• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamics Modeling and Stability Analysis of Tilt Wing Unmanned Aerial Vehicle During Transition

    2019-06-12 01:23:20YonghongZhangYunfeiDengYunpingLiuandLihuaWang
    Computers Materials&Continua 2019年6期

    Yonghong Zhang ,Yunfei DengYunping Liu and Lihua Wang

    Abstract:In the transition mode of quad tilt wing-unmanned aerial vehicle (QTW-UAV),the system stability of UAV will change with the tilt angle changes,which will cause serious head drop down.Meanwhile,with the complex air flow and other disturbances,the system is prone to side bias,frying,stall and other kinetic stability problems,hence the system stability analysis has become an urgent problem to be solved.To solve the stability problem,we need the quantitative criteria of system stability and effective tool of stability analysis,and can improve the stability of the motion control by optimizing the structural parameters of the aircraft.Therefore,based on the design of the mechanical structure,the quantitative relationship between the structure parameters of the aerial vehicle and kinetic stability of the system transition mode is established by the Lyapunov exponent method.In this paper,the dynamic modeling of the position and attitude angle is carried out and the stability of the system is analyzed by Lyapunov exponent,the results show that changing the mechanical structure of the system can improve the flight stability for the system transition mode and lay a theoretical foundation for the system stability analysis.Compared with the Lyapunov direct method,this method can be construct easily,has a simple calculation process and so on.We improve the flight stability by optimizing the structure and the experiment confirms that expanding area can enhance flight stability within limits.

    Keywords:QTW-UAV,transition,stability,dynamics model,lyapunov exponent.

    1 Introduction

    QTW-UAV combines the advantages of fixed-wing aircraft and helicopters,featuring fast flight and vertical takeoff and landing.But when the wing tilt,wing lift,forward speed and angle of attack will change with the wing tilt angle changes,and the propeller lift and thrust will also change.So when these factors are coupled to the original complex system [Oosedo,Abiko,Narasaki et al.(2016)],aerial vehicle is prone to side bias,frying,stall and other kinetic stability problems.Because of the complex airflow,the aerodynamic environment is very complex [Liu,Li and Wang (2011)],and the overall dynamic structural changes with the tilt angle changes,so the transition mode is also the most unstable flight mode of QTW-UAV,and because of the high cost of UAV and its carrying equipment,the accident is more dangerous to the ground.Therefore,in addition to the design of controller at the transition stage of the QTW-UAV,the study of its flight stability and reliability is a very challenging task.

    The stability analysis of the nonlinear system is critical to the safety of the engineering system.Kinetic stability is the nature of the motion trajectory that deviates from its trajectory after the system is under external disturbance [Kumon,Katupitiya and Mizumoto (2011)],and Lyapunov theorem of stability is very effective for such system analysis.However,due to the lack of a constructive approach to derive Lyapunov function,resulting in the extremely limited application of Lyapunov stability.For example,in the study of the stability of the biped robot,it is found that the stability of the balanced stand of the biped robot is affected by the limitation between the foot and the ground,and the Lyapunov equation is a very effective method for the stability analysis.However,due to the complexity of the dynamic equation,difficult constructing of Lyapunov function and other issues,it is difficult to obtain a Lyapunov equation from the high non-linear biped system [Wu,Sepehri and Thornton-Trump (1998)].In addition to Lyapunov function,Lyapunov exponent can also show the stability of the system [Wolf,Swift,Swinney et al.(1985);Alligood,Sauer and Yorke (1997);Williams (1997)],which is defined as the divergence of the orbit in the vicinity of the state space or the average exponential rate of convergence,which can quantitatively describe the degree of divergence or convergence of the two orbits of the initial value and original value in the exponential form after the system is being disturbed.The main advantage of Lyapunov exponent is that the calculation method is simple and feasible,making the complex nonlinear system stability analysis possible.

    The calculation of the values of Lyapunov exponent usually uses mathematical model or time series [Yang,Wu and Zhang (2012)],and the calculated Lyapunov exponent can describe the stability of the system.The method based on mathematical model has been applied,and in addition to being widely used in the diagnosis of chaotic systems,it is also used in the stability analysis of complex nonlinear systems.Sekhavat et al.used the concept of Lyapunov exponent to analyze the stability of nonlinear dynamical systems,demonstrating that this method is constructive and robust [Sekhavat,Sepehri and Wu (2004)].And Wu Qiong has studied the stability of biped robot in motion via the Lyapunov exponent method [Yang and Wu (2006)],Ding Well also applied the Lyapunov exponent method in the field of bio-mechanics to study the kinetic stability of human upper body during walking [Dingwell and Marin (2006)].Thus,Lyapunov exponent can quantitatively describe the multivariable,highly coupled,under-actuated nonlinear system,and can establish a quantitative relationship with the system kinetic stability,providing an effective solution for similar problems.

    In this paper,the challenge of QTW-UAV stability research is the lack of an effective tool for quantitative criteria and stability analysis of system stability,and QTW-UAV stability control and stability analysis are still in the research stage.

    In addition to the optimization of the controller for QTW-UAV kinetic stability,the kinetic properties of the entire system can be affected by changing the mechanical structure parameters [Chevallereau (2002),Mokhtari and Benallegue (2004)].Therefore,optimization of aerial vehicle mechanical structure parameters in the transition mode of QTW-UAV is important for improving the kinetic stability of system specific at a specific tilt angle.Lyapunov exponent is an important method that can be used to quantify the kinetic stability of QTW-UAV in transition mode.

    The rest of the article is organized as follows.The second part establishes a dynamic model based on Newtonian Euler equations.The third part is based on the model established in the second part,based on the Lyapunov exponent method to establish the quantitative relationship between system structural parameters and motion stability.The fourth part is the simulation of the influence of stability after changing the wing structural parameters based on the Lyapunov exponent method.The fifth part is devoted to the experiment to verify the impact on the flight stability after changing the wing structural parameters.The conclusion is in the sixth part.

    2 Dynamics modeling

    The figure of QTW-UAV structure shown in Fig.1 is used as the object of study,defining the ground coordinate system asW(Xw,Yw,Zw),fuselage coordinate system asB(Xb,Yb,Zb)and rotor wing coordinate system asT(Xt,Yt,Zt).Fuselage coordinate system is located in the centroid position of the system.Generalized coordinates(x,y,z,p,q,r)are the state variables,and each attitude angle satisfies the yaw angle(-π<ψ<π),the pitch angle (-π/2<θ<π/2)and the roll angle ( -π/ 2<φ<π/2).

    Figure 1:Coordinate diagram

    To make the whole modeling process simple,the following assumptions are made:

    ·The components of aerial vehicle use rigid body.

    ·The center of mass is the same.

    ·The interaction between left and right blades and their effect on aerodynamic forces are ignored.

    The whole system dynamics equation is obtained according to the Newton-Euler equation:

    where,Ω=[p,q,r]Trepresents the angular velocity vector,V=[vx,vy,vz]Trepresents the velocity vector.

    Table 1:Parameter specification

    2.1 The force and torque produced by the main rotor wing

    UAV has a total of four rotor wings,set the tensile force of a rotor wing asFr,j,j denotes the j-th rotor wing.As shown in Fig.2,set the wing tilt angle asαj.Owinis in the plane of the body coordinate systemOwXwYw,hjindicates the distance from the center of the rotor wing toOwin.We can calculate the component force of rotor wing tension along the body coordinate system axesXbandZb:

    Figure 2:Tilted side view of UAV wing

    Fig.2 shows the top view of the wing when it tilts α°.When the wing tilts α°,the arm of force of the propeller can be expressed as r1,r2,r3,r4.

    Since the distribution of the tilted wing is symmetrical and the height of each propeller is the same,then h1=h2=h3=h4=h.The tilt angle of both sides of the same wing should be the same.That is,α1=α2=α3=α4=α.The torque generated by the rotor wing tensile force is the multiplication cross of tensile force vector and the force arm vector:

    Figure 3:Top view of aerial vehicle

    2.2 The force and torque produced by the main rotor wing

    When the wing is tilted to a certain angle and the UAV is flying at a higher speed,the lift and resistance of the wing cannot be ignored.

    The wing lift FL and wing resistance FD in the body coordinate can be expressed as:

    Where,CL and CD are the lift and resistance coefficients of the wing,Ajis the wing area.Supposing that the center of wing lift and resistance is located in the middle of the wing and the wing is deflected around the center axis,the arm of force can be expressed as lj.Torque produced by the wing:

    Since α1=α2,A1=A2,and the value of resistance and lift is negative in the body coordinate system,so FL1,=FL2=FL,FD1=FD2,=FD,simplified as:

    2.3 The force and torque produced by the tail rotor wing

    UAV has one tail only,which can turn around.Denote the rotor wing tensile force as F5,as shown in Fig.4.O1 is in the plane of the body coordinate systemh5 is the distance from the rotor wing center to O1,and γ is the rotation angle.We can calculate the component of rotor wing tensile force along axisbZof the body axis system:

    Figure 4:Right view and rear view of tail rotor wing

    UAV tail is symmetrically distributed above fuselage.Ob is the center of mass of the UAV,dx1 is the distance from the rotor wing center to the plane of the body coordinate systemOwYbZb.Since the tail rotor wing is on the plane of body axis systemOwYbZb,dyis 0,which can be ignored.The arm of force of the rotor wing tensile force can be expressed as r5.

    Since the distribution of the tilted wing is symmetrical and the height of each propeller is the same,then h1=h2=h3=h4=h5=h.The torque generated by the tail rotor wing tensile force is the multiplication cross of tensile force vector and the force arm vector:

    2.4 The force and torque produced by the tail wing

    Wing lift FL5 and wing resistance FD5 in the body coordinates can be expressed as F5D,F5L.

    2.5 Gravity and fuselage resistance

    The gravity of fuselage acts on the center of mass,and it does not produce torques.

    The tensile force and torque of UAV body are summarized in Tab.2:

    Table 2:Summary of tensile force and corresponding torques

    2.6 Dynamics modeling of tilt wing

    Kinetic model in transitional flight mode.Consolidate the above equations and equations,the force is unified to the ground coordinates,through simplifying results ,obtaining the linear motion equation of aerial vehicle:

    Where,Frx,FryandFrzare the components of the acting force of propeller and wing along the X axis,the Y axis and the Z axis under the body axis system.Since the tilt angle α is the same,the wing area is the same,so the lift and resistance of four rotor wings are the same:

    Xbis the wing lift,Xbis the tail lift

    Xbis the wing resistance,Xbis the tail resistance

    Decomposed into the equation rotating the three axes of body axis system

    Where,Ix,Iy,Izare the axial inertia torques of the axisXb,axisYband axisZbalong the body axis system,respectively.The external torque is:

    After the torque is unified into the body axis system,the angle kinetic equation of the tilt wing is obtained as follows:

    U1is the variable of height control,U2is the variable of roll angle,U3is the variable of pitch angle,U4is the variable of drift angle.

    Convert the formulas (10)-(16)into the system state equation form,see formula (17):

    Where,X=[q p]T=(φ,θ,ψ,x,y,z,p,q,r,u,v,w)T.

    3 Calculation of lyapunov exponent

    In this paper,the Lyapunov exponent standard is used to describe the chaotic behavior of the nonlinear state equation.An attraction point is regarded as x,an adjacent attraction point is regarded as x+?,x and x+? are iterated n times by mapping function.And then find the absolute value of these two results,see the following:

    If this behavior is chaotic,this distance is n times the exponential growth,so

    can be expressed as

    λis the trajectory of the Lyapunov exponent.Following the chain rule of differentials,the derivative of f(n)can be described as n products derived from f(x)at successive trajectories x0,x1,x2...xn.Therefore,the definition of Lyapunov exponent can be more intuitively expressed as:

    The equation can also be expressed as

    Take n->∞,Lyapunov exponent formula can be expressed as:

    λ< 0,the track is a neutral fixed point.

    λ=0,the track is attracted to a stable periodic orbit.

    λ> 0,the track is unstable and chaos.

    Lyapunov exponent is the average exponential rate at which the initial and the original values of the system are converged or diverged over time.Lyapunov exponent specific analysis method is:phase volume contracts in the direction where Lyapunov exponent is less than 0,UAV system motion is stable and is not sensitive to the initial conditions of the system,otherwise unstable [Abdulwahab and Atiyah (2013)].

    Lyapunov exponent is calculated by formula (19),the calculation process is shown in Fig.5:

    Figure 5:Calculation process of Lyapunov exponent

    For the calculation of Lyapunov exponents λ1,λ2,…,λ6,take time T=0.1 and the number of iterations K=50.For the kth iteration (k=1,2,…,K),the initial conditions of matrix variational equation formula (19)is {u1(k-1),u2(k-1),…,u6(k-1)},obtain the vector {w1(k-1),w2(k-1),…,w6(k-1)} after Ts integration,then conduct the GramSchm orthogonalization,and the vector is converted to {v1(k-1),v2(k-1),…,v6(k-1)}.Vector {u1k,u2k,…,u6k} is obtained through normalization.This process is repeated until the Lyapunov exponent reaches the maximum number of iterations K,and the resulting indexes λ1,λ2,…,λ6 form Lyapunov exponential spectrum [Liu,Li,Wang et al.(2015)].

    Thus from formula (19),we can see when the structure of the system is determined,the size of the Lyapunov exponent is determined by the Jacobian matrix |df/dX| of the function f(X)at Xi.Formula (19)can deduce the main structural parameters (see Tab.2)that affect the size of Lyapunov exponent.There is mass center vector r,system mass m,system inertia Ix,Iy,Iz,and wing area Ai.According to the above analysis,we can improve the stability of the system by changing the center of mass vector,system quality,system inertia and wing area Ai that affect the whole system dynamics.

    4 Simulation analysis of stability at transition mode stage

    Before the simulation,the dynamics modeling of vertical take-off and transition mode of QTW-UAV were made by Mathmatica software.Then the Lyapunov exponent method is used to calculate the Lyapunov exponent while by using the obtained nonlinear mathematical model.

    4.1 Parameter determination

    According to the above analysis,it is necessary to obtain the following parameters:m,g,α,dx,dy,dz,h,Ai,A5,ρ,Ix,Iy,Iz,Jp,CD,CL,Kr and Kq for building a kinetic model of QTW-UAV.The overall structural parameters of QTW-UAV are shown in Tab.3.

    Table 3:Overall structure parameters of the system

    Where,wing tilt angle α is 30°,parameters can be measured directly are the system quality m=2.473 Kg,center of mass vector dx=0.225 m,rotor wing radius R=0.12 m.Through the search tool we can get the local gravity acceleration g=9.8 m/s2,air density ρ=1.29 kg/m3.Other parameters need to be obtained by experiment,Wing area measurement can use the four-point control thrice Bezier curve to measure and draw the wing profile and wing stereo diagram.

    the measurement method of wing area:sd is the half-area of the cross section of the wing,ld is the half-perimeter of the cross section of the wing,Calculation of wing surface area:S=2 sd+20 ld.

    The method of calculating the half-perimeter of the cross section of the wing by successive trapezoidal approximation segmentation is:

    The method of calculating the half- area of the cross section of the wing by successive trapezoidal approximation segmentation is:

    We take four points from the plane:P0(0,0),P1(0.01,1),P2(1,2),P3(20,0),and the coordinate parameter equation of the thrice Bezier curve can be obtained.Through the above formula,we can use matlab for command operation to draw the wing profile and wing stereo diagram,and obtain the wing area.

    Experiment results:

    Figure 6:Wing profile

    Figure 7:Wing stereo diagram

    After selecting the four points P0 (0,0),P1(0.01,1),P2(1,2),P3(10,0),measure and draw the wing profile and wing stereo diagram:

    Figure 8:Wing profile

    Figure 9:Wing stereo diagram

    Table 4:Calculation results of wing surface area

    4.2 Simulation results

    Fig.10 to Fig.11 show the simulation in details.We established the mathematical model,then carrying on the system attitude Lyapunov exponent simulation by mathematics and stability quantitative analysis,when the speed of system attitude Lyapunov exponent tending to 0 is faster,indicating the flight stability is higher.

    The purpose of the experiment in Fig.10 is to verify whether the flight stability of the QTW-UAV can be improved by changing the wing area.It can be seen from Fig.11:When QTW-UAV is at transition mode stage,and the wing is tilted 30°,within a certain range,the other structural parameters remain unchanged as shown in Tab.3,only change the wing area size,then the wing area A is increased by 1.05 times and 2 times.After the area is increased by 1.05 times,the speed of system Lyapunov exponential spectrum converging to 0 is faster than that of before the wing area increase,i.e.,the stability of the QTW-UAV with the wing area increased is improved.After the area is increased by 2 times,the speed of system Lyapunov exponential spectrum converging to 0 is decreased,and the system becomes unstable.The actual phenomenon is:by increasing the wing area,you can increase the system lift,improve stability,but also increase the resistance,so only in a certain range,the appropriate increase in wing area can improve the stability of the system.

    The simulation in Fig.11 compares the Lyapunov exponents ofψattitude angle after the wing area of each tilt angle is increased 1.05 times when UAV wing is tilted by 0°,15°,30°,45°,60°,90°.It can be seen that when the wing is tilted by 0° and 15°,the increase of the speed of system Lyapunov exponential converging to 0 is not obvious.In case of 30°,45°,60°,90°,after increasing the area,the speed ofψattitude angle Lyapunov exponential converging to 0 is at a significantly faster speed.This shows that when wing is tilted between 0° and 15°,the increase of wing area does not greatly improve the stability of the system,and in the case of greater than 30°,the increase of area can improve the stability of the system.The actual phenomenon is that when the wing is tilted from 0° to 15°,the main lift of the UAV is provided by the rotor wing tensile force,and the effect of the wing lift on the UAV lift is increasing after more than 30°.

    At the transition mode stage of QTW-UAV,wing is tilted by 30°,other mechanical structure parameters remain unchanged,the contrast of simulation results after increasing wing area A:

    Figure 10:a and b are Lyapunov exponential spectrum of the position and attitude of different wing area in transition mode

    In the transition mode stage of QTW-UAV,increase the wing area A when wing is tilted by 0°,15°,30°,45°,60° and 90°,the contrast of simulation results of attitude angles’ Lyapunov exponents:

    Figure 11:Lyapunov exponential spectrum of ψ attitude angle of different wing area of the tilt angles in transition mode

    5 Verification of structural optimization experiment

    We intend to optimize the structure of airframe to improve the stability of Tilt Wing Unmanned Aerial Vehicle.Taking QTW-UAV as the research object,we increase the wing area 1.05 times and verify flight experiments.Also we confirm the hardware circuit to ensure experiment.The system structure of QTW-UAV is as shown in Fig.12.

    Figure 12:The system structure of rotated fixed-wing unmanned aerial vehicle (uav)The flight experiment is as shown in Fig.13.The entire model is made of EPS,which can reduce weight,energy consumption and cost.We use MPU6050 to measure the euler angle and acceleration.

    Figure 13:Tilt wing prototype flight test

    And master computers collect flight curve of vertical take-off and landing mode,transition mode and airplane mode,as shown in Fig.14.The result confirms that the fluctuation of the curve of three airplane attitude angles is smaller.And it shows the flight process of QTW-UAV is stable.

    Figure 14:Roll,pitch and yaw attitude Angle curve

    After we change the size of the wing and analyze the curve of pitch angle of three modes,we find it takes about 4 seconds to tilt wing- time of transition mode.While we enlarge the curve of pitch angle of three modes,the amplitude of jitter of drift angle is within the range of 0.28 rad~0.3 rad,as shown in Fig.15.If we increase the size of the wind to 1.05 times,the amplitude of jitter of drift angle is within the range of -0.25~0.18.It turns out that the flight is more stable than before because the amplitude of jitter of vertical take-off and landing mode,transition mode and airplane mode is smaller,as shown in Fig.16.The result shows optimizing the size of the wing can improve the flight stability within limits.

    Figure 15:Pitch angle flight curve under normal area

    Figure 16:pitch angle flight curve at 1.05 times the area

    6 Conclusion

    In view of the kinetic stability problem of QTW-UAV in transition mode,this paper improves the stability by changing the mechanical structure parameters.The Lyapunov exponent method is used to construct the quantitative relationship between QTW-UAV and system kinetic stability,laying a solid theoretical basis for improving the system mechanical structure and kinetic stability.In this paper,the kinetic model of QTW-UAV is established,and the quantitative relation model between system structural parameters and kinetic stability is established according to the kinetic model.Finally,the software simulation results show that QTW-UAV can improve the stability by increasing the wing area within a certain range,and the validity and constructability of the theory is proved.For the kinetic stability problem existing in the QTW-UAV’s transition mode stage,the paper divides the transition mode into multiple parts from the tilt angle.The analysis shows that QTW-UAV has little effect on improving the stability of the system stability when QTW-UAV wing area is increased at the tilting start stage;when wing tilt angle is greater than 30°,and the wing area increase has a significant effect.Meanwhile,it is proved that Lyapunov exponent method has the advantages of feasibility and simple operation compared with Lyapunov direct method.At last,the experiment shows that increasing the wing area can improve the stability within limits.

    Acknowledgments:This research is supported financially by Natural Science Foundation of China (Grant No.51575283,No.51405243).

    国产精品熟女久久久久浪| 美女视频免费永久观看网站| 国产成人系列免费观看| 性高湖久久久久久久久免费观看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲成av片中文字幕在线观看| 亚洲精品美女久久久久99蜜臀| 黑丝袜美女国产一区| 亚洲熟女精品中文字幕| 欧美精品av麻豆av| 99国产综合亚洲精品| 一本综合久久免费| 一区二区三区国产精品乱码| 女人被躁到高潮嗷嗷叫费观| 一二三四社区在线视频社区8| 日本精品一区二区三区蜜桃| 亚洲五月婷婷丁香| 久久人妻av系列| 老司机在亚洲福利影院| 丝袜喷水一区| 天天添夜夜摸| 欧美日韩一级在线毛片| 国产精品一区二区免费欧美| 99国产精品免费福利视频| 一个人免费看片子| 天天影视国产精品| 国产野战对白在线观看| 丰满饥渴人妻一区二区三| 午夜激情av网站| 久久久国产成人免费| 制服诱惑二区| 高清毛片免费观看视频网站 | 性色av乱码一区二区三区2| 精品国产超薄肉色丝袜足j| 精品人妻1区二区| 一本大道久久a久久精品| 日韩免费av在线播放| 欧美av亚洲av综合av国产av| h视频一区二区三区| 岛国毛片在线播放| 精品久久久久久久毛片微露脸| 男女床上黄色一级片免费看| 91精品三级在线观看| 亚洲av欧美aⅴ国产| 青草久久国产| 欧美另类亚洲清纯唯美| 看免费av毛片| 国产在线精品亚洲第一网站| 成人永久免费在线观看视频 | 热99久久久久精品小说推荐| 国产午夜精品久久久久久| 热99久久久久精品小说推荐| 大陆偷拍与自拍| 视频在线观看一区二区三区| 一区二区av电影网| 淫妇啪啪啪对白视频| 精品福利观看| 国产又爽黄色视频| 露出奶头的视频| 免费人妻精品一区二区三区视频| 欧美日韩一级在线毛片| 国产成人av激情在线播放| 国产成+人综合+亚洲专区| 国产成人欧美| 一区福利在线观看| av有码第一页| 日韩大码丰满熟妇| 国产97色在线日韩免费| √禁漫天堂资源中文www| 男男h啪啪无遮挡| 美国免费a级毛片| 在线观看免费视频日本深夜| 男人舔女人的私密视频| 国产xxxxx性猛交| 精品一区二区三卡| 热99久久久久精品小说推荐| 国产在线视频一区二区| 俄罗斯特黄特色一大片| 最近最新中文字幕大全免费视频| 午夜福利在线免费观看网站| 国产免费福利视频在线观看| 91av网站免费观看| 最新的欧美精品一区二区| 黄色片一级片一级黄色片| 一级片'在线观看视频| 窝窝影院91人妻| 麻豆乱淫一区二区| 乱人伦中国视频| 亚洲全国av大片| 老司机靠b影院| 成人国产一区最新在线观看| 在线观看66精品国产| 一边摸一边抽搐一进一出视频| 日本av手机在线免费观看| 国产成人免费无遮挡视频| 欧美 亚洲 国产 日韩一| 欧美日韩精品网址| 在线观看免费视频日本深夜| 成人av一区二区三区在线看| 97在线人人人人妻| 国产免费av片在线观看野外av| 久久狼人影院| 欧美午夜高清在线| 国产伦人伦偷精品视频| 日韩大码丰满熟妇| 成人18禁在线播放| 亚洲午夜理论影院| 久久国产精品男人的天堂亚洲| 国内毛片毛片毛片毛片毛片| 欧美另类亚洲清纯唯美| 国产一区二区三区视频了| 99在线人妻在线中文字幕 | 国产精品久久电影中文字幕 | 在线观看www视频免费| 天堂动漫精品| 老司机午夜十八禁免费视频| 色老头精品视频在线观看| 国产高清激情床上av| 一边摸一边抽搐一进一小说 | 黑人巨大精品欧美一区二区mp4| 在线观看免费视频网站a站| 又大又爽又粗| 精品国产乱子伦一区二区三区| 另类精品久久| 久久中文字幕一级| 国产精品欧美亚洲77777| 久久国产精品影院| 国产不卡一卡二| 国产精品国产av在线观看| 亚洲精品av麻豆狂野| 国产精品熟女久久久久浪| 国产精品影院久久| 欧美老熟妇乱子伦牲交| 18禁美女被吸乳视频| 在线看a的网站| 欧美日韩一级在线毛片| 操美女的视频在线观看| 免费在线观看日本一区| 一本大道久久a久久精品| 欧美亚洲日本最大视频资源| 一区福利在线观看| 精品国产乱码久久久久久男人| 亚洲av欧美aⅴ国产| 三级毛片av免费| 久久人人爽av亚洲精品天堂| 99九九在线精品视频| 9热在线视频观看99| 午夜视频精品福利| 欧美激情久久久久久爽电影 | 法律面前人人平等表现在哪些方面| 亚洲精品国产一区二区精华液| xxxhd国产人妻xxx| 一区二区三区激情视频| 久久久精品免费免费高清| 亚洲一码二码三码区别大吗| 99久久精品国产亚洲精品| 天天躁日日躁夜夜躁夜夜| 国产成人系列免费观看| 亚洲av第一区精品v没综合| 亚洲成a人片在线一区二区| 久久国产亚洲av麻豆专区| 老熟妇仑乱视频hdxx| kizo精华| 国产精品偷伦视频观看了| 婷婷丁香在线五月| 777久久人妻少妇嫩草av网站| 亚洲成人免费av在线播放| 男女之事视频高清在线观看| 亚洲第一欧美日韩一区二区三区 | 老熟女久久久| 国产精品自产拍在线观看55亚洲 | av片东京热男人的天堂| 制服人妻中文乱码| 又紧又爽又黄一区二区| 亚洲第一青青草原| 亚洲人成电影观看| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品av麻豆狂野| 欧美日韩亚洲高清精品| 另类亚洲欧美激情| 久久久久国内视频| 久久人人爽av亚洲精品天堂| 精品国产亚洲在线| 国产精品二区激情视频| 如日韩欧美国产精品一区二区三区| 亚洲第一欧美日韩一区二区三区 | av线在线观看网站| 十八禁网站免费在线| 亚洲精品自拍成人| 在线播放国产精品三级| 操美女的视频在线观看| 亚洲第一欧美日韩一区二区三区 | 好男人电影高清在线观看| 在线天堂中文资源库| 香蕉国产在线看| 91精品国产国语对白视频| 女人被躁到高潮嗷嗷叫费观| 久久中文看片网| av超薄肉色丝袜交足视频| 久久久久久亚洲精品国产蜜桃av| 午夜成年电影在线免费观看| 岛国在线观看网站| 亚洲伊人色综图| 国产高清激情床上av| 精品国产乱码久久久久久男人| 国产精品成人在线| 大码成人一级视频| 国产成人免费无遮挡视频| 国产视频一区二区在线看| 色在线成人网| av有码第一页| 中文字幕最新亚洲高清| 亚洲第一av免费看| 99香蕉大伊视频| 99国产精品一区二区三区| 亚洲男人天堂网一区| 色婷婷av一区二区三区视频| 国产精品久久久久久精品古装| 国产成人精品在线电影| 最新美女视频免费是黄的| 国产亚洲精品第一综合不卡| tocl精华| 一级黄色大片毛片| 国产av精品麻豆| 成人18禁高潮啪啪吃奶动态图| 亚洲av成人不卡在线观看播放网| 狠狠狠狠99中文字幕| 黄色a级毛片大全视频| 国产在线观看jvid| 亚洲人成电影免费在线| 中文亚洲av片在线观看爽 | 国产欧美日韩综合在线一区二区| 成年人午夜在线观看视频| 亚洲成av片中文字幕在线观看| e午夜精品久久久久久久| 国产视频一区二区在线看| 欧美激情高清一区二区三区| 久久人人爽av亚洲精品天堂| 日韩欧美一区视频在线观看| e午夜精品久久久久久久| 在线观看www视频免费| 男女之事视频高清在线观看| 色播在线永久视频| 久久亚洲精品不卡| 日韩人妻精品一区2区三区| 在线播放国产精品三级| 成人av一区二区三区在线看| 国产精品九九99| 热99re8久久精品国产| av不卡在线播放| 国产不卡一卡二| 一边摸一边抽搐一进一小说 | 啦啦啦中文免费视频观看日本| 国产欧美日韩一区二区三区在线| 露出奶头的视频| av网站在线播放免费| 国产精品免费视频内射| 精品乱码久久久久久99久播| 丝袜人妻中文字幕| av国产精品久久久久影院| 成人国产一区最新在线观看| 肉色欧美久久久久久久蜜桃| 老司机午夜福利在线观看视频 | 亚洲伊人色综图| 国产亚洲欧美在线一区二区| 久久午夜亚洲精品久久| 色尼玛亚洲综合影院| av免费在线观看网站| 国产xxxxx性猛交| 黄频高清免费视频| av片东京热男人的天堂| 99国产精品一区二区三区| 国产在线一区二区三区精| 80岁老熟妇乱子伦牲交| 久久久久久久精品吃奶| 国产成人免费观看mmmm| 女性被躁到高潮视频| 久久久欧美国产精品| 18禁黄网站禁片午夜丰满| 中文字幕精品免费在线观看视频| 国产一区二区激情短视频| 久久影院123| 91成人精品电影| av福利片在线| 中文亚洲av片在线观看爽 | aaaaa片日本免费| 亚洲精品在线美女| 十八禁人妻一区二区| 99九九在线精品视频| 日本黄色日本黄色录像| 淫妇啪啪啪对白视频| avwww免费| 老司机午夜十八禁免费视频| 午夜精品国产一区二区电影| 男人操女人黄网站| 国产亚洲av高清不卡| 男女下面插进去视频免费观看| 亚洲欧美日韩高清在线视频 | 天堂8中文在线网| 久久亚洲精品不卡| 免费久久久久久久精品成人欧美视频| 在线观看人妻少妇| 色婷婷av一区二区三区视频| 99久久人妻综合| 免费人妻精品一区二区三区视频| 九色亚洲精品在线播放| 日韩视频一区二区在线观看| 精品高清国产在线一区| 国产在线视频一区二区| 国产精品一区二区在线不卡| av视频免费观看在线观看| 国产精品亚洲av一区麻豆| 午夜精品国产一区二区电影| 欧美日韩福利视频一区二区| 三上悠亚av全集在线观看| 欧美日韩成人在线一区二区| 女同久久另类99精品国产91| 国产成人影院久久av| 久久久久网色| 精品福利永久在线观看| 水蜜桃什么品种好| 51午夜福利影视在线观看| 咕卡用的链子| 久久人妻福利社区极品人妻图片| 脱女人内裤的视频| 欧美老熟妇乱子伦牲交| 国产97色在线日韩免费| 国产欧美日韩一区二区三区在线| 久久精品成人免费网站| 丝袜美足系列| 18禁国产床啪视频网站| 高清在线国产一区| 国产免费av片在线观看野外av| 国产成人一区二区三区免费视频网站| 每晚都被弄得嗷嗷叫到高潮| 男女边摸边吃奶| 在线十欧美十亚洲十日本专区| 色综合欧美亚洲国产小说| 极品少妇高潮喷水抽搐| 国产欧美日韩一区二区精品| 久久久精品区二区三区| 成人黄色视频免费在线看| 精品国产亚洲在线| 汤姆久久久久久久影院中文字幕| av电影中文网址| 精品久久久久久久毛片微露脸| 国产一区二区 视频在线| 精品亚洲成a人片在线观看| 一区在线观看完整版| 国产精品亚洲一级av第二区| 99riav亚洲国产免费| 精品福利观看| 久久久久国内视频| 激情视频va一区二区三区| 国产黄色免费在线视频| 变态另类成人亚洲欧美熟女 | 一区二区三区国产精品乱码| 在线永久观看黄色视频| 日本精品一区二区三区蜜桃| 亚洲av日韩精品久久久久久密| 捣出白浆h1v1| 亚洲人成伊人成综合网2020| 黄色视频在线播放观看不卡| 99国产精品免费福利视频| 女人精品久久久久毛片| 亚洲专区国产一区二区| 五月开心婷婷网| 欧美黄色淫秽网站| 变态另类成人亚洲欧美熟女 | 老司机亚洲免费影院| 久久狼人影院| 男女下面插进去视频免费观看| 熟女少妇亚洲综合色aaa.| 一级a爱视频在线免费观看| 国产精品九九99| 最新在线观看一区二区三区| 欧美成人午夜精品| 亚洲精品粉嫩美女一区| 国产精品美女特级片免费视频播放器 | 日韩制服丝袜自拍偷拍| 国产成人av教育| 大型黄色视频在线免费观看| 亚洲国产av影院在线观看| 自线自在国产av| 国产成人一区二区三区免费视频网站| 欧美+亚洲+日韩+国产| 女警被强在线播放| 亚洲伊人色综图| 女人精品久久久久毛片| 精品一区二区三卡| av一本久久久久| av视频免费观看在线观看| 欧美精品av麻豆av| 国产欧美日韩精品亚洲av| 中文字幕最新亚洲高清| 亚洲精品美女久久av网站| 久久影院123| 黄片小视频在线播放| 最近最新中文字幕大全电影3 | 自线自在国产av| 亚洲国产av新网站| 97在线人人人人妻| 成人三级做爰电影| 考比视频在线观看| 50天的宝宝边吃奶边哭怎么回事| 中文字幕人妻丝袜一区二区| 一级毛片精品| 香蕉丝袜av| 在线 av 中文字幕| 中亚洲国语对白在线视频| 亚洲专区国产一区二区| tocl精华| 亚洲伊人色综图| 日韩大片免费观看网站| 男女无遮挡免费网站观看| 国产精品久久电影中文字幕 | 亚洲精品久久成人aⅴ小说| 亚洲国产中文字幕在线视频| 欧美变态另类bdsm刘玥| 久久影院123| 国产欧美日韩精品亚洲av| 少妇猛男粗大的猛烈进出视频| 天堂动漫精品| 一区二区三区国产精品乱码| 国产伦人伦偷精品视频| 在线观看66精品国产| 欧美精品一区二区免费开放| 伊人久久大香线蕉亚洲五| 亚洲人成伊人成综合网2020| 国产不卡一卡二| 国产高清国产精品国产三级| 欧美黑人欧美精品刺激| 在线观看免费高清a一片| 精品久久久久久久毛片微露脸| 成人精品一区二区免费| 狠狠狠狠99中文字幕| 在线观看66精品国产| 日本av免费视频播放| 纯流量卡能插随身wifi吗| 久久这里只有精品19| 精品亚洲成国产av| 丰满人妻熟妇乱又伦精品不卡| 久热这里只有精品99| 国产一区二区 视频在线| 19禁男女啪啪无遮挡网站| 咕卡用的链子| 国产精品 国内视频| 麻豆乱淫一区二区| bbb黄色大片| 飞空精品影院首页| 一本色道久久久久久精品综合| 国产在线观看jvid| 久久午夜综合久久蜜桃| 亚洲一区中文字幕在线| 国产精品久久久久久人妻精品电影 | 人人妻人人爽人人添夜夜欢视频| 欧美精品av麻豆av| 欧美日韩中文字幕国产精品一区二区三区 | 久久99热这里只频精品6学生| 精品乱码久久久久久99久播| 中文字幕av电影在线播放| 91av网站免费观看| 黑人巨大精品欧美一区二区mp4| 母亲3免费完整高清在线观看| 一二三四在线观看免费中文在| 汤姆久久久久久久影院中文字幕| 操美女的视频在线观看| 国产主播在线观看一区二区| 亚洲 欧美一区二区三区| 国产精品av久久久久免费| 一边摸一边抽搐一进一出视频| 午夜福利在线观看吧| 飞空精品影院首页| 中文字幕色久视频| 欧美午夜高清在线| 亚洲成人手机| 夜夜爽天天搞| 欧美日韩亚洲高清精品| 精品欧美一区二区三区在线| 人人妻人人爽人人添夜夜欢视频| 少妇猛男粗大的猛烈进出视频| 大陆偷拍与自拍| 亚洲色图av天堂| 青草久久国产| 亚洲美女黄片视频| 男女高潮啪啪啪动态图| 成人免费观看视频高清| 下体分泌物呈黄色| 后天国语完整版免费观看| 老熟女久久久| 色尼玛亚洲综合影院| 大香蕉久久网| 国产精品熟女久久久久浪| 免费人妻精品一区二区三区视频| 亚洲专区中文字幕在线| 高清av免费在线| 精品乱码久久久久久99久播| 女人爽到高潮嗷嗷叫在线视频| 亚洲av第一区精品v没综合| 亚洲三区欧美一区| 亚洲国产av新网站| 精品人妻在线不人妻| 精品少妇久久久久久888优播| 国产精品.久久久| 不卡av一区二区三区| 99riav亚洲国产免费| 悠悠久久av| 十分钟在线观看高清视频www| 成年动漫av网址| 黄色a级毛片大全视频| 久久中文字幕一级| 一区二区三区激情视频| 十分钟在线观看高清视频www| 午夜福利乱码中文字幕| 国产1区2区3区精品| 纵有疾风起免费观看全集完整版| 精品国产超薄肉色丝袜足j| 午夜老司机福利片| 精品一品国产午夜福利视频| 黄色怎么调成土黄色| 性色av乱码一区二区三区2| 在线观看www视频免费| 最新在线观看一区二区三区| 国产伦理片在线播放av一区| 黑人操中国人逼视频| 国产精品 国内视频| 久久人人97超碰香蕉20202| 成人三级做爰电影| 岛国毛片在线播放| 黄色视频在线播放观看不卡| 无人区码免费观看不卡 | 国产精品一区二区免费欧美| 大陆偷拍与自拍| 国产亚洲av高清不卡| 99久久精品国产亚洲精品| 1024香蕉在线观看| av电影中文网址| 国产黄频视频在线观看| 97在线人人人人妻| 久久热在线av| 一夜夜www| 另类精品久久| 午夜激情久久久久久久| 国产三级黄色录像| 一二三四在线观看免费中文在| 99精品久久久久人妻精品| 日本欧美视频一区| 色视频在线一区二区三区| 国产免费福利视频在线观看| 欧美日韩亚洲高清精品| 国产亚洲午夜精品一区二区久久| 亚洲精品国产精品久久久不卡| 成人永久免费在线观看视频 | 中文字幕制服av| 国产男女内射视频| 啦啦啦 在线观看视频| 精品福利观看| 亚洲伊人久久精品综合| 欧美黑人精品巨大| 精品国产国语对白av| 亚洲五月婷婷丁香| 国产日韩欧美在线精品| 丁香六月欧美| 国产精品 国内视频| 人人妻,人人澡人人爽秒播| av一本久久久久| 久久中文字幕人妻熟女| 亚洲精品国产区一区二| 国产男女内射视频| 天天添夜夜摸| 超碰97精品在线观看| 午夜激情久久久久久久| 视频区欧美日本亚洲| 国产日韩欧美视频二区| 成年女人毛片免费观看观看9 | 狠狠婷婷综合久久久久久88av| 麻豆乱淫一区二区| 可以免费在线观看a视频的电影网站| 国产av一区二区精品久久| 天天躁日日躁夜夜躁夜夜| 嫁个100分男人电影在线观看| 韩国精品一区二区三区| 丰满迷人的少妇在线观看| 精品免费久久久久久久清纯 | 深夜精品福利| av不卡在线播放| 99riav亚洲国产免费| 亚洲精品在线观看二区| 成人18禁高潮啪啪吃奶动态图| 久久中文字幕一级| 不卡一级毛片| 日韩中文字幕视频在线看片| 女人久久www免费人成看片| 老司机在亚洲福利影院| 夜夜夜夜夜久久久久| 国产精品二区激情视频| 水蜜桃什么品种好| 桃花免费在线播放| 中文字幕人妻丝袜一区二区| 黄色视频在线播放观看不卡| 亚洲免费av在线视频| 天堂动漫精品| 国产精品免费视频内射| 亚洲精品乱久久久久久| 精品人妻熟女毛片av久久网站| 精品久久久精品久久久| 波多野结衣一区麻豆| 在线观看免费视频网站a站| 精品久久久精品久久久| 99香蕉大伊视频| 91麻豆精品激情在线观看国产 | 色视频在线一区二区三区| 欧美精品人与动牲交sv欧美| 亚洲精品在线观看二区| 一级毛片女人18水好多|