• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-objective Optimization Design of a Centrifugal Impeller*

    2019-06-18 08:37:08JileiWangJinguangYangYanLiuTianchenZhang
    風(fēng)機(jī)技術(shù) 2019年2期

    Ji-lei WangJin-guang YangYan LiuTian-chen Zhang

    (School of Energy and Power,University of Technology,Dalian,China)

    Abstract:A parameterization method of radial turbomachinery is presented in this paper. Based on this method, a computing code is developed . An optimization platform for a centrifugal impeller is constructed by integrating three modules of the optimization process, namely parameterization, mesh generation and numerical calculation. The commercial optimization software Isight and computational fluid dynamics software NUMECAare used in the present study. The Krain impeller is taken as an example to validate the optimization system, eights parameters that affect the shape of the mean camber line are selected as design variables, and isentropic efficiency and total pressure ratio are set as objective functions. The impeller with better performance is obtained by means of optimization. Results demonstrate the feasibility of the parameterization method and the validity of the integrated optimization platform.

    Keywords:Centrifugal impeller,Parameterization,Optimization

    βblade metal angle

    m'normalized streamwise coordinate

    θnormalized circumferential coordinate

    y(x) unknown actual value

    εrandom error

    Vmmeridional velocity

    DOE design of experiments

    ASA adaptive simulated annealing

    BD baseline design

    OPT optimized design

    0 Introduction

    The centrifugal compressor has the advantages of high pressure ratio per stage,compact structure,wide working range and high efficiency in the case of small mass flow,Hence it is widely used in turbochargers,aero-engine auxiliary power systems and micro gas turbines etc.A centrifugal impeller is one of the core components of these machines,and its performance has great influence on the whole machine.It is a challenging task to design a high pressure ratio centrifugal impeller work in a wide flow conditions with high performance[1].Essentially,the aerodynamic design of impellers is a 3D multi-objective issue.In addition,the phenomenon involved in the impeller passage is fairly complex,many design variables should be considered.There is no analytical expression existed between design variables and performance objectives,the computational fluid dynamics(CFD)tool is usually employed for the performance evaluation of designs.However,the full 3D CFD evaluation is usually very time-consuming,so the design variables should be reduced as much as possible.Overall,the design of high pressure ratio impeller is a typical high dimensional,computationally expensive work.

    In order to acquire better designs and reduce the design cost,automated design optimization method has gained a widespread attention in recent years.Luo et al.[2]conducted the automated design optimization of a typical axial transonic compressor blade using a modified differential evolutionary algorithm.By integrating a genetic algorithm with artificial neutron network,3D design optimization of a centrifugal impeller,as well as a transonic axial blade[4],are carried out by Verstraete et al[3].

    In this paper,commercial optimization software Isight is used to integrate the optimization process,and an integrated optimization design platform for centrifugal impeller is preliminarily built.The Krain impeller is optimized to validate the platform.The subsequent sections are organized as follows:First,Parameterization method and baseline impeller model are introduced.Second,an automated 3D multi-objective design optimization platform is shown.Using the platform,multi-objective aerodynamic design optimization of the Krain impeller is carried out for maximizing isentropic efficiency and total pressure ratio.Finally,some conclusions are summarized.

    1 Parameterization Method and Design Models

    1.1 Parameterization method

    The design space of an optimization process is determined by the parameterization method;thereby,the 3D parameterization of the impeller is an important issue for design optimization.Here,a 3D parameterization method is presented.Figure 1 presents the parameterization process which can be described as follows:

    Step 1:The parameterization of endwall channel is divided into two meridian lines,ie.the hub and shroud.The meridian lines are constructed with a cubic NURBS[5-7]curve of five control points(see Fig 1(a)),where,A,J and E,F are used to fix the inlet and outlet of the impeller respectively,and B,C and D points are used to control the shape of the shroud,and I,H and G for the hub.

    Step 2:The mean camber line is obtained by integrating the blade metal angle along meridian direction.The distribution of blade metal angle is fitted by NURBS curves of four control points(see Fig 1(b)),wherein,the points at the two ends are fixed,the rest of the points are active control points.The thickness distribution is specified by NURBS curves with five control points(see Fig 1(c)).

    Step 3:The pressure or suction side of section profiles are defined by adding the thickness distribution to the camber line.Thus,a reshaped section profile is obtained(see Fig 1(d)).

    Step 4:After finishing the impeller section design,a transformation of the geometry into 3D coordinate has to be done.Three dimensional blade can be stacked from shroud to hub along a straight line at the trailing edge.(see Fig 1(e)).

    Fig.1 Parameterization of(a)end walls,(b)blade metal angle,(c)half thickness distribution,(d)2D blade section profile,(e)3D blade

    1.2 Design model and optimization parameters

    The Krain impeller[8]is a semi-open impeller designed by Dr.Krain of German Aerospace Institute in 1981.Basic information of the impeller can be found in Table 1.The impeller geometry and experimental data are well documented,so it is widely used to validate numerical methods and be optimized a baseline model[9-14].

    Tab.1 The parameters of the krain impeller

    Fig.2 Design variables for optimization process

    2 Basis of Optimization Theory

    2.1 Design of experiments

    The design of experiments(DOE)method is a branch of mathematical statistics,which provides a reasonable and effective method to obtain data information.The main functions of DOE include determining the design variables that influence the design,determining the optimal combination between the design variables,establishing the approximate model,and improving the design robustness.There are many DOE algorithms,and the one chosen here is the Latin Hypercube method,which has an effective capacity of space filling and nonlinear response filling.

    2.2 Approximate model

    The approximate model is a method to find the response relationship between the input and output variables by establishing a mathematical model.In recent years,the approximate model method has been widely applied to the optimization design.Its main advantages include the following three aspects:1)establish the empirical formula for the relationship between the input and the output variables;2)reduce the calculation time of numerical simulation;3)smoothing the response function is helpful to find the global optimization value.The response relationship of the approximate model between the input variable and the output variable is described in the following formula:

    2.3 Optimization algorithm

    The computer numerical optimization has been developing rapidly in recent years.Traditional optimization methods can be divided into two main categories:the direct method and indirect method.However,the mapping relationship between design variables and objective function is more nonlinear and high dimensional,so the designers always try to design optimization methods inspiring by knowledge of other disciplines,and many modern optimization method is put forward,as genetic algorithm,simulated annealing method,artificial neural network,etc.Those methods applied in many engineering fields as the high capability of global optimization.The simulated annealing(SA)method,combines the optimization problem with the thermal equilibrium problems in statistical mechanics analogy.The adaptive simulated annealing(ASA)algorithm used in this paper is an improved method of the traditional SA algorithm.It has the advantages of being able to deal with any system and target function and explore the global optimization solution effectively.

    3 Multi-objective Optimization

    3.1 Design optimization platform

    To combine optimization algorithm with CFD calculation,the first step is to generate a sample database.However,for CFD calculation,the production of each sample needs to be generated by procedures including geometric model construction,mesh generation,and numerical solution etc.,the process involves lots of repetitive work.To integrate the whole optimization flowchart,the commercial optimization software Isight is adopted.With the help of grid generation module Autogrid and flow solver Fine/Turbo module of the commercial CFD software NUMECA,an automated design and optimization process is finally realized,as shown in the Fig.3.

    Fig.3 Design optimization platform

    3.2 Optimization design process

    Through this optimization design process,the isentropic efficiency and total pressure ratio are set as objective functions.The whole optimization process include the following steps:(1)DOE;(2)approximate model;(3)numerical optimization.Firstly,the design variables were analyzed by using the Latin hypercube method.Then,according to the sample database of the experimental design,the approximate model of the mapping relationship between the design variables and the target function is established by using the fourth-order response surface regression analysis method.Finally,the approximate model is iteratively iterated and updated to explore the global optimal solution through the ASA algorithm.The flow chart of the multi-objective design optimization is shown in Fig.4,the specific steps are as follows:

    Step 1:Parameterize the design model and select the design variables.

    The real life and spirit of this magical elf lives forever in your heart, my heart, Mom’s heart and in the hearts and minds of all people who believe in the joy that giving to others brings

    Step 2:The sample database was generated using the DOE method,and the corresponding response value of each sample was obtained by CFD calculation.The error analysis is carried out to ensure the reliability of the results.

    Step 3:According to the sample database,the approximate model of the mapping relation between the design variables and the target function is established by using the fourth-order response surface regression analysis method.

    Step 4:The ASA algorithm is used to search the global optimal solution,and the optimization results are verified by CFD calculation.

    Fig.4 Flow chart of multi-objective design optimization

    4 Optimization Results and Discussion

    4.1 Optimization history and optimized blade geometry

    During the optimization process,10 central processing units(CPUs)are used for parallel computing.As mentioned above,4 control points 8 parameters are selected as design variables,which generate 300 DOE samples to construct the approximate model,and each sample takes about 50 minutes for CFD calculation.To obtain the optimal solution of the object function,10,000 CFD calculations are run for searching the global optimal solution.It takes about 15 days to complete the whole optimization process.The Pareto front of the multi-objective optimization can be seen in Fig.5.As the control points mainly affect the mean camber line,the blade tip and root sections are compared between the optimized and original ones,which is shown in Fig.6.It can be seen from the Fig.6(a)that the root section of the optimized result is basically the same as that of the baseline,only the blade metal angle is changed at the leading edge.The tip section(Fig.6(b))of the optimized result is of more difference from that of the baseline.

    Fig.5 Solution space of the Krain impeller optimization

    Fig.6 Baseline and optimized geometry

    4.2 Aerodynamic optimization analysis

    In order to analyze the advantage of the optimized impeller,overall performance is compared between the optimization and the baseline geometry,and is listed in Table 2.It is found that an approximate 1-point is gained in isentropic efficiency.Then the flow fields of baseline impeller and optimized impeller at design condition are compared.The meridional velocity distribution is shown in Fig.7,and the relative Mach number contour near the shroud is shown in Fig.8.

    Fig.7 Meridional velocity distribution at meridian plane

    Tab.2 Performance comparison at optimization point

    Fig.8 Relative Mach Number at 95%span of blade section

    Fig.9 Entropy distributions at streamwise sections and limiting streamlines near the wall

    Fig.10 Entropy counters at the blade pressure surface

    According to Fig.7,the meridional velocity distribution at pitch averaged meridian plane of the two models are almost the same,but the baseline impeller has a low speed zone at the impeller outlet,the distribution of the meridional velocity is more uniform,causing a better flow filed in the diffuser after optimization.

    From Fig.8,it can be seen that,compared with baseline design,the low speed area of optimized design at rear part of the impeller is obviously smaller than the baseline.

    The limiting streamlines and entropy of the full blade are shown in Fig.9.After optimization,the entropy distribution at streamwise sections is improved obviously at the impeller outlet,the involved high loss area is smaller,and the largest entropy values of high loss at outlet of hub side are also reduced.What's more,the limiting streamlines at the impeller inlet of the optimized one shows a reduced secondary flow phenomenon,which is helpful to reduce the leakage flow interactions between neighboring passages and make a homogeneous flow at the impeller outlet.Although the entropy at the blade shroud is slightly increased,the entropy counter of the blade pressure surface does show improvement,as is shown in Fig.10.

    Figure 11 compares the behavior of the impellers by varying their mass flow.Both the isentropic efficiency and the total pressure ratio of optimized design are increased over the whole working-range.On a whole,the performance of optimized design is greatly improved at both design and off-design conditions.

    Fig.11 Off-design performance comparison

    5 Conclusions

    An automated multi-objective design optimization platform is preliminarily constructed by integrating a parameterization modeling,DOE,approximate model and numerical optimization.Multi-objective design optimization is carried out for a typical centrifugal impeller,the Krain impeller.Some conclusions are obtained:

    1)It is a feasible parameterization method to control the meridian line of the impeller,the blade metal angle and the thickness distribution with NURBS curves to complete the geometric modeling.

    2)The approximate model of the mapping relation between the design variables and the objective function generating from the sample database of DOE can effectively shorten the calculation time.

    3)For the 3D multi-objective aerodynamic design optimization of the Krain impeller,the optimization is successfully run to maximize the isentropic efficiency and the total pressure ratio.The isentropic efficiency is nearly 1%higher than baseline geometry at design condition and the total pressure ratio is also improved obviously.

    4)With above work,the effectiveness and feasibility of the automated optimization platform is demonstrated.

    在线永久观看黄色视频| 中亚洲国语对白在线视频| 午夜福利视频1000在线观看| 久久天躁狠狠躁夜夜2o2o| 国产黄色小视频在线观看| 中亚洲国语对白在线视频| 99久久精品国产亚洲精品| 国产精品永久免费网站| 人妻丰满熟妇av一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 91老司机精品| 又黄又粗又硬又大视频| 亚洲精品在线美女| 精华霜和精华液先用哪个| 在线免费观看的www视频| 最近最新中文字幕大全免费视频| 亚洲av日韩精品久久久久久密| 亚洲熟妇熟女久久| 一个人免费在线观看的高清视频| 少妇裸体淫交视频免费看高清 | 少妇熟女aⅴ在线视频| 熟女电影av网| 夜夜看夜夜爽夜夜摸| 国产区一区二久久| 人妻久久中文字幕网| 欧美日韩亚洲国产一区二区在线观看| 中出人妻视频一区二区| 黑人欧美特级aaaaaa片| 亚洲av电影不卡..在线观看| 亚洲免费av在线视频| 在线看三级毛片| 久久国产精品人妻蜜桃| 女性被躁到高潮视频| 一区二区三区高清视频在线| 午夜福利在线在线| 男女下面进入的视频免费午夜 | 长腿黑丝高跟| 一级片免费观看大全| 国产欧美日韩一区二区精品| 法律面前人人平等表现在哪些方面| 国产区一区二久久| 精品久久久久久久久久久久久 | 777久久人妻少妇嫩草av网站| 亚洲精品国产区一区二| 亚洲 国产 在线| 男人舔女人下体高潮全视频| 岛国视频午夜一区免费看| 国产午夜精品久久久久久| 俄罗斯特黄特色一大片| 老鸭窝网址在线观看| 1024手机看黄色片| 日本三级黄在线观看| 91在线观看av| 国产精品98久久久久久宅男小说| 手机成人av网站| 老熟妇乱子伦视频在线观看| 亚洲成人免费电影在线观看| 久久精品aⅴ一区二区三区四区| 国产午夜精品久久久久久| а√天堂www在线а√下载| 亚洲aⅴ乱码一区二区在线播放 | 日韩欧美免费精品| 日韩有码中文字幕| svipshipincom国产片| 国产亚洲精品一区二区www| 777久久人妻少妇嫩草av网站| 变态另类成人亚洲欧美熟女| ponron亚洲| 亚洲自拍偷在线| 国产亚洲欧美在线一区二区| 久久久久久久精品吃奶| 国产欧美日韩一区二区精品| 制服人妻中文乱码| 成人18禁高潮啪啪吃奶动态图| 久久国产亚洲av麻豆专区| 成人特级黄色片久久久久久久| 亚洲 欧美 日韩 在线 免费| 无限看片的www在线观看| 一级毛片精品| 人人妻人人看人人澡| 一二三四在线观看免费中文在| 成人特级黄色片久久久久久久| 午夜福利18| 午夜免费观看网址| 听说在线观看完整版免费高清| 视频在线观看一区二区三区| 桃红色精品国产亚洲av| 99久久综合精品五月天人人| 成人欧美大片| 日韩中文字幕欧美一区二区| 一a级毛片在线观看| 黄色视频,在线免费观看| 国产精品九九99| 国产精品精品国产色婷婷| 可以在线观看的亚洲视频| 可以在线观看的亚洲视频| 在线av久久热| 中文在线观看免费www的网站 | 欧美国产日韩亚洲一区| 国产亚洲精品一区二区www| 久久久久久人人人人人| 久久精品人妻少妇| 一区二区日韩欧美中文字幕| 欧美性猛交黑人性爽| 大型av网站在线播放| 麻豆成人午夜福利视频| 精品久久久久久久久久久久久 | 大型黄色视频在线免费观看| 久久精品国产亚洲av香蕉五月| 国产精品自产拍在线观看55亚洲| 久久久久九九精品影院| 可以免费在线观看a视频的电影网站| 可以免费在线观看a视频的电影网站| 国产区一区二久久| 精品日产1卡2卡| 91在线观看av| 男人舔女人的私密视频| 亚洲片人在线观看| 天天添夜夜摸| 男女视频在线观看网站免费 | 亚洲成人久久爱视频| 中文字幕最新亚洲高清| xxx96com| 亚洲专区国产一区二区| 亚洲国产看品久久| 国产欧美日韩精品亚洲av| 久久性视频一级片| x7x7x7水蜜桃| 亚洲天堂国产精品一区在线| 国产亚洲精品av在线| 婷婷精品国产亚洲av在线| 哪里可以看免费的av片| 香蕉国产在线看| 黑人巨大精品欧美一区二区mp4| www.自偷自拍.com| 精品久久久久久,| 岛国视频午夜一区免费看| 亚洲欧美一区二区三区黑人| 精品无人区乱码1区二区| 法律面前人人平等表现在哪些方面| 成人欧美大片| 黑人巨大精品欧美一区二区mp4| 精品一区二区三区视频在线观看免费| 亚洲 国产 在线| 亚洲国产精品sss在线观看| 久热这里只有精品99| 久久中文字幕人妻熟女| 国产av又大| 看免费av毛片| 亚洲国产日韩欧美精品在线观看 | 50天的宝宝边吃奶边哭怎么回事| 欧美乱色亚洲激情| 在线视频色国产色| 搡老妇女老女人老熟妇| 亚洲人成电影免费在线| 婷婷丁香在线五月| 中文字幕久久专区| 麻豆一二三区av精品| 久热爱精品视频在线9| 男女床上黄色一级片免费看| 成年女人毛片免费观看观看9| 又黄又粗又硬又大视频| 午夜a级毛片| 在线观看免费日韩欧美大片| 女人爽到高潮嗷嗷叫在线视频| 国产精品久久久av美女十八| 一本久久中文字幕| 91九色精品人成在线观看| 亚洲精品久久成人aⅴ小说| 这个男人来自地球电影免费观看| 色综合婷婷激情| 午夜福利欧美成人| 国产极品粉嫩免费观看在线| 国产伦一二天堂av在线观看| 亚洲成人国产一区在线观看| 欧美丝袜亚洲另类 | 高潮久久久久久久久久久不卡| 少妇粗大呻吟视频| 人成视频在线观看免费观看| 啦啦啦韩国在线观看视频| 欧美日本亚洲视频在线播放| 精品欧美国产一区二区三| 91九色精品人成在线观看| 午夜福利一区二区在线看| 欧美成狂野欧美在线观看| 91在线观看av| 亚洲成人国产一区在线观看| 久久草成人影院| 一区二区三区激情视频| 成在线人永久免费视频| 午夜久久久在线观看| 亚洲五月色婷婷综合| 久久久水蜜桃国产精品网| 中出人妻视频一区二区| 亚洲专区中文字幕在线| 俺也久久电影网| 在线国产一区二区在线| 久久精品aⅴ一区二区三区四区| 欧美成狂野欧美在线观看| 欧美乱色亚洲激情| 国产午夜精品久久久久久| 色av中文字幕| 老司机靠b影院| 日本a在线网址| 夜夜躁狠狠躁天天躁| 亚洲国产毛片av蜜桃av| 久久香蕉激情| av免费在线观看网站| av有码第一页| 国产精品 欧美亚洲| 国产成人欧美| 免费人成视频x8x8入口观看| 99国产精品99久久久久| 男女床上黄色一级片免费看| 成人18禁在线播放| 97碰自拍视频| 俺也久久电影网| av电影中文网址| 久久亚洲精品不卡| 久99久视频精品免费| 成人国产综合亚洲| 亚洲精品美女久久av网站| 日韩一卡2卡3卡4卡2021年| 美女国产高潮福利片在线看| 国产三级黄色录像| 熟女少妇亚洲综合色aaa.| 麻豆久久精品国产亚洲av| 亚洲七黄色美女视频| 一级毛片女人18水好多| 99re在线观看精品视频| 国产亚洲欧美98| 亚洲人成网站在线播放欧美日韩| 免费看美女性在线毛片视频| 国产激情偷乱视频一区二区| 欧美黄色片欧美黄色片| 欧美成人免费av一区二区三区| 精品一区二区三区视频在线观看免费| 国产高清有码在线观看视频 | 国产激情欧美一区二区| 日本 av在线| 热99re8久久精品国产| 女同久久另类99精品国产91| 久久人妻福利社区极品人妻图片| 久久午夜综合久久蜜桃| 18禁黄网站禁片免费观看直播| 这个男人来自地球电影免费观看| 中文资源天堂在线| 久久久久久国产a免费观看| 精品久久久久久久久久久久久 | 1024手机看黄色片| 中文亚洲av片在线观看爽| 午夜亚洲福利在线播放| 男男h啪啪无遮挡| 18禁国产床啪视频网站| 可以免费在线观看a视频的电影网站| 久久精品91蜜桃| 日本a在线网址| 国产精品野战在线观看| 一二三四社区在线视频社区8| 十分钟在线观看高清视频www| 少妇 在线观看| 黑丝袜美女国产一区| 成人18禁高潮啪啪吃奶动态图| 最好的美女福利视频网| 无人区码免费观看不卡| 一进一出抽搐gif免费好疼| 一个人观看的视频www高清免费观看 | 亚洲精品美女久久av网站| 欧美成人免费av一区二区三区| 麻豆久久精品国产亚洲av| 99久久无色码亚洲精品果冻| 97碰自拍视频| av视频在线观看入口| 亚洲av片天天在线观看| 国产成年人精品一区二区| 99热这里只有精品一区 | 精品国内亚洲2022精品成人| 岛国视频午夜一区免费看| 欧美另类亚洲清纯唯美| 亚洲国产精品sss在线观看| 国产极品粉嫩免费观看在线| 国产午夜福利久久久久久| 欧美在线一区亚洲| 欧美绝顶高潮抽搐喷水| 久久久精品欧美日韩精品| 国产在线精品亚洲第一网站| 丰满的人妻完整版| 日韩欧美在线二视频| 村上凉子中文字幕在线| 中文字幕精品亚洲无线码一区 | а√天堂www在线а√下载| 男男h啪啪无遮挡| 亚洲精品色激情综合| 欧洲精品卡2卡3卡4卡5卡区| 18禁黄网站禁片免费观看直播| 在线观看免费午夜福利视频| 黄色 视频免费看| 欧美在线一区亚洲| 岛国在线观看网站| 欧美性猛交╳xxx乱大交人| 久久青草综合色| 久久天堂一区二区三区四区| 伦理电影免费视频| 丰满的人妻完整版| 级片在线观看| 他把我摸到了高潮在线观看| 成人18禁在线播放| 国产蜜桃级精品一区二区三区| 99久久精品国产亚洲精品| 老熟妇仑乱视频hdxx| 国产精华一区二区三区| 欧美三级亚洲精品| 高清毛片免费观看视频网站| 在线观看免费视频日本深夜| 久久精品成人免费网站| 亚洲欧美精品综合一区二区三区| 亚洲av熟女| 好看av亚洲va欧美ⅴa在| 亚洲中文av在线| xxx96com| 88av欧美| 人人澡人人妻人| av欧美777| 精品久久蜜臀av无| 国产野战对白在线观看| 国产麻豆成人av免费视频| 欧美日韩黄片免| 99riav亚洲国产免费| 午夜激情av网站| 免费看美女性在线毛片视频| 国产成+人综合+亚洲专区| 女性生殖器流出的白浆| 人人妻人人看人人澡| 欧美激情极品国产一区二区三区| 国产aⅴ精品一区二区三区波| 搡老岳熟女国产| 国内精品久久久久久久电影| 婷婷精品国产亚洲av在线| 日本一区二区免费在线视频| 亚洲 国产 在线| av福利片在线| 麻豆久久精品国产亚洲av| 男人的好看免费观看在线视频 | 久久精品aⅴ一区二区三区四区| 最新在线观看一区二区三区| 男女午夜视频在线观看| aaaaa片日本免费| 老熟妇仑乱视频hdxx| 亚洲色图 男人天堂 中文字幕| 久久国产精品影院| 18禁裸乳无遮挡免费网站照片 | 久久久久久久午夜电影| 色播在线永久视频| 久久久久久大精品| 91九色精品人成在线观看| 亚洲狠狠婷婷综合久久图片| 亚洲午夜理论影院| 精品国产乱码久久久久久男人| 真人做人爱边吃奶动态| 久久久精品欧美日韩精品| 久久久久久久久中文| 亚洲精品粉嫩美女一区| 一级毛片高清免费大全| 黄色视频,在线免费观看| 精品国产国语对白av| 国产av不卡久久| 夜夜躁狠狠躁天天躁| 亚洲久久久国产精品| 久久热在线av| 99热只有精品国产| 脱女人内裤的视频| 淫秽高清视频在线观看| 一本综合久久免费| 成人午夜高清在线视频 | 国产伦人伦偷精品视频| 超碰成人久久| 狠狠狠狠99中文字幕| www日本在线高清视频| 国产精品自产拍在线观看55亚洲| 国产亚洲精品综合一区在线观看 | 精品熟女少妇八av免费久了| 97碰自拍视频| 在线av久久热| 精华霜和精华液先用哪个| 特大巨黑吊av在线直播 | 午夜久久久在线观看| 久久国产精品男人的天堂亚洲| 国内精品久久久久久久电影| 欧美av亚洲av综合av国产av| 亚洲国产中文字幕在线视频| 亚洲片人在线观看| 观看免费一级毛片| 19禁男女啪啪无遮挡网站| 亚洲av中文字字幕乱码综合 | 亚洲专区字幕在线| 欧美zozozo另类| 日韩精品中文字幕看吧| 国产精品 国内视频| 曰老女人黄片| 免费人成视频x8x8入口观看| 久久香蕉精品热| 两性夫妻黄色片| 久久香蕉精品热| 给我免费播放毛片高清在线观看| 身体一侧抽搐| 国产成人一区二区三区免费视频网站| 欧美又色又爽又黄视频| 可以免费在线观看a视频的电影网站| 亚洲美女黄片视频| 99热这里只有精品一区 | 757午夜福利合集在线观看| 69av精品久久久久久| 国产精品免费视频内射| 99riav亚洲国产免费| 国产一级毛片七仙女欲春2 | 国产一区在线观看成人免费| 精品久久久久久久久久久久久 | 特大巨黑吊av在线直播 | 91大片在线观看| 国产精品一区二区三区四区久久 | 欧美黑人精品巨大| 国产在线精品亚洲第一网站| 色综合站精品国产| 不卡av一区二区三区| 男女之事视频高清在线观看| 变态另类成人亚洲欧美熟女| tocl精华| av天堂在线播放| 久久精品国产99精品国产亚洲性色| 亚洲自拍偷在线| 校园春色视频在线观看| 亚洲男人天堂网一区| 亚洲人成网站高清观看| videosex国产| 香蕉久久夜色| 日本 欧美在线| 黄网站色视频无遮挡免费观看| 桃红色精品国产亚洲av| 成人国产一区最新在线观看| 国产精品野战在线观看| 90打野战视频偷拍视频| 欧美乱码精品一区二区三区| 亚洲狠狠婷婷综合久久图片| 国产精品电影一区二区三区| 一级毛片精品| 免费电影在线观看免费观看| 成人亚洲精品av一区二区| 大型黄色视频在线免费观看| 国产成人影院久久av| 搡老熟女国产l中国老女人| 18禁国产床啪视频网站| 亚洲人成电影免费在线| av免费在线观看网站| 国产精品av久久久久免费| 亚洲avbb在线观看| 女人高潮潮喷娇喘18禁视频| 色精品久久人妻99蜜桃| 黄色毛片三级朝国网站| 美女大奶头视频| av福利片在线| 国产精品98久久久久久宅男小说| 久久久久久久午夜电影| 国产又黄又爽又无遮挡在线| 午夜福利一区二区在线看| 非洲黑人性xxxx精品又粗又长| 一边摸一边做爽爽视频免费| 最近最新中文字幕大全免费视频| 黄色成人免费大全| 国产真实乱freesex| av天堂在线播放| 欧美另类亚洲清纯唯美| 一二三四社区在线视频社区8| 脱女人内裤的视频| 淫秽高清视频在线观看| 欧美激情久久久久久爽电影| 禁无遮挡网站| 久久人人精品亚洲av| 国产日本99.免费观看| 免费看a级黄色片| 夜夜夜夜夜久久久久| 自线自在国产av| 免费人成视频x8x8入口观看| 欧美性长视频在线观看| 一夜夜www| 香蕉久久夜色| 哪里可以看免费的av片| 国产精品久久电影中文字幕| 日韩精品免费视频一区二区三区| 三级毛片av免费| 日韩精品青青久久久久久| 国产欧美日韩一区二区精品| 久久久久久免费高清国产稀缺| 国产成人精品久久二区二区91| 黑人操中国人逼视频| 欧美日韩中文字幕国产精品一区二区三区| 最新美女视频免费是黄的| 在线永久观看黄色视频| 色尼玛亚洲综合影院| 国产高清激情床上av| 国产成人啪精品午夜网站| 99re在线观看精品视频| 午夜福利成人在线免费观看| 欧美在线黄色| 久久精品国产99精品国产亚洲性色| 男人舔女人的私密视频| 亚洲色图 男人天堂 中文字幕| 精品少妇一区二区三区视频日本电影| 搡老妇女老女人老熟妇| 超碰成人久久| 久久久精品欧美日韩精品| 亚洲av片天天在线观看| 精品久久久久久久毛片微露脸| 国产精品电影一区二区三区| 久久久水蜜桃国产精品网| 国产99久久九九免费精品| 久久精品影院6| 欧美最黄视频在线播放免费| АⅤ资源中文在线天堂| 一级毛片精品| 美女高潮到喷水免费观看| 日本在线视频免费播放| 一进一出好大好爽视频| 最新美女视频免费是黄的| 欧美黄色片欧美黄色片| 日韩欧美国产在线观看| 亚洲av美国av| 久久 成人 亚洲| 亚洲无线在线观看| 精品国产国语对白av| 琪琪午夜伦伦电影理论片6080| 九色国产91popny在线| 一进一出好大好爽视频| 最近最新中文字幕大全电影3 | 欧美性猛交黑人性爽| 亚洲av成人一区二区三| 亚洲九九香蕉| 日本熟妇午夜| 啪啪无遮挡十八禁网站| 久久国产精品影院| 禁无遮挡网站| 每晚都被弄得嗷嗷叫到高潮| 日韩有码中文字幕| 午夜免费成人在线视频| 久久久国产成人精品二区| 国产一区在线观看成人免费| 老司机福利观看| 国产又爽黄色视频| 桃色一区二区三区在线观看| 国产精品影院久久| 久久久国产成人精品二区| www日本黄色视频网| 国产亚洲欧美精品永久| 黄色女人牲交| 日本一本二区三区精品| 老汉色av国产亚洲站长工具| 黑人欧美特级aaaaaa片| 99热只有精品国产| 怎么达到女性高潮| 19禁男女啪啪无遮挡网站| 国产1区2区3区精品| 色综合站精品国产| 看片在线看免费视频| 长腿黑丝高跟| 免费在线观看日本一区| 99在线人妻在线中文字幕| 亚洲中文日韩欧美视频| 丝袜美腿诱惑在线| 好看av亚洲va欧美ⅴa在| 日本免费a在线| 超碰成人久久| 搡老妇女老女人老熟妇| 欧美 亚洲 国产 日韩一| 满18在线观看网站| 女性被躁到高潮视频| cao死你这个sao货| 老司机在亚洲福利影院| 俺也久久电影网| 少妇粗大呻吟视频| 亚洲人成电影免费在线| 午夜福利高清视频| 国产单亲对白刺激| 国内揄拍国产精品人妻在线 | 啦啦啦韩国在线观看视频| АⅤ资源中文在线天堂| 99精品在免费线老司机午夜| 露出奶头的视频| 国产熟女xx| 欧美zozozo另类| 国产99白浆流出| 老司机午夜十八禁免费视频| 国产av在哪里看| 日韩欧美在线二视频| 岛国视频午夜一区免费看| 看片在线看免费视频| 日本免费a在线| 又紧又爽又黄一区二区| 精品熟女少妇八av免费久了| 日韩成人在线观看一区二区三区| 热99re8久久精品国产| 日韩成人在线观看一区二区三区| 在线av久久热| 草草在线视频免费看| 最近最新中文字幕大全电影3 | 午夜亚洲福利在线播放| 侵犯人妻中文字幕一二三四区| 久久精品91无色码中文字幕| 亚洲中文字幕一区二区三区有码在线看 | 久久这里只有精品19| 黄色 视频免费看| 非洲黑人性xxxx精品又粗又长| 国产成人系列免费观看| 国产片内射在线| xxx96com| 亚洲国产看品久久| 亚洲欧洲精品一区二区精品久久久|