity of the body in present method.

    For simplification,the slip velocity is considered to be uniform over each panel here.Sup-posing further that all the vortex particles are created(due to slip velocity)in a laminar boundary layer over the flat computational panels.If assuming the velocity of potential flow is constant,the boundary-layer equations can be simplified to[20]:

    With the boundary conditions

    where u and v denote the velocity in the x and y direction,respectively.By introducing a new similarity variable η,we finally get the single ordinary differential equation,

    And the boundary conditions are given in term of η as:

    Fig.4 Introduction of vortex sheets

    The flow field is considered to be two-dimensional for convenience.The boundary layer is divided into n sub-layers with equal thickness and then replaced with n vortex sheets,as shown in Fig.4.According to the relation of continuity of flow and the nonslip condition on the solid surface,the circulation Γiof vortex sheet i is

    where L is the characteristic length of the surface panel.The distance yi0of vortex sheet i from the solid surface can be determined as:

    where s stands for the number of numerical solution between hiand hi+1.

    3.2 Replacement with vortex particles

    To simplify the evaluation of interaction between vortex sheets and particles,all the vortex sheets are replaced by equivalent discrete spherical vortex particles,with a Gaussian distribution of vorticity around their centers.

    As an example,a triangular vortex sheet is used to illustrate the computation as shown in Fig.5.The vortex sheet is replaced by three particles with equal strength α1=α2=α3=γi·Si/3.And their positions are given by:

    Fig.5 Replacement with vortex particles

    Further,all the particles on the same vortex sheet i are forced to have equal normal convective velocity vi0across the shear layer,which can be obtained based on the solution of Blasius'equation[20].

    3.3 PSE method versus the present method

    We will now test the new scheme on 2D vortex panels with uniform strength Δγ and length l,located on the x axis and diffused toward the positive y direction,as shown in Fig.6.The computational grid is established with dx=dy=0.01.The parameters of the simulation are:l=0.01,Δγ=0.4,Δt=0.05 and ν=0.002.

    Given Δγ,ν and l,we can figure out the thickness of laminar boundary layer h=0.05.Then the boundary layer is divided into five sub-layers and replaced with equivalent vortex sheets.The computed results of strength,position and normal velocity for each vortex sheet are shown in Tab.1.The sum of circulation is about 3.97×10-3,very close to the exact solution of 4.0×10-3.

    Fig.6 Vortex panels,vortex sheets and vortex particles

    Tab.1 Computed results of vortex sheets

    In the PSE method,the particle i located at(xi, yi)receives,from the vortex panel j,an amount of circulation given by[21]:

    As the number of vortex panels j=1,3,5 and 7,the computed results are provided in Tab.2.As shown by the data,the sum of received circulation is consistent with the previous result,when j is greater than 5.

    Tab.2 Computed results of vortex particles

    In conclusion,the two methods simulate the diffusion process by creating vortex particles in different ways.Comparing with the mathematically deduced method(PSE),the new one avoids solving a large-scale system of linear equations and has an explicit physical meaning.Besides,the proposed scheme has better convergence characteristics even for the irregular grid.Thus,a non-uniform meshing technique can be adopted to adaptive complex solid surface.It can not be denied that,due to ignoring of influence between nascent vortex particles,vorticity distribution around the boundary surface is not as‘smooth'as in the PSE methods.

    4 Application examples

    Simulations for an impulsively started sphere are performed to validate the present method,for these flows has been extensively studied[9,22-25].

    4.1 Re=300

    We first computed the flow at a Reynolds number Re=U∞D(zhuǎn)/v=300,with U∞along the positive x direction.The sphere surface was discretized into 1 180 triangular elements.And the covering vorticity layer was divided into five sub-layers for simulating the diffusion process.The time step was set as ΔT=ΔtU∞/D=0.005.To keep particles core overlap,redistribution was performed every five steps.The computation was completed at T=tU∞/D=75 as the number of particles reached about 365 000.

    As shown in Fig.7,a vortex ring adjacent to the rear surface of the sphere is formed at time T=3.Being convected,the axisymmetric vortex ring gradually becomes a non-axisymmetric,double-thread wake extended to the downstream.The hairpin vortex generated at time T=8 and the complete extent of wake at the end of simulation(T=75)are also provided in the figure.And the simulated wake of vortex structure is subject to the same trend as the experimental study conducted by Johnson[25].

    Fig.7 Instantaneous flow pattern represented by vortex particles at Re=300

    Fig.8 Time history of fluid force coefficients at Re=300

    Fig.8 shows the comparisons between measured and calculated force coefficients CDand CLversus time.The force acting on the sphere oscillates with the change of wake structure and gradually becomes clearly periodic.And the force coefficients are roughly consistent with previous numerical solutions and experimental investigation.

    Tab.3 Comparison of force coefficients and Strouhal number with previous results

    The computed average values of CDand CLare 0.702 and-0.069,with respective oscillation amplitudes of 1.53×10-2and 7.26×10-2,and the Strouhal number is St=fD/U∞=0.131.Comparing with the experimental data,the mean values of CD,CLand Stare calculated with a reasonable level of accuracy,but ΔCDand ΔCLare significantly overestimated.Because the hydrodynamic force excitation from the turbulent flow is computed by evaluating large numbers of particle interactions,which results in the incorrect high frequency components.Obviously,the simulation of Ploumhans et al can achieve a high accuracy,and Tomboulides et al gave a more accurate result,but our method can substantially improve the computing efficiency.

    4.2 Re=500

    The flow at Re=500 was also calculated with the same computational grid on the sphere surface as the former case.Most of the simulation parameters were identical to those used in Section 4.1 except the thickness of vorticity layer.The simulation was completed at T=70,with the number of particles remained within the computational domain up to about 759 500.

    Fig.9 Instantaneous flow pattern represented by vortex particles at Re=500

    Fig.10 Time history of fluid force coefficients at Re=500

    The time histories of drag and lift coefficients are provided in Fig.10.Clearly,they do not become periodic.The achieved CLmatches very well with the calculated lift coefficient in Ref.[9],but the CDis slightly higher than that obtained by Ploumhans et al.

    5 Conclusions

    An efficient vortex method with a new scheme for vortex sheet diffusion,accelerated by the adaptive fast multipole method,was proposed and applied to the computation of unsteady flows around a sphere.The following conclusions can be obtained:

    (1)The adaptive fast multipole method is used to calculate the velocity and its gradient from the vorticity in O (N p3/2)operations,computational efficiency is greatly improved.

    (2)The new diffusion scheme is used in three sub-steps:(i)vorticity layer computation(ii)equivalent to discrete vortex sheets and(iii)replaced with nascent vortex particles.

    (3)The flows past a sphere are computed at Reynolds number Re=300 and 500 using the proposed method.And a reasonable agreement between our results and that from previous experimental and numerical work is obtained.

    It is found that the method developed in the present study is very efficient and convenient for the investigation of bluff body-fluid interactions.For the sake of low discretization resolution and discontinuity of vorticity distribution,our results have slightly lower accuracy in contrast to other simulations.

    最新中文字幕久久久久| 欧美xxxx性猛交bbbb| 青春草亚洲视频在线观看| 草草在线视频免费看| 一区在线观看完整版| 日本-黄色视频高清免费观看| 国产乱人偷精品视频| 丝袜在线中文字幕| 国产视频内射| 久久久久精品性色| 能在线免费看毛片的网站| 亚洲四区av| 久久97久久精品| 又粗又硬又长又爽又黄的视频| 亚洲精品日韩在线中文字幕| 成人毛片60女人毛片免费| 国产av码专区亚洲av| 国产成人午夜福利电影在线观看| 超碰97精品在线观看| 精品人妻熟女av久视频| 熟女人妻精品中文字幕| 夜夜骑夜夜射夜夜干| 天堂8中文在线网| 啦啦啦中文免费视频观看日本| 精品久久久精品久久久| 男女国产视频网站| 丰满迷人的少妇在线观看| 在线观看国产h片| 国产亚洲最大av| 国产片内射在线| 黑人欧美特级aaaaaa片| 黑人欧美特级aaaaaa片| 黄色毛片三级朝国网站| 在线天堂最新版资源| 99国产精品免费福利视频| 91精品三级在线观看| 另类亚洲欧美激情| 伊人久久精品亚洲午夜| 亚洲性久久影院| 亚洲第一av免费看| 乱码一卡2卡4卡精品| 高清毛片免费看| 亚洲精品456在线播放app| 欧美丝袜亚洲另类| 亚洲人成网站在线播| 三上悠亚av全集在线观看| 亚洲国产欧美日韩在线播放| a级毛色黄片| 在线免费观看不下载黄p国产| 成人无遮挡网站| 99久国产av精品国产电影| 亚洲成人手机| 午夜老司机福利剧场| 亚洲四区av| 最近手机中文字幕大全| 夜夜骑夜夜射夜夜干| 亚洲精品日本国产第一区| 国产精品久久久久久精品电影小说| 啦啦啦中文免费视频观看日本| 欧美少妇被猛烈插入视频| 多毛熟女@视频| 又粗又硬又长又爽又黄的视频| 69精品国产乱码久久久| 观看av在线不卡| 日韩精品有码人妻一区| 亚洲熟女精品中文字幕| 成人黄色视频免费在线看| 亚洲天堂av无毛| 只有这里有精品99| 国产黄频视频在线观看| 大香蕉久久成人网| 国产午夜精品久久久久久一区二区三区| 高清午夜精品一区二区三区| 成人亚洲欧美一区二区av| 狠狠婷婷综合久久久久久88av| 一个人看视频在线观看www免费| 欧美97在线视频| h视频一区二区三区| 成人午夜精彩视频在线观看| 欧美变态另类bdsm刘玥| h视频一区二区三区| 日韩成人伦理影院| 18+在线观看网站| 国产淫语在线视频| 考比视频在线观看| 另类亚洲欧美激情| 国产一区二区三区综合在线观看 | 在线观看免费高清a一片| 99久久综合免费| 一区二区三区免费毛片| 最后的刺客免费高清国语| 一级二级三级毛片免费看| 免费观看性生交大片5| 午夜91福利影院| 最近手机中文字幕大全| 国产成人aa在线观看| 久久人人爽人人片av| 狂野欧美激情性bbbbbb| 精品人妻熟女av久视频| 亚洲欧美日韩另类电影网站| 久久99热6这里只有精品| 免费看av在线观看网站| 久久精品久久久久久久性| 纯流量卡能插随身wifi吗| 久久久久久久久久久丰满| 男女无遮挡免费网站观看| 另类亚洲欧美激情| 高清视频免费观看一区二区| 麻豆成人av视频| 黑丝袜美女国产一区| 久久人妻熟女aⅴ| 大陆偷拍与自拍| 视频在线观看一区二区三区| 亚洲精品日韩在线中文字幕| 69精品国产乱码久久久| 国产欧美日韩综合在线一区二区| 我的老师免费观看完整版| 亚洲精品亚洲一区二区| 国产黄频视频在线观看| 亚洲av成人精品一二三区| 各种免费的搞黄视频| 制服人妻中文乱码| 91在线精品国自产拍蜜月| 精品99又大又爽又粗少妇毛片| 国产亚洲精品久久久com| 久久久久网色| 久久精品夜色国产| 如何舔出高潮| 晚上一个人看的免费电影| 国产亚洲精品第一综合不卡 | 国产乱人偷精品视频| 日韩一区二区视频免费看| 久久久久久久久久成人| 国产免费现黄频在线看| 男女免费视频国产| 亚洲精品,欧美精品| 日韩中字成人| 日韩制服骚丝袜av| 亚洲欧洲日产国产| 久久青草综合色| 中文字幕精品免费在线观看视频 | 国产成人a∨麻豆精品| 国产免费一区二区三区四区乱码| 午夜老司机福利剧场| 少妇 在线观看| 蜜桃国产av成人99| 在线观看人妻少妇| 久久久a久久爽久久v久久| 考比视频在线观看| 亚洲经典国产精华液单| 国产精品一区二区在线观看99| 精品少妇黑人巨大在线播放| 大陆偷拍与自拍| 婷婷色麻豆天堂久久| 最黄视频免费看| 男女高潮啪啪啪动态图| 2021少妇久久久久久久久久久| 亚洲欧美日韩另类电影网站| 久久久久久久久久久丰满| 欧美激情 高清一区二区三区| 91精品一卡2卡3卡4卡| 久久精品国产亚洲av涩爱| 国产成人精品久久久久久| 亚洲色图 男人天堂 中文字幕 | 另类亚洲欧美激情| 国产免费现黄频在线看| 三级国产精品欧美在线观看| 国产精品无大码| www.色视频.com| 丰满迷人的少妇在线观看| 99九九在线精品视频| 精品人妻熟女av久视频| 亚洲精品一区蜜桃| 国产精品人妻久久久久久| 伦精品一区二区三区| 人成视频在线观看免费观看| 久久久久精品久久久久真实原创| 免费播放大片免费观看视频在线观看| 中文精品一卡2卡3卡4更新| 免费大片18禁| 亚洲精品日本国产第一区| 欧美成人精品欧美一级黄| 亚洲欧美色中文字幕在线| 国产在线视频一区二区| 国产成人精品久久久久久| 最黄视频免费看| 国国产精品蜜臀av免费| 亚洲色图综合在线观看| 欧美精品亚洲一区二区| 亚洲精品乱码久久久v下载方式| 少妇精品久久久久久久| 午夜免费男女啪啪视频观看| 看免费成人av毛片| 交换朋友夫妻互换小说| 国产一区二区在线观看av| 狂野欧美激情性xxxx在线观看| 在线观看免费高清a一片| 国产亚洲一区二区精品| 在线观看一区二区三区激情| 欧美最新免费一区二区三区| 亚洲av欧美aⅴ国产| 亚洲怡红院男人天堂| 免费大片18禁| 久久久久国产精品人妻一区二区| 亚洲成人一二三区av| 美女中出高潮动态图| 久久久国产精品麻豆| 久久99精品国语久久久| 国产精品免费大片| 91精品伊人久久大香线蕉| 丰满饥渴人妻一区二区三| 欧美精品高潮呻吟av久久| 女性生殖器流出的白浆| 国产精品偷伦视频观看了| 国产亚洲午夜精品一区二区久久| 久久午夜综合久久蜜桃| 午夜日本视频在线| 在线观看三级黄色| 一区二区三区四区激情视频| 久久精品国产亚洲网站| 亚洲精品乱码久久久v下载方式| 男人添女人高潮全过程视频| 日韩熟女老妇一区二区性免费视频| 国产永久视频网站| 一本—道久久a久久精品蜜桃钙片| 人人澡人人妻人| 日韩一区二区三区影片| 赤兔流量卡办理| 日韩av不卡免费在线播放| 国产国拍精品亚洲av在线观看| 日本爱情动作片www.在线观看| 国产 精品1| 香蕉精品网在线| 十八禁网站网址无遮挡| 亚洲色图 男人天堂 中文字幕 | 色94色欧美一区二区| 这个男人来自地球电影免费观看 | 午夜av观看不卡| 91久久精品国产一区二区三区| 热re99久久国产66热| 熟妇人妻不卡中文字幕| 丝袜喷水一区| 夫妻性生交免费视频一级片| 欧美日韩在线观看h| 一级二级三级毛片免费看| 在线免费观看不下载黄p国产| 亚洲精品中文字幕在线视频| 80岁老熟妇乱子伦牲交| 22中文网久久字幕| 免费不卡的大黄色大毛片视频在线观看| 男女高潮啪啪啪动态图| 插阴视频在线观看视频| 日本91视频免费播放| 99视频精品全部免费 在线| 免费观看a级毛片全部| 18禁在线播放成人免费| 欧美3d第一页| 在线精品无人区一区二区三| 欧美亚洲 丝袜 人妻 在线| 有码 亚洲区| 老司机影院成人| 久久国产精品男人的天堂亚洲 | 亚洲精品美女久久av网站| 国产精品一国产av| 搡老乐熟女国产| 国产乱来视频区| 国产午夜精品一二区理论片| a级毛片在线看网站| 一边亲一边摸免费视频| 下体分泌物呈黄色| 秋霞伦理黄片| 国产精品 国内视频| 久久久国产一区二区| 免费观看的影片在线观看| 国产精品麻豆人妻色哟哟久久| 免费高清在线观看日韩| 七月丁香在线播放| 国产免费视频播放在线视频| 欧美 日韩 精品 国产| 国产一区二区三区综合在线观看 | 蜜臀久久99精品久久宅男| 久久久精品94久久精品| 免费黄色在线免费观看| 两个人免费观看高清视频| 亚洲av中文av极速乱| 伦理电影免费视频| 一边摸一边做爽爽视频免费| 亚洲人成网站在线观看播放| 亚洲国产精品一区二区三区在线| av网站免费在线观看视频| 成人毛片a级毛片在线播放| 精品少妇黑人巨大在线播放| 久久久久久久国产电影| 国产av国产精品国产| 日韩av在线免费看完整版不卡| 欧美人与善性xxx| 国产成人精品久久久久久| 国产国拍精品亚洲av在线观看| 老司机影院成人| 久热这里只有精品99| 2022亚洲国产成人精品| 成人漫画全彩无遮挡| 香蕉精品网在线| 精品酒店卫生间| 成人国产麻豆网| 日韩免费高清中文字幕av| 久久国产精品男人的天堂亚洲 | 99视频精品全部免费 在线| 精品午夜福利在线看| 欧美 亚洲 国产 日韩一| 久久久a久久爽久久v久久| 久久人妻熟女aⅴ| 国产亚洲欧美精品永久| 精品人妻熟女av久视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 人人妻人人澡人人看| 亚洲欧美日韩卡通动漫| 免费黄网站久久成人精品| 99视频精品全部免费 在线| 国产男人的电影天堂91| 色婷婷久久久亚洲欧美| 国产午夜精品一二区理论片| 免费人妻精品一区二区三区视频| 2018国产大陆天天弄谢| 韩国av在线不卡| 久久av网站| 亚洲av成人精品一二三区| 丰满少妇做爰视频| av黄色大香蕉| 纵有疾风起免费观看全集完整版| 一级a做视频免费观看| 精品人妻熟女av久视频| a级片在线免费高清观看视频| 午夜福利网站1000一区二区三区| av又黄又爽大尺度在线免费看| 亚洲精品日本国产第一区| 少妇被粗大的猛进出69影院 | 在线观看一区二区三区激情| 熟女电影av网| 欧美国产精品一级二级三级| 久久久久久久大尺度免费视频| 亚洲经典国产精华液单| 黑人高潮一二区| 少妇 在线观看| 女人久久www免费人成看片| 国产成人91sexporn| 在线 av 中文字幕| 亚洲久久久国产精品| 精品国产国语对白av| 国产日韩欧美亚洲二区| 欧美三级亚洲精品| 国产精品一区二区在线不卡| 亚洲国产欧美日韩在线播放| 欧美日韩一区二区视频在线观看视频在线| 免费播放大片免费观看视频在线观看| 嫩草影院入口| 美女中出高潮动态图| 国产一区二区三区av在线| 能在线免费看毛片的网站| 国产淫语在线视频| 欧美精品一区二区免费开放| 亚洲色图综合在线观看| 国产色婷婷99| 欧美精品一区二区大全| 中文字幕最新亚洲高清| 黑人巨大精品欧美一区二区蜜桃 | 欧美激情国产日韩精品一区| 日韩av不卡免费在线播放| 人人妻人人添人人爽欧美一区卜| 国产乱来视频区| 亚洲成人av在线免费| 激情五月婷婷亚洲| 啦啦啦啦在线视频资源| 黄色配什么色好看| 成人国语在线视频| 亚洲精品国产av成人精品| 少妇的逼水好多| 日韩不卡一区二区三区视频在线| 好男人视频免费观看在线| 精品久久久噜噜| 国产极品天堂在线| 精品少妇内射三级| 久久狼人影院| 如日韩欧美国产精品一区二区三区 | 汤姆久久久久久久影院中文字幕| av一本久久久久| 亚洲av在线观看美女高潮| 伊人亚洲综合成人网| 久久99热这里只频精品6学生| 国产爽快片一区二区三区| 看十八女毛片水多多多| 高清av免费在线| 久久久久久久大尺度免费视频| 成人免费观看视频高清| 亚洲综合色网址| 国产欧美日韩一区二区三区在线 | 在线观看美女被高潮喷水网站| 18禁动态无遮挡网站| 男女免费视频国产| 天美传媒精品一区二区| 午夜影院在线不卡| 国产 一区精品| 国产精品熟女久久久久浪| 亚洲,欧美,日韩| 大码成人一级视频| 亚洲成人一二三区av| 国产精品久久久久久久电影| 18禁在线播放成人免费| 久久久a久久爽久久v久久| 久久久久久久久久久久大奶| 高清不卡的av网站| 国产色婷婷99| 日本色播在线视频| 2021少妇久久久久久久久久久| 久久狼人影院| 最黄视频免费看| 亚洲国产色片| 国产精品一区二区三区四区免费观看| 亚洲伊人久久精品综合| 日韩 亚洲 欧美在线| 久久女婷五月综合色啪小说| 久久ye,这里只有精品| 97在线人人人人妻| 91国产中文字幕| 热99国产精品久久久久久7| 麻豆成人av视频| 日韩大片免费观看网站| 妹子高潮喷水视频| 肉色欧美久久久久久久蜜桃| 丰满迷人的少妇在线观看| 国产日韩欧美在线精品| 欧美bdsm另类| 一边摸一边做爽爽视频免费| 插逼视频在线观看| 国产成人av激情在线播放 | 99久久精品一区二区三区| 国产伦精品一区二区三区视频9| 男人爽女人下面视频在线观看| 少妇被粗大的猛进出69影院 | 看十八女毛片水多多多| 欧美少妇被猛烈插入视频| 亚洲图色成人| 日本色播在线视频| 久久久久网色| 大香蕉久久网| 久久影院123| 成人综合一区亚洲| 少妇人妻 视频| 亚洲精品中文字幕在线视频| 91久久精品电影网| 99九九在线精品视频| 在线播放无遮挡| 日日撸夜夜添| 国产精品久久久久久久久免| 91午夜精品亚洲一区二区三区| 精品少妇久久久久久888优播| 青青草视频在线视频观看| 韩国av在线不卡| 精品熟女少妇av免费看| 日日爽夜夜爽网站| 另类亚洲欧美激情| 亚洲精品色激情综合| 三上悠亚av全集在线观看| 男女啪啪激烈高潮av片| 国模一区二区三区四区视频| 日日摸夜夜添夜夜添av毛片| 大码成人一级视频| 高清毛片免费看| 欧美精品一区二区免费开放| 亚洲欧美中文字幕日韩二区| 日本免费在线观看一区| 高清不卡的av网站| 欧美老熟妇乱子伦牲交| 日本猛色少妇xxxxx猛交久久| 18禁观看日本| 如日韩欧美国产精品一区二区三区 | 国产精品一区二区在线不卡| 欧美精品高潮呻吟av久久| 精品国产一区二区久久| 妹子高潮喷水视频| 22中文网久久字幕| 我要看黄色一级片免费的| 人人妻人人爽人人添夜夜欢视频| 成人手机av| 性色avwww在线观看| 不卡视频在线观看欧美| 久久久精品94久久精品| 乱人伦中国视频| 午夜av观看不卡| 国产精品国产三级国产专区5o| 插逼视频在线观看| 91精品伊人久久大香线蕉| 91精品三级在线观看| 99九九线精品视频在线观看视频| 国产亚洲精品第一综合不卡 | 免费人妻精品一区二区三区视频| 能在线免费看毛片的网站| 看免费成人av毛片| 国产高清国产精品国产三级| 亚洲丝袜综合中文字幕| 国产精品秋霞免费鲁丝片| 成人二区视频| 18在线观看网站| 国产精品一区www在线观看| 国产av精品麻豆| 亚洲精品av麻豆狂野| 亚洲精品美女久久av网站| 观看美女的网站| 在线播放无遮挡| 夫妻午夜视频| av黄色大香蕉| av福利片在线| 香蕉精品网在线| 国产一区二区三区av在线| 亚洲精品成人av观看孕妇| 国产免费一级a男人的天堂| 免费观看的影片在线观看| 亚洲成人av在线免费| 卡戴珊不雅视频在线播放| 免费看光身美女| 久久综合国产亚洲精品| 在线播放无遮挡| 欧美国产精品一级二级三级| 男女无遮挡免费网站观看| 精品久久久久久久久av| av黄色大香蕉| 亚洲国产av影院在线观看| 乱人伦中国视频| 国产欧美日韩综合在线一区二区| 日韩 亚洲 欧美在线| 男的添女的下面高潮视频| 国内精品宾馆在线| 99国产综合亚洲精品| 日韩免费高清中文字幕av| 免费高清在线观看日韩| 王馨瑶露胸无遮挡在线观看| 欧美激情极品国产一区二区三区 | 9色porny在线观看| 国产不卡av网站在线观看| 精品久久国产蜜桃| 久久这里有精品视频免费| 日本猛色少妇xxxxx猛交久久| av在线app专区| av免费在线看不卡| videos熟女内射| 精品国产一区二区久久| 亚洲精品乱码久久久v下载方式| 欧美人与性动交α欧美精品济南到 | 老司机亚洲免费影院| 亚洲在久久综合| 国产av国产精品国产| 国产精品一区二区三区四区免费观看| 久久久久人妻精品一区果冻| 人人妻人人爽人人添夜夜欢视频| 亚洲欧洲精品一区二区精品久久久 | 亚洲婷婷狠狠爱综合网| 国产高清不卡午夜福利| 欧美日韩国产mv在线观看视频| 在线精品无人区一区二区三| 色视频在线一区二区三区| 国产成人一区二区在线| 黄片播放在线免费| 国产成人freesex在线| 9色porny在线观看| 久久精品国产亚洲av涩爱| 综合色丁香网| 国产在线视频一区二区| 国产高清有码在线观看视频| 久久久久国产网址| 日日摸夜夜添夜夜爱| 国产男女超爽视频在线观看| 亚洲精品国产av成人精品| 永久网站在线| 曰老女人黄片| 国产精品国产三级专区第一集| 国产精品一区www在线观看| 欧美精品一区二区大全| 卡戴珊不雅视频在线播放| 少妇被粗大的猛进出69影院 | 亚洲精品久久成人aⅴ小说 | 国产片特级美女逼逼视频| 91久久精品电影网| 在线免费观看不下载黄p国产| 亚洲av中文av极速乱| 久久99热6这里只有精品| 91aial.com中文字幕在线观看| 啦啦啦啦在线视频资源| 久久精品久久久久久噜噜老黄| 美女视频免费永久观看网站| 日本wwww免费看| 国产亚洲av片在线观看秒播厂| av免费在线看不卡| 大又大粗又爽又黄少妇毛片口| 又粗又硬又长又爽又黄的视频| 一级爰片在线观看| a级毛片免费高清观看在线播放| 秋霞伦理黄片| 一级二级三级毛片免费看| 亚洲精品美女久久av网站| 毛片一级片免费看久久久久| 亚洲欧美一区二区三区黑人 | 亚洲精品久久久久久婷婷小说| 欧美精品亚洲一区二区| 超色免费av| 99热这里只有精品一区| 少妇人妻久久综合中文| 91成人精品电影| 多毛熟女@视频| 欧美人与善性xxx| 国产av国产精品国产| 夫妻性生交免费视频一级片| 国产精品嫩草影院av在线观看| 国产av精品麻豆| 在线 av 中文字幕| 最新的欧美精品一区二区|