• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stability Analysis of Transfer Alignment Filter Based on the μ Theory

    2019-06-12 01:24:04LihuaZhuYuWangLeiWangandZhiqiangWu
    Computers Materials&Continua 2019年6期

    Lihua Zhu,Yu Wang,Lei Wang and Zhiqiang Wu,

    Abstract:The performance of the transfer alignment has great impact on inertial navigation systems.As the transfer alignment is generally implemented using a filter to compensate the errors,its accuracy,rapidity and anti-disturbance capability are key properties to evaluate the filtering process.In terms of the superiority in dealing with the noise,H∞ filtering has been used to improve the anti-disturbance capability of the transfer alignment.However,there is still a need to incorporate system uncertainty due to various dynamic conditions.Based on the structural value theory,a robustness stability analysis method has been proposed for the transfer alignment to evaluate the impact of uncertainty on the navigation system.The mathematical derivation has been elaborated in this paper,and the simulation has been carried out to verify the effectiveness of the algorithm.

    Keywords:Robustness stability,transfer alignment,inertial navigation system,μ theory.

    1 Introduction

    In the recent literature,the issue of stability in various systems has received considerable attention.The transfer alignment of navigation system is one of the most popular methods for a moving base,which uses the observation difference between MINS (master inertial navigation system)and the SINS (slave inertial navigation system)to estimate the system errors by filters [Zhou,Lian,Yang et al.(2018)].Similar to the most systems in use today,there are usually uncertainties incorporated in the navigation systems,which may model a number of factors,including:dynamics that are neglected to make the model tractable,as with large scale structures;nonlinearities that are either too hard or too complicated to model;and parameters that are not known exactly,either because they are hard to measure or there are varying manufacturing conditions [Candès,Romberg and Tao (2006)].

    Since the H∞ performance is robust with respect to the input and observation noises,it has attracted much attention since the 1980s.The H∞ filtering is a state estimation of minimizing the maximum energy in the estimation error over all the disturbance trajectories [Yang and Che (2008)].The state estimation based on this criterion is valid when a significant uncertainty exists in the disturbance statistics.Plus,the design for an H∞ filter does not require knowledge of the statistics of the system or the observation noise and it possesses the robustness against the systems and noise uncertainties.To reduce the effect of the uncertainties on the system,H∞ filter has been applied to deal with the parameter uncertainties by increasing the robustness of the system [Zhao (2018);Wang and Yang (2018);Liu,Wang,He et al.(2017);Li,Chen,Zhou et al.(2009)].

    The most general and accurate means of analyzing and characterizing the effect of system uncertainty on robust performance and stability,is the structured singular value μframework developed by Doyle and other researchers [Doyle (1985);Packard and Doyle (1993);Zhou,Doyle and Glover (1996)].Allowing for the precise measurement of changing effects in operating conditions and uncertainty in model parameters on stability and performance robustness,this approach has been applied in various fields.For example,μ analysis was used to model the uncertainties and evaluate the stability of a power system [Liu (2018)].Bottura et al.[Bottura and Neto (2000)] investigated μanalysis to test robust stability and performance variations in speed control of an induction motor system.Zhao et al.[Zhao,Qiu and Feng (2016)] examined the robust stability of an integrated navigation system;He et al.[He,Wu and She (2004)] employed the μ analysis in exploring the robustness of the uncertain neutral systems with mixed delays.Pavel [Pavel (2004)] from University of Toronto had done research on stability of the optical communication networks with μ-analysis.Kim et al.[Kim and Cho (2016)] evaluated the robustness of a biochemical network through μ-analysis.

    This paper presents an approach of robustness stability evaluation of transfer alignment for a moving base navigation system by using the structured singular value analysis(μ-analysis).It takes the input,the output,the transfer function,and the parameter variation into linear association and reconstruction,and then modifies the system to standard feedback system for the eventual analysis.This paper is organized as follows.Section 2 is devoted to introducing some basic notations and definitions of the structured singular value theory.Section 3 establishes the system model of the H∞ transfer alignment filter.After that,the derivation of alignment system model and uncertainty module with Linear fractional transformation (LFT)of feedback transfer alignment system is given in Section 4.Section 5 shows the simulation experiment with the proposed algorithm to test the validation of the algorithm.Concluding remarks are provided in Section 6.

    2 Preliminary

    Theoretically,the structured singular value is an extended concept of constant matrix singular value,which is also known as the m analysis.It is a powerful tool,to analyze the robust stability,nominal performance and the robust performance of dynamic systems.

    The general feedback framework of m analysis with systemM(s)and the uncertaintyD(s)is shown in Fig.1.Any linear interconnection of inputs,outputs and commands along with perturbations and controller can be viewed in this context and rearranged to match this diagram.

    Figure 1:General feedback framework

    Where,ω1,ω2are the exogenous disturbing input vectors,e1,e2are the error vectors.Given an uncertainty with known structure,bound value,the setBΔ,a set of possibly real and/or complex uncertainties.

    Where,(.)denotes the maximum singular value of a matrix and two non-negative integers S and F represent the number of repeated scalar blocks and full blocks,respectively.Consider the closed loop system with the constant matrixM(s)and the uncertainty Δ(s),the structured singular valueμΔ(M)is defined as:

    In a word,the structured singular value is defined as the inverse of the smallest possible uncertainty.

    The first step in the μ analysis is to derive a linear power converter model.The properties of μ,and the consequently the μ analysis results,refer to the LFT standard representation of the control problem.Linear fractional transformation is a matrix function,which is a useful way to standardize block diagrams for robust control analysis and design.Many control problems can be expressed within the framework of LFT,which is shown in Fig.2 and Fig.3.This framework can be used in describing and analyzing the uncertain system,whereMis assumed to be the invariable part of the control system,whileΔis the block diagonal matrix.Then,the matrix M is partitioned as in Definition 1.

    Definition 1For a complex matrix M

    And the complex matrices Δl=Cq2×p2and Δu=Cq1×p1of appropriate size define a lower LFT with respect to Δlas:

    Provided the inverse matrices (I-M22Δl)-1exists.

    And an upperLFTwith respect to Δuis defined as

    Provided the inverse matrices (I-M11Δu)-1exists.

    Fu(M,Δu)andFl(M,Δl)denote the upper LFT and the lowerLFTseparately,with the visual definition in Fig.2 and Fig.3,and the corresponding expressions are shown in Eqs.(7)and (8).

    Figure 2:Lower LFT structure frame

    Figure 3:Upper LFT structure frame

    Eq.(7)and Eq.(8)correspond to Fig.2 and Fig.3,respectively.

    The explanation ofLFT(takeFl(M,Δ)for example).A nominal mappingM11is perturbed by uncertainty Δ,whileM12,M21andM22reflect how the uncertainty influences the nominal mapping.

    Robust Stability Theorem:Assumingβ>0,the closed-loop system in Fig.1 is stable if and only if the condition in Eq.(9)is satisfied.

    For all Δ,such that Δ(?)∈μ(Δ)while||Δ||∞<1/β

    3 The system model of the filter

    Unlike standard Kalman filter,there is no assumption on the statistical properties of the interference signal in H∞ filtering.Targeting at the systems with uncertainties and external interference,it is to build a filter that makes the H∞ norm of the filtering error output from the interference input minimized.The definition of the H∞ filter is:

    Given γ>0,resolve the causality filterF(s)∈RH∞(if it exits),make

    Here,=F(s)y。

    The transfer alignment system with the H∞ filter can be modeled by the following equations:

    Fig.4 shows the framework of the H∞ filter

    Figure 4:Framework of the H∞ filter

    Where,zΔ=z-

    Using LFT to describe the H∞ filter,we could obtain the LFT of the H∞ filter.

    Figure 5:LFT description of the H∞ filter

    Where,the systemP(s)shows as

    Where,filterF(s)∈RH∞,and the Eq.(13)has to be satisfied for the H∞ filter.

    According Fig.5,Eq.(14)can be obtained as follows.

    Where,

    In our caseD11=0 andD21=0,and the filter can be simplified as:

    Where,Y∞is the positive definite solution of the equation in (17)

    The system matrixP(s),the filter matrixF(s)can be divided into four blocks,as follows:

    4 Robust stability analysis

    According to the lower LFT,the transfer alignment system and the filter can be integrated into one representationM,as shown in Eq.(18)below:

    Applying the system model to Eq.(18),the following results can be obtained:

    In order to extract the structural perturbation and introduce it into the feedback system,it is necessary to apply a series of transformations toM.Firstly,it is converted into the form of a feedback form shown in Fig.6.

    Assuming thatGcontains structural perturbationΔG,G=G0+ΔG,whereG0is the nominal system without structural perturbation.The extracted perturbationΔGis then introduced to the feedback structure to do the robust analysis,shown in Fig.7

    Figure 7:The feedback system with structural perturbation

    ΔGis generated by the structure disturbanceΔMof systemM,M0is the non-disturbance part,andG0=M0(I-M0)-1

    Then we have the structural perturbation:

    Therefore,the stability of the transfer alignment with H∞ filtering in Fig.4 is equivalent to robust stability of the closed loop system in Fig.7.Where,M=(I+G)-1G.

    So,

    According to therobust stability theorem,the infinite norm ||Δ||∞and the structured singular valueμΔ(G0)of the nominal systemG0are then calculated to judge whether the items,namely,||Δ||∞<1/βandμΔ(G0)<βare satisfied at the same time,so as to evaluate the robust stability of the feedback system.

    5 Equations and Mathematical Expressions

    In this section,the mathematical simulations have been carried out to test the robust stability of the transfer alignment filter in the uniform motion,at the speed of 10m/s.The discrete filtering model of the transfer alignment can be expressed in Eq.(27),and the parameters setting are summarized in Tab.1.

    Where,Xkis the system state vector at timek,φk,k-1isthestate transition matrix,Γk,k-1is the system noise matrix,Wkis the system noise,Zkis the measurement,Hkis the measurement matrix,Vkis the system measurement noise,Ykis the output.

    Table 1:parameters setting

    The simulation is carried out in the North-East-Up (ENU)coordination system,and we simulated the velocity matching measurement for an illustration.The state vector isXk=[δVeδVnφeφnφu?e?nεeεnεu] and the measurement vector is consist of the northern velocity and eastern velocityZk=[δVeδVn].The system model is:

    Where,cij(i,j=1,2,3)is the element of the attitude matrix,and

    Considering the system structure perturbation caused by the dynamic influence,we have assigned different uncertainties with several parameters in the system matrix:F11(±10%),F12(±2%)andF22(±4%).As it is seen that,the uncertain parameters mainly cover velocity-relative factors,they are two element of the principal diagonal,one element with velocity and one element with position.Then,the bode diagrams in Fig.8-Fig.10 are of help to analyze the robustness stability of the transfer alignment system.

    Figure 8:Frequency response of the attitudes

    Figure 9:Frequency response of then northern and western velocities

    Figure 10:Frequency response of the northern and western positions

    In these figures,due to the uncertainty of the system,the frequency response of the plant is different from the nominal model.The red “+” indicates the nominal model and the blue dashed line indicates the results of 20 random samples for the model with uncertainty.Obviously,the uncertainty of the model changes the frequency response curve of the system.Because of the correlation and coupling of system parameters,the velocity uncertainties result in disturbances in the output of the alignment.It can be clearly seen that the perturbation on the attitudes are more serious,which easily lead to the operating frequency band.The positions are less perturbed by the uncertainties.

    6 Concluding remarks

    An algorithm of robustness stability analysis has been proposed for the transfer alignment to evaluate the impact of uncertainty on the navigation system.Based on the theory of the structured singular value analysis,a feedback structure of the transfer alignment filtering system has been developed,where the H∞filter is adopted to perform the process.Furthermore,simulations have been carried out to exemplify the useof the proposed algorithm.The significance of this research is to find a way to evaluate the performance of the transfer alignment process when the system incorporates structural uncertainties under complex dynamic conditions,so as to further guide and improve the system design.This paper preliminarily validates the proposed algorithm,while different conditions like the vehicle maneuver motion,time delay,vibration and swaying environment that could introduce system uncertainties need elaborated robustness stability analysis.Such issue will be further addressed in the future study.

    Acknowledgement:This work is supported by National Natural Science Foundation of China,No.61803203,and the Fundamental Research Funds for the Central Universities,No.30918011305.

    青草久久国产| 一个人免费在线观看电影 | www.www免费av| 日本熟妇午夜| 日韩高清综合在线| 午夜福利高清视频| 男插女下体视频免费在线播放| 国产精品国产高清国产av| 叶爱在线成人免费视频播放| 国产成人系列免费观看| 日本三级黄在线观看| 成年人黄色毛片网站| 亚洲av日韩精品久久久久久密| 午夜福利在线在线| 国产精品一区二区三区四区免费观看 | 欧美 亚洲 国产 日韩一| 夜夜夜夜夜久久久久| 长腿黑丝高跟| 国产av在哪里看| 夜夜夜夜夜久久久久| 老鸭窝网址在线观看| 美女黄网站色视频| 欧洲精品卡2卡3卡4卡5卡区| 两个人视频免费观看高清| 男女床上黄色一级片免费看| 身体一侧抽搐| 免费无遮挡裸体视频| 亚洲在线自拍视频| 一本精品99久久精品77| av国产免费在线观看| 成人特级黄色片久久久久久久| 在线国产一区二区在线| 欧美极品一区二区三区四区| 国产成人aa在线观看| 亚洲五月婷婷丁香| 性色av乱码一区二区三区2| 亚洲中文av在线| 免费电影在线观看免费观看| 美女大奶头视频| 此物有八面人人有两片| 国产99白浆流出| 亚洲va日本ⅴa欧美va伊人久久| 欧美大码av| 国产成人av教育| 国内精品久久久久久久电影| 男女之事视频高清在线观看| 欧美午夜高清在线| 麻豆久久精品国产亚洲av| 在线观看舔阴道视频| 国产片内射在线| 欧美乱妇无乱码| 男女之事视频高清在线观看| 男女床上黄色一级片免费看| 亚洲自拍偷在线| 欧美日韩精品网址| 久久久久免费精品人妻一区二区| 精品日产1卡2卡| 18美女黄网站色大片免费观看| 天堂√8在线中文| 久久亚洲精品不卡| 亚洲专区中文字幕在线| 亚洲国产精品合色在线| 久久热在线av| 老司机午夜十八禁免费视频| 日韩av在线大香蕉| 精品久久久久久久毛片微露脸| 香蕉av资源在线| 亚洲av成人不卡在线观看播放网| 日本三级黄在线观看| 少妇粗大呻吟视频| 天天一区二区日本电影三级| 99精品在免费线老司机午夜| 欧美一级毛片孕妇| 美女 人体艺术 gogo| 久久天躁狠狠躁夜夜2o2o| 国产精品九九99| 久久人人精品亚洲av| 麻豆成人av在线观看| 99国产精品99久久久久| 国产精品亚洲av一区麻豆| 色精品久久人妻99蜜桃| 51午夜福利影视在线观看| 国产精品久久久人人做人人爽| 少妇被粗大的猛进出69影院| 亚洲自拍偷在线| 亚洲色图av天堂| 欧美一级a爱片免费观看看 | 又黄又爽又免费观看的视频| 久久这里只有精品19| 麻豆av在线久日| 91成年电影在线观看| 久久这里只有精品中国| 一本久久中文字幕| a级毛片在线看网站| 黄频高清免费视频| 亚洲精品粉嫩美女一区| 国产精品,欧美在线| 久久99热这里只有精品18| www日本黄色视频网| 97碰自拍视频| 999久久久精品免费观看国产| 亚洲国产日韩欧美精品在线观看 | 色综合婷婷激情| 久久久精品大字幕| 天堂影院成人在线观看| 国产高清videossex| 午夜成年电影在线免费观看| 欧美色视频一区免费| 日韩欧美国产在线观看| 两个人看的免费小视频| 国产高清videossex| 在线国产一区二区在线| 精品一区二区三区四区五区乱码| 这个男人来自地球电影免费观看| 成人午夜高清在线视频| 亚洲男人天堂网一区| 两个人免费观看高清视频| 999久久久国产精品视频| 日韩中文字幕欧美一区二区| xxx96com| 久久午夜综合久久蜜桃| 亚洲第一电影网av| 桃色一区二区三区在线观看| 毛片女人毛片| 18美女黄网站色大片免费观看| 免费看美女性在线毛片视频| 黄色视频不卡| 久久香蕉国产精品| 日韩三级视频一区二区三区| 欧美黄色片欧美黄色片| 久久99热这里只有精品18| 国产一区在线观看成人免费| 色在线成人网| 色在线成人网| 亚洲乱码一区二区免费版| 91字幕亚洲| 精品国产亚洲在线| 日韩中文字幕欧美一区二区| 夜夜看夜夜爽夜夜摸| 一级黄色大片毛片| 国产黄片美女视频| 久久精品国产综合久久久| 久久人妻av系列| 国产激情久久老熟女| 99久久国产精品久久久| 18禁黄网站禁片午夜丰满| 97超级碰碰碰精品色视频在线观看| 成年免费大片在线观看| 91麻豆av在线| 日韩欧美在线二视频| 精品第一国产精品| 国产精品电影一区二区三区| 中文字幕av在线有码专区| 麻豆一二三区av精品| 亚洲成av人片在线播放无| 老司机深夜福利视频在线观看| 日本熟妇午夜| 国产精品99久久99久久久不卡| 又紧又爽又黄一区二区| 一二三四在线观看免费中文在| 日本黄大片高清| 成人国产一区最新在线观看| 国产又色又爽无遮挡免费看| 国产免费av片在线观看野外av| 五月玫瑰六月丁香| 国产精品自产拍在线观看55亚洲| av在线天堂中文字幕| 狠狠狠狠99中文字幕| 久久精品成人免费网站| 午夜精品久久久久久毛片777| 日本撒尿小便嘘嘘汇集6| 色综合欧美亚洲国产小说| 国产精品久久电影中文字幕| 两个人看的免费小视频| 麻豆一二三区av精品| 日韩国内少妇激情av| 老司机在亚洲福利影院| 欧美成人午夜精品| 一区二区三区高清视频在线| 午夜影院日韩av| 亚洲国产精品sss在线观看| 亚洲真实伦在线观看| av中文乱码字幕在线| 婷婷精品国产亚洲av在线| 日本五十路高清| 婷婷精品国产亚洲av在线| 国产男靠女视频免费网站| 婷婷精品国产亚洲av在线| 亚洲国产精品999在线| av天堂在线播放| 成人三级黄色视频| 天天躁狠狠躁夜夜躁狠狠躁| 色噜噜av男人的天堂激情| 男女做爰动态图高潮gif福利片| 中文字幕人成人乱码亚洲影| 国产一区在线观看成人免费| 天天躁狠狠躁夜夜躁狠狠躁| 一a级毛片在线观看| 18禁国产床啪视频网站| 性色av乱码一区二区三区2| 黄片大片在线免费观看| 国产97色在线日韩免费| 少妇的丰满在线观看| 色综合欧美亚洲国产小说| 精品久久久久久久久久久久久| 欧美极品一区二区三区四区| 国产人伦9x9x在线观看| 欧美国产日韩亚洲一区| 国产人伦9x9x在线观看| xxx96com| 在线国产一区二区在线| 欧美乱色亚洲激情| 午夜激情av网站| 国产一级毛片七仙女欲春2| 午夜视频精品福利| 无遮挡黄片免费观看| av国产免费在线观看| 亚洲av美国av| 国产精品爽爽va在线观看网站| 女人被狂操c到高潮| 色综合欧美亚洲国产小说| 级片在线观看| 日韩欧美国产在线观看| 欧美一级a爱片免费观看看 | 午夜影院日韩av| 国产蜜桃级精品一区二区三区| 国产一区二区激情短视频| 精品免费久久久久久久清纯| 日韩大码丰满熟妇| x7x7x7水蜜桃| 欧洲精品卡2卡3卡4卡5卡区| 久久久久久久久免费视频了| 9191精品国产免费久久| 中文资源天堂在线| 成人高潮视频无遮挡免费网站| 亚洲人成网站在线播放欧美日韩| 91字幕亚洲| 草草在线视频免费看| 变态另类丝袜制服| 啪啪无遮挡十八禁网站| 日韩有码中文字幕| 成人亚洲精品av一区二区| 啦啦啦韩国在线观看视频| 亚洲av五月六月丁香网| 我的老师免费观看完整版| 女人高潮潮喷娇喘18禁视频| 亚洲精品久久国产高清桃花| 亚洲精品色激情综合| 91成年电影在线观看| 1024视频免费在线观看| 亚洲人与动物交配视频| 成人国语在线视频| 亚洲欧美日韩东京热| 久久香蕉国产精品| 色哟哟哟哟哟哟| 亚洲av五月六月丁香网| www.精华液| 精品国产乱码久久久久久男人| 三级国产精品欧美在线观看 | 成人18禁在线播放| 国产麻豆成人av免费视频| 久久这里只有精品中国| 欧美 亚洲 国产 日韩一| 久久热在线av| 女人被狂操c到高潮| 亚洲国产欧美人成| 国产精品亚洲一级av第二区| 色综合婷婷激情| 制服人妻中文乱码| 一卡2卡三卡四卡精品乱码亚洲| 黄片大片在线免费观看| 亚洲国产欧美网| 草草在线视频免费看| 一级作爱视频免费观看| 在线a可以看的网站| 欧美一区二区国产精品久久精品 | 每晚都被弄得嗷嗷叫到高潮| 久久久久久久精品吃奶| 看黄色毛片网站| 久久精品aⅴ一区二区三区四区| 国产真实乱freesex| 成人国产综合亚洲| or卡值多少钱| xxx96com| 亚洲美女视频黄频| 亚洲成a人片在线一区二区| 变态另类成人亚洲欧美熟女| 香蕉丝袜av| 夜夜躁狠狠躁天天躁| 精品免费久久久久久久清纯| 国产精品野战在线观看| 久久天堂一区二区三区四区| 亚洲第一欧美日韩一区二区三区| 两个人的视频大全免费| 午夜福利在线观看吧| 亚洲av片天天在线观看| 十八禁网站免费在线| 91麻豆av在线| 日本免费一区二区三区高清不卡| www.www免费av| 女人爽到高潮嗷嗷叫在线视频| 18禁黄网站禁片免费观看直播| 国产av又大| 免费在线观看视频国产中文字幕亚洲| 日韩三级视频一区二区三区| 国产又黄又爽又无遮挡在线| 国产又色又爽无遮挡免费看| 99久久精品国产亚洲精品| 精品一区二区三区视频在线观看免费| 99国产精品一区二区蜜桃av| 黑人操中国人逼视频| 亚洲男人天堂网一区| 亚洲av五月六月丁香网| 国产精品精品国产色婷婷| 伦理电影免费视频| 国产一区在线观看成人免费| 18禁黄网站禁片午夜丰满| 亚洲av五月六月丁香网| 国内毛片毛片毛片毛片毛片| 怎么达到女性高潮| 国产高清激情床上av| 18禁黄网站禁片午夜丰满| 麻豆成人av在线观看| 舔av片在线| 久久人妻av系列| 丁香欧美五月| x7x7x7水蜜桃| 两个人的视频大全免费| 一本久久中文字幕| 亚洲色图av天堂| 久久久久久大精品| 高潮久久久久久久久久久不卡| 18禁黄网站禁片免费观看直播| 欧美日韩福利视频一区二区| 女同久久另类99精品国产91| av视频在线观看入口| 丁香六月欧美| 日韩欧美三级三区| 校园春色视频在线观看| 女人高潮潮喷娇喘18禁视频| 国产熟女午夜一区二区三区| 在线观看66精品国产| 久久久国产精品麻豆| 亚洲欧洲精品一区二区精品久久久| 久久欧美精品欧美久久欧美| 久久午夜亚洲精品久久| 在线a可以看的网站| 免费看美女性在线毛片视频| 欧美一级a爱片免费观看看 | 脱女人内裤的视频| 亚洲片人在线观看| 欧美中文日本在线观看视频| 久久久久久久久免费视频了| 国产成人欧美在线观看| 亚洲欧美日韩无卡精品| 精品高清国产在线一区| 久久久久久亚洲精品国产蜜桃av| 欧美丝袜亚洲另类 | 一边摸一边抽搐一进一小说| 母亲3免费完整高清在线观看| 国产av又大| 色av中文字幕| 国产精品一区二区免费欧美| 色综合婷婷激情| 50天的宝宝边吃奶边哭怎么回事| 国产99久久九九免费精品| 天天一区二区日本电影三级| 欧美日韩亚洲综合一区二区三区_| 日日摸夜夜添夜夜添小说| 亚洲18禁久久av| 中文字幕最新亚洲高清| 免费电影在线观看免费观看| 久久久久久久久免费视频了| 国产av不卡久久| 欧美一级a爱片免费观看看 | 99国产精品一区二区三区| 丝袜美腿诱惑在线| 国产成+人综合+亚洲专区| 最近视频中文字幕2019在线8| 日日夜夜操网爽| 日韩三级视频一区二区三区| 色综合婷婷激情| 精品久久久久久久毛片微露脸| 国产1区2区3区精品| 床上黄色一级片| 脱女人内裤的视频| 九九热线精品视视频播放| 一级毛片高清免费大全| 嫩草影院精品99| 色综合婷婷激情| 国产精品自产拍在线观看55亚洲| 国产熟女xx| 黄色视频,在线免费观看| 黑人操中国人逼视频| 久久中文字幕一级| 99国产精品一区二区三区| 最近最新中文字幕大全免费视频| 午夜激情av网站| 啪啪无遮挡十八禁网站| 精品少妇一区二区三区视频日本电影| 亚洲成av人片免费观看| 久久久久久人人人人人| 操出白浆在线播放| 久久久久亚洲av毛片大全| 久久这里只有精品19| 日韩欧美国产一区二区入口| 狂野欧美激情性xxxx| 亚洲成人中文字幕在线播放| 亚洲男人的天堂狠狠| 久久精品国产亚洲av香蕉五月| 午夜成年电影在线免费观看| 91麻豆精品激情在线观看国产| 亚洲欧洲精品一区二区精品久久久| 18禁国产床啪视频网站| 中文字幕久久专区| 变态另类丝袜制服| 午夜日韩欧美国产| 国产黄色小视频在线观看| 欧美日韩瑟瑟在线播放| 欧美成人一区二区免费高清观看 | 宅男免费午夜| 免费观看精品视频网站| 久久精品综合一区二区三区| 黑人操中国人逼视频| 一个人免费在线观看电影 | 国产不卡一卡二| 熟女少妇亚洲综合色aaa.| 一区福利在线观看| 欧美大码av| 天堂√8在线中文| 真人做人爱边吃奶动态| 欧美日韩乱码在线| 国产精品一区二区三区四区免费观看 | 国产午夜精品论理片| 搡老妇女老女人老熟妇| 一级黄色大片毛片| 一本一本综合久久| www.自偷自拍.com| 久久草成人影院| 午夜福利欧美成人| 中文字幕最新亚洲高清| 亚洲精品粉嫩美女一区| 国产午夜精品论理片| 亚洲av熟女| 亚洲精品一卡2卡三卡4卡5卡| 国产成人影院久久av| 黄色成人免费大全| 欧美成狂野欧美在线观看| 久久久久久九九精品二区国产 | 国产精品香港三级国产av潘金莲| 一本精品99久久精品77| 国产av不卡久久| 亚洲成av人片在线播放无| 欧美日韩亚洲综合一区二区三区_| 又黄又爽又免费观看的视频| 精品一区二区三区视频在线观看免费| 久久久久九九精品影院| 大型黄色视频在线免费观看| 亚洲一区高清亚洲精品| 亚洲片人在线观看| 国产在线精品亚洲第一网站| 琪琪午夜伦伦电影理论片6080| 黑人操中国人逼视频| av视频在线观看入口| 在线观看免费视频日本深夜| 精品熟女少妇八av免费久了| 婷婷精品国产亚洲av在线| 欧美中文日本在线观看视频| 精品国产美女av久久久久小说| 国内精品久久久久精免费| 亚洲人成77777在线视频| 欧美日韩瑟瑟在线播放| 久久性视频一级片| 国产三级中文精品| 精品久久久久久成人av| 男女床上黄色一级片免费看| 黑人操中国人逼视频| 人成视频在线观看免费观看| 国产一区二区三区视频了| 国内精品久久久久久久电影| 亚洲精品久久成人aⅴ小说| 成人18禁高潮啪啪吃奶动态图| 老汉色av国产亚洲站长工具| 久久精品亚洲精品国产色婷小说| 免费看十八禁软件| 男人舔女人的私密视频| 欧美成人免费av一区二区三区| 国产精品一及| 国产1区2区3区精品| 精品免费久久久久久久清纯| 成人特级黄色片久久久久久久| 在线观看日韩欧美| 少妇人妻一区二区三区视频| 级片在线观看| 久久精品综合一区二区三区| 岛国在线观看网站| 一本一本综合久久| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久精品国产欧美久久久| 久久久水蜜桃国产精品网| 国产熟女xx| 麻豆av在线久日| 成人av一区二区三区在线看| 女人被狂操c到高潮| 亚洲激情在线av| 国产激情欧美一区二区| 午夜亚洲福利在线播放| 日韩中文字幕欧美一区二区| 非洲黑人性xxxx精品又粗又长| 精华霜和精华液先用哪个| 久久热在线av| 国内毛片毛片毛片毛片毛片| 中文亚洲av片在线观看爽| 狂野欧美白嫩少妇大欣赏| 国产在线观看jvid| 久久久久久久久免费视频了| 我要搜黄色片| 全区人妻精品视频| 国产视频内射| 91麻豆精品激情在线观看国产| 欧美国产日韩亚洲一区| 一级a爱片免费观看的视频| 亚洲人成伊人成综合网2020| 亚洲国产高清在线一区二区三| 亚洲一码二码三码区别大吗| 99精品在免费线老司机午夜| 国产蜜桃级精品一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 久久久国产欧美日韩av| 午夜老司机福利片| 999精品在线视频| 真人一进一出gif抽搐免费| 亚洲 欧美 日韩 在线 免费| 日韩大码丰满熟妇| 久热爱精品视频在线9| 国产精品久久久久久人妻精品电影| 国产精品亚洲美女久久久| 亚洲九九香蕉| 香蕉久久夜色| 国产精品自产拍在线观看55亚洲| 9191精品国产免费久久| 国产精品自产拍在线观看55亚洲| 国产亚洲精品一区二区www| 我要搜黄色片| 免费无遮挡裸体视频| 日韩大码丰满熟妇| 999久久久精品免费观看国产| 1024手机看黄色片| 国产爱豆传媒在线观看 | 搡老岳熟女国产| xxx96com| 51午夜福利影视在线观看| 在线观看www视频免费| 成年女人毛片免费观看观看9| 波多野结衣高清作品| 欧美绝顶高潮抽搐喷水| 毛片女人毛片| 欧美在线黄色| 日日摸夜夜添夜夜添小说| a级毛片在线看网站| 欧美又色又爽又黄视频| 国产片内射在线| 欧美性猛交╳xxx乱大交人| 日本黄色视频三级网站网址| 老司机午夜福利在线观看视频| 天堂√8在线中文| 免费无遮挡裸体视频| 非洲黑人性xxxx精品又粗又长| 午夜免费观看网址| 91在线观看av| 成年人黄色毛片网站| 99re在线观看精品视频| 亚洲av中文字字幕乱码综合| 国产精品 国内视频| 成人国产一区最新在线观看| www.熟女人妻精品国产| 国产精品自产拍在线观看55亚洲| 亚洲国产高清在线一区二区三| 亚洲第一欧美日韩一区二区三区| 国产黄a三级三级三级人| 亚洲色图av天堂| 久久久久性生活片| 国产成年人精品一区二区| 欧美激情久久久久久爽电影| 亚洲人成电影免费在线| 婷婷六月久久综合丁香| 日韩欧美在线乱码| 嫁个100分男人电影在线观看| 午夜福利18| 夜夜躁狠狠躁天天躁| 亚洲黑人精品在线| 国产三级中文精品| 黑人欧美特级aaaaaa片| 51午夜福利影视在线观看| 18禁观看日本| 在线播放国产精品三级| 制服丝袜大香蕉在线| 999精品在线视频| 日韩欧美在线二视频| 久久中文字幕人妻熟女| 悠悠久久av| 伦理电影免费视频| 一夜夜www| 欧美+亚洲+日韩+国产| 久久热在线av| 欧美在线一区亚洲| 亚洲精品一区av在线观看| 久久久精品大字幕| 一级片免费观看大全| av天堂在线播放| 午夜精品一区二区三区免费看| 母亲3免费完整高清在线观看| 国产野战对白在线观看| 国内精品久久久久精免费| 精品久久久久久久末码|