• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Formation and preferred growth behavior of grooved seed silicon substrate for ker fless technology?

    2019-06-18 05:42:36JingYuanYan鄢靖源YongWeiWang王勇煒YongMingGuo郭勇明WeiZhang張偉CongWang王聰BaoLiAn安保禮andDongFangLiu劉東方
    Chinese Physics B 2019年6期
    關(guān)鍵詞:張偉安保

    Jing-Yuan Yan(鄢靖源),Yong-Wei Wang(王勇煒),Yong-Ming Guo(郭勇明),Wei Zhang(張偉),Cong Wang(王聰),Bao-Li An(安保禮),and Dong-Fang Liu(劉東方),?

    1College of Sciences,Shanghai University,Shanghai 200444,China

    2Shanghai Advanced Research Institute,Chinese Academy of Sciences,Shanghai 201210,China

    Keywords:ker fless,grooved seed substrate,preferred growth

    1.Introduction

    Si thin or ultrathin crystals are crucial in applications such as flexible solar cells,silicon-on-insulator(SOI), flexible integrated circuit(IC)chips,insulated gate bipolar transistor(IGBT),etc.[1-8]In order to avoid kerf loss during Si wafer thinning process that has frustrated people for years,ker fless technology is eagerly demanded.On the one hand,ker fless technology can reduce about 30%of the total cost in slicing process in which a traditional Czochralski method is used;[9,10]on the other hand,thin/ultrathin and flexible silicon crystals are readily available by epitaxial growth and transfer approaches directly.Double layer porous silicon method,one of the ker fless techniques,[11,12]is capable of preparing kerfless flexible Si thin crystals with good properties.However,limited reuse times of the substrate and metal contaminants from electrochemical electrodes restrict its wide industrial applications.

    In our team’s previous research,the patterned rod arrays with wax acting as the filling mask provided protruded Si seeds by removing the oxide layer on the heads of the patterned rods,and the epi-Si film/wafer grown on them had texturized surface with the same periodicity as the original rod pattern.The uniformly structured hollows have been built between the epi-Si film and the substrate so that the epi-Si film could be transferred without sacri ficing any layer,thereby making the substrate reusable.[13]Due to the dif ficulty in using wax to form uniform and flat thin films,only long rod arrays are applicable to fabricating the seeded substrates with wax used as filling mask.In order to enhance the mechanical stability of the seed structure and increase the reuse possibility of the structured substrate,short rods would be preferred.Later,efforts had been made to fabricate seeded substrates with shorter rod arrays by a joint resist mask method.[14]Thermal evaporation deposited aluminum film,spin-coated poly methyl methacrylate(PMMA)and photoresist were used to form the joint mask.Protruded seed substrate was achieved by removing the oxide layer selectively from the rod heads under the masking effect of the joint mask.However,multiple filling and etching process were involved in the joint mask method,and the processing is complicated and boring.

    In this article,we demonstrate a simple and low-cost approach to preparing mechanically stable wedge-grooved seed substrates with SiNxthin film serving as the mask layer for wet-etching and thermal oxidation without expensive inductive coupled plasma dry-etching process.[15,16]The vapor phase epitaxial growing process is implemented to produce epi-Si on this substrate by using gaseous SiCl4as a silicon source.[17]An intermittent silicon-source-feeding technique is used to control the preferred growth behavior on the seed sites and well-faceted growth is successfully performed.The endeavors shown in this work will promote the development of ker fless technology for further industrial applications.

    2.Experiment

    2.1.Formation of grooved seed Si substrate

    Figure 1 shows the process for the fabrication of the grooved seed Si substrate.A 4-inch(1 inch=2.54 cm)diameter(100)-oriented Czochralski monocrystalline Si(Cz-Si)wafer coated with 80 nm SiNxthin film by plasma-enhanced chemical vapor deposition(PECVD)was used as a mother substrate.The periodically patterned SiNxstriparrayalongthe〈110〉direction was prepared by the traditional photolithography and reactive ion etching(RIE)on the substrate.Acetone was employed to remove the remaining photoresist.With the striped SiNxfilm as a mask,V-grooved texturization on the substrate was performed by wet-etching in a solution of 40%KOH(potassium hydroxide,Greagent)and 20%IPA(isopropanol,Greagent)for 20 min at 80°C.After the texturization,thermal oxidization was used to form an SiO2sheath layer on the wafer and V-grooves,typically,the oxidization duration was 12 h at 900°C,and the thickness of oxide layer was 300 nm.Finally,the SiNxmasks were removed in boiling 85%H3PO4solution for 20 min,thus the silicon inner layer was exposed on the top of the wedged strips,forming seeded sites for later selective growth of epi-Si.

    Fig.1.Fabrication process of grooved seed Si substrate:(a)SiNxdeposition,(b)photoresist spin-coating,(c)photolithography,(d)RIE etching of SiNx,(e)photoresist lift-off,(f)silicon wet etching,(g)oxidization,and(h)removal of the left SiNxmask.

    2.2.Vapor phase epitaxial growth of silicon

    The growth of epi-Si was conducted in an induction heating system by using a vertically-placed and water-cooled quartz tube as a chamber,[18]and the substrate was directly placed on silicon-coated graphite susceptor.Before the epitaxial growth,the substrate was immersed in a dilute HF(1.5%)solution for 30 s and reduced under hydrogen atmosphere for 10 min at 1000°C to get rid of the native oxide layers on the seeded sites.When the epi-growth was performed,the substrate was kept at 1200°C under atmosphere pressure using SiCl4gas(Arkonic Gases&Chemicals Inc.,99.9999%)as the silicon source and H2(Airgas,99.9999%)as the carrier gas.[19]In the uninterrupted growth mode,2000-sccm H2and 24-sccm SiCl4were introduced into the chamber,and the growth duration was 30 min.In order to enhance the selectivity of the growth on the seeds,intermittent silicon-source feed mode was adopted.In the intermittent mode,the substrate was exposed in pure H2with a time interval ranging from 2 to 3 min after an epitaxial growth of 1 min-3 min.The total growth times were 30 min,1 h,and 2 h respectively.

    3.Results and discussion

    The morphology of the obtained grooved seed Si substrate and energy dispersive spectrum(EDS)analysis are shown in Fig.2.Figures 2(a)and 2(b)demonstrate that the wet-etching of the substrate has high self-discipline characteristics under the mask of SiNxstripes,and the formed strips present wedge-like shapes.The angle at the bottom of V-grooves is 70.5°,similar to the one between adjacent Si{111}planes,indicating that only Si{111}plane remains during etching process,[20]and also that the areas with SiNxmasks are kept from alkaline etching,thus de fining the shape and size of the grooved Si seed.In order to show up the seeded sites and prove the seed architecture,i.e.,silicon surface exposed only on the top of the wedged-strips,a diluted KOH solution is used to etch the prepared seed substrates.Figures 2(c)and 2(d)reveal that shallow depressions appear on the tops of the wedged-strips,indicating the etching has happened here by KOH solution,but other surface on the seed substrate is protected from visibly etching.This phenomenon made it clear that the silicon surface is exposed just on the tops of the wedged-strips and the other surface of the substrate is sheathed.The EDS spectra further prove the architecture of the seed substrate.As shown in Fig.2(e),the SiNxlayer stands on the top of the wedged-strip and a pure silicon surface is exhibited on the V-grooves after the KOH wet etching of the original silicon substrate under the mask of striped SiNxfilm,but after the procedures of thermal oxidization and removal of the left SiNxon the strip top,pure silicon surface is exposed on the strip top and the grooves are sheathed by oxide layers.As a result,the seeded substrates are well-built and ready to be used for the epi-Si growth.

    Fig.2.SEM images of the grooved substrate,(a)bird view,and(b)cross-section;showing up images of seeded sites by diluted KOH etching,(c)zoom-in,and(d)zoom-out;cross-sectional SEM image and EDS spectrum of single wedged strip,(e)as-prepared by wet-etching under the mask of SiNx,and(f)after thermal oxidization and removal of the left SiNxmask layers.

    Figure 3 illustrates the morphologies of epi-Si grown on the substrate.Epi-Si grown in the uninterrupted mode is shown in Fig.3(a),it appears that the shape of the grown epi-Si is irregular,and although the epitaxial growth is preferred on the seeded sites,a fast lateral overgrowth also occurs downward along the slopes of the V-grooves.It is inferred that the fast downward lateral growth results from the high supersaturation of silicon tetrachloride that migrates from the V-groove surface to the interface between the grown silicon and the oxide layer,and the irregular shape of the grown silicon rises from the reverse etch reaction of by-product chlorides on the silicon surface because the concentration of by-product chlorides in the chamber is accumulated with the growth duration increasing.In order to achieve well-faceted surface and enhance the anisotropic growth over the groove,the intermittent source gas feeding method is adopted.[21-23]The morphology evolutions of the epi-Si with the silicon source feed mode are demonstrated in Figs.3(a)-3(d).Obviously,the grown epi-Si becomes better faceted and larger over the groove with the faster repetition rate of SiCl4on-and-off feeding,as well with shorter on-and-off intervals,from Figs.3(a)-3(d).Additionally,the size of grown Si does not vary much in Fig.3(b)nor in Fig.3(c)compared with that in Fig.3(a)although the total amount of SiCl4feeding decreases to 1/2 and 1/3 of that in Fig.3(a)for the whole growth duration.In other words,the intermittent feed mode increases the growth rate of the epi-Si.Since the carrier gas,H2with a light molecular weight,has a rather weak carrying capability under the atmosphere pressure,the concentration of chloride byproduct,such as HCl,from the reduction reaction between SiCl4and H2,would accumulate around the substrate holder zone with the growth duration increasing.It is understandable that the intermittent feed mode would restrain the byproduct accumulation.Thus the conversion rate of SiCl4into Si is promoted as can be seen from Figs.3(a)-3(c),and less reverse etch reaction on the grown Si results in better faceted surfaces.

    Fig.3.Cross-sectional SEM images of the epi-Si under different SiCl4feeding modes:(a)uninterrupted 24-sccm SiCl4feeding for 30 min;(b)intermittent 24-sccm SiCl4feeding for 30 min(3-min turn-on/3-min turn-off);(c)intermittent 24-sccm SiCl4feeding for 30-min(1-min on followed by 2-min off);(d)intermittent 12-sccm SiCl4feeding for 60 min(1-min on followed by 2-min off).

    According to the intersection angles between faceted surfaces of the grown Si and the grooves,the surface planes of the grown Si are indexed in Figs.3(c)and 3(d).It is revealed that the front side surfaces facing the gas flow are indexed to{311}both in Fig.3(c)and in Fig.3(d),but for the back side surfaces against the gas flow,one is indexed to{111},the other is indexed to{311}in Fig.3(c);contrastively,both back surfaces are symmetrically indexed to{311}in Fig.3(d).Si crystal belongs to the cubic crystal system with the two-fold symmetry along the 〈110〉direction.Bravais-Friedel law states that high index crystal planes with small interplanar spacings grow faster than the low index ones,and thus the high index planes are not seen in the final shape of the crystal.[24]Therefore,from the point of crystallographic growth habit,the shape of the crystal is determined by the relative growth rate at various crystal planes.Si crystal belongs to the cubic crystal system with the two-fold symmetry along the 〈110〉direction.In the case of 〈110〉crystallographic direction family in the cubic crystal system,the lowest index plane belongs to{111}and the second lowest one is{311}.Therefore,considering both the crystallographic growth habit and the symmetry,the surface planes of the grown Si bars along the 〈110〉direction are surely adjacent{111},{311}planes,or parallel ones.Undoubtedly,the situation in Figs.3(c)and 3(d)confi rm the above theoretical analysis.Owing to the higher supersaturation of reactants on the surface facing the gas flow,the front surfaces are energetically apt to be{311}planes both in Fig.3(c)and in Fig.3(d).On account of the shelter effect from the grown Si bars,less reactants can reach the back surfaces of the grown bars,and lower supersaturation of reactants on the back surface against the gas flow should energetically result in{111}back planes both in Fig.3(c)and in Fig.3(d)because{111}planes have lower surface-energy state than{311}planes.It is thought that the feed of 12-sccm SiCl4in Fig.3(d)is too small to provide enough reactants to formlower-energystate{111}planesonthebackofthegrown bars,thus two higher-energy state{311}planes are left behind there.Owing to the non-uniformity of the gas flow distribution in the chamber,even though the feed amount of SiCl4in Fig.3(c)is double that in Fig.3(d),one of the back-surface planes belongs to{111},the other still belongs to{311}.

    In order to obtain a faster growth rate and well-faceted surfaces of the grown Si bars,the growth conditions in Fig.3(c)are used as the optimized ones,and 1-μm top width of the seed stripes is chosen for narrower necks that connect the grown Si bars with the mother substrate.The typical facet pro file of the grown Si bars is displayed in Fig.4,revealing that the surface facets are step-like,and all of them are indexed to{111}and{311}planes,but the combination of{111}and{311}planes is random for each individual grown bar since the reactant flow is hard to be uniformly distributed across the substrate.Anyway,the facet pro file in Fig.4 clearly veri fies the dominance of the crystallographic symmetry and the Bravais-Friedel law of the silicon seed growth.

    Fig.4.Typical facet pro file of grown epi-Si on grooved seed Si substrate.

    From the point of the mass-transport in the course of epi-Si growth,the models of gas flow around the substrate are proposed in Fig.5 to further clarify the growth mechanism on the seeded substrate.As shown in Fig.5(a),at the initial stage of the epi-growth,there are two kinds of gas flows on the surface of the substrate,i.e., flow 1 and flow 2.The flow 1 goes straight down to the substrate while a large portion of the flow 1 is re flected by the slopes of the V grooves and turns into the turbulent flow 2,then the flow 2 is trapped and enveloped by the V grooves and the flow 1.Consequently,at the initial stage,two parts of silicon reactant are gathered up at the seeded sites,i.e.,one is directly anchored from the flow 1 that faces the seeded areas;the other diffuses from the flow 2 along the slopes of the grooves.Thus the supersaturation of the silicon reactant is quite high and the nucleation and growth-up of silicon quickly happen on the seeds at the early stage when the SiCl4gas is just introduced into the chamber.Once the epi-Si grows up to a size larger than the width of the seeded sites,the epi-Si will shelter the V-grooves from the flow 1,accordingly,as shown in Fig.5(b),the curved flow 3 under the epi-Si and the parallel flow 4 at the opening of the groove come into being,and as a result,the trapped gas in the grooves turns harder to escape out.Therefore,it could be inferred that if the feed amount of SiCl4is fairly large,much of the byproduct chloride will be trapped in the grooves,and then diffuse and accumulate around the grown epi-Si,the growth rate of the epi-Si will be inhibited by the severe reverse etch reaction,and much lateral overgrowth will happen along the slopes due to the high degree of supersaturation at the interface between the grown Si and the oxide layers(as shown in Figs.3(a)and 5(d),and it was very necessary that intermittent SiCl4feed mode is used to facilitate the trapped gas off the grooves.And the intermittent feed mode can help the epi-Si grow nearly under the equilibrium state,thereby well-faceted surfaces are formed(as shown in Figs.3(c)and 3(d)).Figures 5(c)and 5(d)show the schematic facet pro file of the grown Si bars under perfect equilibrium growth state,without and with lateral overgrowth along the oxide layers,respectively,but these phenomena hardly happen in actual experiments(the pro file in Fig.4 is common in experiments).

    Fig.5.Schematic diagram of(a)gas flow on seed area and V-grooves,(b)gas flow on epi-Si and V-shaped grooves,(c)morphology of epi-Si under equilibrium growth without lateral overgrowth on oxide layers,and(d)morphology of epi-Si under equilibrium growth with lateral overgrowth.

    Fig.6.Panorama of initial epi-Si for hollow-spaced continuous Si film.(a)Bird-view SEM image of epi-Si grown for 30 min,(b)cross-sectional SEM image of epi-Si grown for 30 min,(c)bird-view SEM image of epi-Si grown for 1 h,(d)cross-sectional SEM image of epi-Si grown for 1 h,(e)bird-view SEM image of epi-Si grown for 2 h.and(f)cross-sectional SEM image of epi-Si grown for 2 h.

    Using the intermittent feed mode in Fig.3(c)as an optimized mode, figure 6 shows the panorama of prepared epi-Si from just shooting out on the seed sites,subsequently growing larger and over the grooves,eventually forming continuous film with hollows spacing the substrate.Evidently,the growth of Si along the seeded stripe is uniform,although slightly terraced.And the readily formed hollows between the grown film and the substrate are shaped into a tetragon usually with two-fold symmetry,which is determined by the faceted growth habit and the preferred growth behavior. And the hollows build weak mechanical connection of grown films with the mother substrate,and will make the aimed ker fless technology practical.The surface of the grown film is randomly texturized with grooved depressions,which also results from the faceted epi-growth and the non-uniformity of the reactant flows.The epi-growth panorama on the seeded substrate veri fies the principle for ker fless silicon wafers by the vapor phase epi-growth method through using V-grooved seed substrates.By the way,in the traditional Siemens method to produce the crystalline Si,the SiHCl3is most used as a silicon source because of the higher conversion rate,the faster growth rate,[25]and the lower growth temperature than those of SiCl4,if the SiHCl3is used in our experiments,better epi-growth and thicker films or wafers can be expected.

    4.Conclusions

    We exhibit a technique to fabricate grooved seed silicon substrates with well mechanical stability by using SiNxfilm as a mask for the alkaline wet etching and thermal oxidization process,and by using the oxide layer as a mask for the selective removal of SiNxfilm on the tops of the wedged strips to form seeded sites.This technique is compatible with the traditional silicon semiconductor processing technology,so it promises to possess industrial applications.The preferred epigrowth on the seeded substrates is dominated by the symmetry along the 〈110〉crystallographic direction and the crystallographic facet habit.The proposed reactant gas flow model further clari fies the necessity of intermittent silicon source feed mode for well-faceted and controlled anisotropic epi-growth of silicon on the seeded sites.The success of growing continuous silicon films with readily-formed hollows spacing the grown films from the seeded substrates shows that our substrate promises to be applied to the ker fless technology for flexible silicon crystals or normal wafers.

    猜你喜歡
    張偉安保
    中軍軍弘集團(tuán)秦皇島安保公司 以黨建為統(tǒng)領(lǐng) 打造“軍”字品牌安保企業(yè)
    公民與法治(2022年6期)2022-07-26 06:16:42
    Nonlinear vibration of iced cable under wind excitation using three-degree-of-freedom model?
    跟蹤導(dǎo)練(一)
    昨天 今天
    金秋(2020年14期)2020-10-28 04:15:40
    藝術(shù)百家:張偉 何是雯
    看得到的轉(zhuǎn)變
    中華家教(2018年9期)2018-10-19 09:30:00
    如何找準(zhǔn)安保與宣傳的平衡點(diǎn)——以G20杭州峰會(huì)安保宣傳為例
    建設(shè)全球最大最先進(jìn)核安保示范中心
    軍工文化(2017年12期)2017-07-17 06:08:14
    數(shù)學(xué)潛能知識(shí)月月賽
    “猴”安保
    丝袜脚勾引网站| 色视频在线一区二区三区| 午夜免费观看性视频| 日韩强制内射视频| 中国美白少妇内射xxxbb| 国产 一区精品| 精品人妻一区二区三区麻豆| 最近中文字幕高清免费大全6| 成人免费观看视频高清| 欧美成人精品欧美一级黄| 成人漫画全彩无遮挡| 美女脱内裤让男人舔精品视频| 男女啪啪激烈高潮av片| 建设人人有责人人尽责人人享有的| 97在线视频观看| 天堂中文最新版在线下载| 国产日韩欧美亚洲二区| 国模一区二区三区四区视频| 国产精品秋霞免费鲁丝片| 伊人久久精品亚洲午夜| 精品亚洲成a人片在线观看| 热re99久久国产66热| 亚洲激情五月婷婷啪啪| 免费看不卡的av| 韩国av在线不卡| 91久久精品国产一区二区三区| 女性生殖器流出的白浆| 嘟嘟电影网在线观看| 性色avwww在线观看| 日韩大片免费观看网站| 精品熟女少妇av免费看| 国产在线一区二区三区精| 亚洲欧美一区二区三区国产| 99久久综合免费| 热re99久久国产66热| 欧美国产精品一级二级三级| 在线观看免费日韩欧美大片 | 一级,二级,三级黄色视频| 18+在线观看网站| 丝袜喷水一区| 麻豆乱淫一区二区| 久久午夜福利片| 大片电影免费在线观看免费| 母亲3免费完整高清在线观看 | 啦啦啦中文免费视频观看日本| 99视频精品全部免费 在线| 在线观看一区二区三区激情| 午夜福利视频精品| 欧美日韩一区二区视频在线观看视频在线| 久久精品夜色国产| 国产精品人妻久久久影院| 人妻制服诱惑在线中文字幕| 老司机影院成人| 久久午夜综合久久蜜桃| 午夜日本视频在线| 精品亚洲成国产av| 亚洲成人手机| 国产男女超爽视频在线观看| 在线观看www视频免费| av一本久久久久| 久久人妻熟女aⅴ| 简卡轻食公司| 日韩中文字幕视频在线看片| 国产成人精品福利久久| 丰满饥渴人妻一区二区三| 97超视频在线观看视频| 国产精品久久久久久久电影| 亚洲av不卡在线观看| 欧美性感艳星| 成人亚洲欧美一区二区av| 欧美一级a爱片免费观看看| 狂野欧美激情性bbbbbb| 亚洲精品国产色婷婷电影| av网站免费在线观看视频| av黄色大香蕉| 少妇猛男粗大的猛烈进出视频| 亚洲色图 男人天堂 中文字幕 | 亚洲久久久国产精品| 美女国产高潮福利片在线看| 国产高清国产精品国产三级| 国产 一区精品| 国产精品不卡视频一区二区| 婷婷成人精品国产| 自拍欧美九色日韩亚洲蝌蚪91| 国产男人的电影天堂91| 最近中文字幕2019免费版| 久久国产精品男人的天堂亚洲 | 欧美xxⅹ黑人| 一本一本综合久久| 热re99久久国产66热| 黄色一级大片看看| 成年av动漫网址| av天堂久久9| 精品一区二区免费观看| 天堂中文最新版在线下载| 国产在线免费精品| 中文字幕人妻熟人妻熟丝袜美| 卡戴珊不雅视频在线播放| 国产精品偷伦视频观看了| 在线精品无人区一区二区三| 麻豆乱淫一区二区| 成人影院久久| 免费观看a级毛片全部| 国产在线视频一区二区| 国产深夜福利视频在线观看| 亚洲精品日本国产第一区| 国产片内射在线| 国产成人免费观看mmmm| 一个人看视频在线观看www免费| 日韩一区二区三区影片| 青青草视频在线视频观看| 亚洲精品乱码久久久久久按摩| 99国产精品免费福利视频| 欧美 日韩 精品 国产| 国产精品欧美亚洲77777| 成人手机av| 日韩成人伦理影院| 午夜激情福利司机影院| 成人漫画全彩无遮挡| 欧美亚洲 丝袜 人妻 在线| 久久av网站| 麻豆精品久久久久久蜜桃| 国产成人精品婷婷| 日韩伦理黄色片| 99视频精品全部免费 在线| 久久av网站| 久久精品熟女亚洲av麻豆精品| 另类精品久久| 婷婷色综合www| 久久久国产一区二区| 两个人的视频大全免费| 午夜免费男女啪啪视频观看| 国产精品久久久久久久久免| 大香蕉97超碰在线| 男女高潮啪啪啪动态图| 91久久精品电影网| 人妻一区二区av| 久久精品国产鲁丝片午夜精品| 国产成人aa在线观看| a级毛片免费高清观看在线播放| 久久久久久久久大av| 久久久久国产网址| 精品人妻在线不人妻| 在线观看www视频免费| 免费观看性生交大片5| av免费观看日本| 熟女电影av网| 人人妻人人爽人人添夜夜欢视频| 飞空精品影院首页| 久久精品久久精品一区二区三区| 中文字幕av电影在线播放| 国产精品欧美亚洲77777| 高清av免费在线| 国产精品人妻久久久影院| 成人手机av| 国产免费一级a男人的天堂| 午夜福利网站1000一区二区三区| 亚洲av二区三区四区| 黑丝袜美女国产一区| 五月开心婷婷网| 成年人午夜在线观看视频| 黄色怎么调成土黄色| 日本vs欧美在线观看视频| 全区人妻精品视频| 男人添女人高潮全过程视频| 亚洲精品第二区| 久久久久久久精品精品| 国产男女内射视频| 久久久久久久久大av| 五月伊人婷婷丁香| 九草在线视频观看| 亚洲国产精品国产精品| 少妇 在线观看| 国产成人av激情在线播放 | 在线亚洲精品国产二区图片欧美 | 丰满少妇做爰视频| 久久影院123| 亚洲情色 制服丝袜| 69精品国产乱码久久久| 五月伊人婷婷丁香| 各种免费的搞黄视频| 免费观看的影片在线观看| 国产精品成人在线| 日本黄大片高清| 久久精品国产亚洲av涩爱| 日韩成人伦理影院| 久久精品国产a三级三级三级| 久久久久精品性色| 日本av手机在线免费观看| 2018国产大陆天天弄谢| 色婷婷av一区二区三区视频| 色吧在线观看| 国产亚洲最大av| 91在线精品国自产拍蜜月| 国精品久久久久久国模美| 亚洲色图综合在线观看| 我要看黄色一级片免费的| 国产成人aa在线观看| 91精品国产九色| 精品人妻一区二区三区麻豆| 内地一区二区视频在线| 蜜桃在线观看..| 中文天堂在线官网| 日本黄大片高清| 全区人妻精品视频| 久久狼人影院| 嘟嘟电影网在线观看| 韩国av在线不卡| 高清欧美精品videossex| 18禁在线播放成人免费| 国产亚洲午夜精品一区二区久久| 最新的欧美精品一区二区| 肉色欧美久久久久久久蜜桃| av有码第一页| 亚洲欧美成人精品一区二区| 亚洲第一av免费看| 特大巨黑吊av在线直播| 老司机亚洲免费影院| 亚洲情色 制服丝袜| 日韩中文字幕视频在线看片| 天天操日日干夜夜撸| 免费高清在线观看日韩| 亚洲国产精品999| 日日啪夜夜爽| 三上悠亚av全集在线观看| 精品一区二区三区视频在线| 一本—道久久a久久精品蜜桃钙片| 亚洲av欧美aⅴ国产| 久久精品国产亚洲av涩爱| 欧美激情国产日韩精品一区| 中文字幕久久专区| 三上悠亚av全集在线观看| 在线观看www视频免费| 精品人妻熟女av久视频| 久久 成人 亚洲| 日本av手机在线免费观看| 天堂8中文在线网| 国产精品免费大片| 日本猛色少妇xxxxx猛交久久| av免费观看日本| 久久免费观看电影| 亚洲精品一二三| 久久久久久人妻| 免费看av在线观看网站| 毛片一级片免费看久久久久| 国产精品女同一区二区软件| 七月丁香在线播放| 亚洲av成人精品一二三区| 日韩av在线免费看完整版不卡| 久久人妻熟女aⅴ| 女人久久www免费人成看片| 国产色爽女视频免费观看| 自线自在国产av| 久久久久久久国产电影| 韩国av在线不卡| 狂野欧美白嫩少妇大欣赏| 免费黄色在线免费观看| 国产 精品1| a级毛片黄视频| 老司机亚洲免费影院| 国精品久久久久久国模美| 啦啦啦视频在线资源免费观看| 久久人人爽av亚洲精品天堂| 亚洲av电影在线观看一区二区三区| 中国三级夫妇交换| 最黄视频免费看| 少妇丰满av| 国产国语露脸激情在线看| 国产无遮挡羞羞视频在线观看| 啦啦啦视频在线资源免费观看| 国产av国产精品国产| 大香蕉久久成人网| 91午夜精品亚洲一区二区三区| 久久久久久久久久久久大奶| 亚洲中文av在线| 国产精品一区二区在线观看99| 男人添女人高潮全过程视频| 丝瓜视频免费看黄片| 国产无遮挡羞羞视频在线观看| 三级国产精品片| 另类精品久久| 在线观看www视频免费| 国产成人精品一,二区| 少妇精品久久久久久久| 一个人免费看片子| 成人综合一区亚洲| 欧美精品高潮呻吟av久久| 国产免费又黄又爽又色| 男人添女人高潮全过程视频| 国产高清三级在线| 亚洲精品中文字幕在线视频| 亚洲av综合色区一区| 久久久久久久久久久丰满| 伊人久久国产一区二区| 日本欧美视频一区| 国产乱来视频区| 最近的中文字幕免费完整| 18禁动态无遮挡网站| 国产日韩欧美在线精品| 久热久热在线精品观看| 久久久久久久久久久丰满| 人妻一区二区av| 日韩一本色道免费dvd| 97超视频在线观看视频| 亚洲成人手机| 亚洲av综合色区一区| 久热这里只有精品99| 日本-黄色视频高清免费观看| 少妇被粗大猛烈的视频| 中国国产av一级| 水蜜桃什么品种好| 亚洲国产精品国产精品| 国产探花极品一区二区| 亚洲av欧美aⅴ国产| 成人三级做爰电影| 搡老熟女国产l中国老女人| 欧美日韩亚洲高清精品| 国产精品免费一区二区三区在线 | 国产精品电影一区二区三区 | 18禁裸乳无遮挡动漫免费视频| 亚洲精品久久午夜乱码| 欧美精品亚洲一区二区| 丝袜喷水一区| 一个人免费在线观看的高清视频| 久久精品亚洲av国产电影网| 午夜成年电影在线免费观看| 女人爽到高潮嗷嗷叫在线视频| 日韩免费av在线播放| 久久av网站| 老鸭窝网址在线观看| 十分钟在线观看高清视频www| 窝窝影院91人妻| 日韩制服丝袜自拍偷拍| 宅男免费午夜| 久久精品亚洲av国产电影网| 亚洲欧洲精品一区二区精品久久久| 女性被躁到高潮视频| 欧美av亚洲av综合av国产av| 亚洲av电影在线进入| 亚洲国产av影院在线观看| 中文字幕av电影在线播放| 超碰97精品在线观看| 国产91精品成人一区二区三区 | 香蕉久久夜色| 日本五十路高清| 高清黄色对白视频在线免费看| 久久国产精品男人的天堂亚洲| 韩国精品一区二区三区| 亚洲国产看品久久| 香蕉丝袜av| 性少妇av在线| 国产亚洲精品一区二区www | 九色亚洲精品在线播放| 美女午夜性视频免费| 国产精品久久久久久人妻精品电影 | 叶爱在线成人免费视频播放| 国产成人免费观看mmmm| 9191精品国产免费久久| 99久久人妻综合| 肉色欧美久久久久久久蜜桃| 亚洲成国产人片在线观看| 国产精品一区二区精品视频观看| 成年动漫av网址| 亚洲av日韩在线播放| 夫妻午夜视频| 国产精品久久久久久精品古装| 亚洲精品粉嫩美女一区| 国产欧美日韩综合在线一区二区| 国产精品电影一区二区三区 | 亚洲国产成人一精品久久久| 19禁男女啪啪无遮挡网站| 麻豆国产av国片精品| 亚洲av片天天在线观看| 精品亚洲成国产av| 欧美日韩亚洲综合一区二区三区_| 国产成人欧美在线观看 | av福利片在线| 精品国内亚洲2022精品成人 | 亚洲天堂av无毛| 国产精品电影一区二区三区 | 免费在线观看影片大全网站| av片东京热男人的天堂| 青青草视频在线视频观看| 另类精品久久| 欧美激情高清一区二区三区| 色尼玛亚洲综合影院| 成人av一区二区三区在线看| 亚洲精品粉嫩美女一区| 欧美日韩福利视频一区二区| 咕卡用的链子| 国产主播在线观看一区二区| 久久午夜亚洲精品久久| 怎么达到女性高潮| 久久人人97超碰香蕉20202| 在线看a的网站| 50天的宝宝边吃奶边哭怎么回事| 99久久人妻综合| 日本a在线网址| 欧美大码av| 大型黄色视频在线免费观看| 亚洲人成77777在线视频| 18禁裸乳无遮挡动漫免费视频| 欧美日韩精品网址| 国产在线观看jvid| 色精品久久人妻99蜜桃| 国产精品一区二区免费欧美| 亚洲欧美色中文字幕在线| 欧美激情高清一区二区三区| 久久久久国产一级毛片高清牌| 亚洲欧美精品综合一区二区三区| 欧美老熟妇乱子伦牲交| 色精品久久人妻99蜜桃| 精品少妇久久久久久888优播| 极品少妇高潮喷水抽搐| 久久精品人人爽人人爽视色| 国产精品亚洲av一区麻豆| 在线 av 中文字幕| 91麻豆精品激情在线观看国产 | 亚洲欧美一区二区三区久久| 涩涩av久久男人的天堂| 男女下面插进去视频免费观看| 伦理电影免费视频| 老汉色∧v一级毛片| 国产三级黄色录像| 成人国产av品久久久| 国产真人三级小视频在线观看| 亚洲黑人精品在线| 国产精品一区二区免费欧美| 亚洲专区中文字幕在线| 久久中文字幕一级| 欧美中文综合在线视频| 热re99久久精品国产66热6| 欧美日韩中文字幕国产精品一区二区三区 | 免费观看人在逋| 一区二区三区国产精品乱码| 欧美av亚洲av综合av国产av| 啦啦啦 在线观看视频| 女人精品久久久久毛片| 我要看黄色一级片免费的| 国产男靠女视频免费网站| 精品少妇黑人巨大在线播放| 亚洲天堂av无毛| 久久热在线av| 97人妻天天添夜夜摸| 精品少妇黑人巨大在线播放| 国产成人一区二区三区免费视频网站| 欧美人与性动交α欧美软件| 亚洲视频免费观看视频| 三级毛片av免费| 欧美性长视频在线观看| 久久毛片免费看一区二区三区| 99热国产这里只有精品6| 欧美精品啪啪一区二区三区| 久久天堂一区二区三区四区| 99热国产这里只有精品6| 岛国在线观看网站| 成人亚洲精品一区在线观看| 国产亚洲午夜精品一区二区久久| 精品国产超薄肉色丝袜足j| 国产日韩欧美视频二区| 国产三级黄色录像| 成人18禁在线播放| 国产精品亚洲一级av第二区| 99re6热这里在线精品视频| 老司机午夜福利在线观看视频 | 精品国产超薄肉色丝袜足j| 男女床上黄色一级片免费看| 汤姆久久久久久久影院中文字幕| 国产99久久九九免费精品| videos熟女内射| av超薄肉色丝袜交足视频| 精品少妇内射三级| 99re6热这里在线精品视频| 色婷婷av一区二区三区视频| 美女国产高潮福利片在线看| 国产在线视频一区二区| 大片电影免费在线观看免费| 成人国产一区最新在线观看| 视频在线观看一区二区三区| 黄色毛片三级朝国网站| 欧美黑人精品巨大| 老司机午夜十八禁免费视频| 亚洲中文字幕日韩| 欧美激情高清一区二区三区| 精品国产乱子伦一区二区三区| 亚洲精品在线观看二区| 欧美日韩一级在线毛片| 美女国产高潮福利片在线看| 天堂动漫精品| 美女扒开内裤让男人捅视频| 伊人久久大香线蕉亚洲五| 一边摸一边抽搐一进一小说 | 色尼玛亚洲综合影院| 国产在线一区二区三区精| 电影成人av| 亚洲国产欧美网| 免费在线观看完整版高清| 十分钟在线观看高清视频www| 超碰97精品在线观看| 18禁美女被吸乳视频| 啦啦啦在线免费观看视频4| av在线播放免费不卡| 无人区码免费观看不卡 | 久久人妻福利社区极品人妻图片| 青青草视频在线视频观看| 99re在线观看精品视频| 久9热在线精品视频| 黄色视频在线播放观看不卡| 日韩视频一区二区在线观看| 久久热在线av| av欧美777| 一区二区av电影网| 亚洲成人免费电影在线观看| 肉色欧美久久久久久久蜜桃| 大片免费播放器 马上看| 精品乱码久久久久久99久播| 国产亚洲午夜精品一区二区久久| av天堂在线播放| av福利片在线| 亚洲五月色婷婷综合| 满18在线观看网站| 色综合婷婷激情| 国产欧美亚洲国产| 2018国产大陆天天弄谢| 狠狠精品人妻久久久久久综合| 一边摸一边抽搐一进一小说 | 窝窝影院91人妻| 国产av一区二区精品久久| 日本一区二区免费在线视频| 国产成人欧美| 亚洲人成电影观看| 777久久人妻少妇嫩草av网站| 亚洲七黄色美女视频| 香蕉久久夜色| 国产亚洲欧美在线一区二区| 国产成人啪精品午夜网站| 在线观看人妻少妇| 国产欧美日韩综合在线一区二区| 一区二区三区激情视频| 啪啪无遮挡十八禁网站| 美国免费a级毛片| 五月开心婷婷网| 久久国产精品人妻蜜桃| 日韩欧美一区二区三区在线观看 | 亚洲成av片中文字幕在线观看| 狂野欧美激情性xxxx| 国产深夜福利视频在线观看| 后天国语完整版免费观看| 亚洲三区欧美一区| av超薄肉色丝袜交足视频| 两性午夜刺激爽爽歪歪视频在线观看 | 激情在线观看视频在线高清 | 亚洲熟妇熟女久久| 精品一区二区三区av网在线观看 | 黄色视频,在线免费观看| 啦啦啦视频在线资源免费观看| 91麻豆精品激情在线观看国产 | 在线观看人妻少妇| 国产精品秋霞免费鲁丝片| 纯流量卡能插随身wifi吗| 香蕉国产在线看| 成人特级黄色片久久久久久久 | 18禁裸乳无遮挡动漫免费视频| 大型黄色视频在线免费观看| 18禁黄网站禁片午夜丰满| 久久久久久久大尺度免费视频| 黄片大片在线免费观看| 国产日韩欧美视频二区| 男女边摸边吃奶| 国产精品免费视频内射| 黄色视频,在线免费观看| 久久精品国产综合久久久| 老汉色av国产亚洲站长工具| 丰满人妻熟妇乱又伦精品不卡| 一区福利在线观看| 久久久国产一区二区| 成人国产一区最新在线观看| 麻豆国产av国片精品| 美女视频免费永久观看网站| 日本av免费视频播放| 999精品在线视频| 午夜精品久久久久久毛片777| 999久久久精品免费观看国产| 国产色视频综合| 欧美日韩黄片免| 两性夫妻黄色片| 国产精品1区2区在线观看. | 91成人精品电影| 国产成人免费观看mmmm| 国产精品影院久久| 热99re8久久精品国产| 大香蕉久久成人网| 国产精品亚洲一级av第二区| 男女边摸边吃奶| 国产视频一区二区在线看| 亚洲人成电影观看| 亚洲精品在线美女| 国产av又大| 老熟妇仑乱视频hdxx| 日本一区二区免费在线视频| 嫩草影视91久久| 亚洲伊人久久精品综合| 老熟女久久久| 99热网站在线观看| 久久久国产欧美日韩av| 一本色道久久久久久精品综合| 天天躁狠狠躁夜夜躁狠狠躁| 欧美成人免费av一区二区三区 | 亚洲 欧美一区二区三区| 欧美日本中文国产一区发布| 亚洲色图综合在线观看| 国产精品九九99| 一区二区三区乱码不卡18| 18禁美女被吸乳视频| 国产精品99久久99久久久不卡|