• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Neural Network-Based Trust Management System for Edge Devices in Peer-to-Peer Networks

    2019-06-12 01:23:12AlanoudAlhussainHebaKurdiandLinaAltoaimy
    Computers Materials&Continua 2019年6期

    Alanoud Alhussain,Heba Kurdi, and Lina Altoaimy

    Abstract:Edge devices in Internet of Things (IoT)applications can form peers to communicate in peer-to-peer (P2P)networks over P2P protocols.Using P2P networks ensures scalability and removes the need for centralized management.However,due to the open nature of P2P networks,they often suffer from the existence of malicious peers,especially malicious peers that unite in groups to raise each other's ratings.This compromises users' safety and makes them lose their confidence about the files or services they are receiving.To address these challenges,we propose a neural networkbased algorithm,which uses the advantages of a machine learning algorithm to identify whether or not a peer is malicious.In this paper,a neural network (NN)was chosen as the machine learning algorithm due to its efficiency in classification.The experiments showed that the NNTrust algorithm is more effective and has a higher potential of reducing the number of invalid files and increasing success rates than other well-known trust management systems.

    Keywords:Trust management,neural networks,peer to peer,machine learning,edge devices.

    1 Introduction

    Internet of things (IoT)is a newly emerging technology that connects enormous numbers of different devices (edge devices)and allows them to exchange and share data as well as other resources.As the number of connected devices is growing exponentially,there has become a need to have a more reliable and scalable distributed system with open architectures to efficiently handle the growing demand placed on IoT applications [Steffenel,Pinheiro,Peres et al.(2018)].

    A peer-to-peer (P2P)network,which is one of the most widely used networks for sharing files [Bradai,Abbasi,Landa et al.(2014)],has the opportunity to improve the direction of IoT and enhance its applications.

    P2P consists of a collection of peers without a centralized control,which makes it more flexible and encourages dynamic and rich communications [Bashmal,Almulifi and Kurdi (2017)].Thus,it allows connected devices to form peers and facilitates the communication among them [Xie,Yuan,Zhou et al.(2018)].However,the open nature of a P2P network means that it also has multiple security threats,which make it highly vulnerable to attacks from different types of peers [Xie,Yuan,Zhou et al.(2018)] such as malicious peers and free-riders.For instance,malicious peers are able to upload inauthentic files to compromise the network [Chuang (2017)].They may also collaborate with other malicious peers to improve their reputations and interpolate good peers [Fan,Liu,Li et al.(2017)].Therefore,it is crucial to identify malicious peers and isolate them from networks,thus allowing good peers to share resources without the fear of such malicious behaviors [Kurdi (2015)].Many mechanisms have been introduced to solve the problems caused by malicious peers [Hawa,Al-Zubi,Darabkh et al.(2017)].Reputation and trust management are examples of well-known and powerful mechanisms that reduce the effect of malicious behaviors in P2P networks.Despite their efficiency,existing reputation management algorithms face difficulties in identifying malicious groups [Alkharji,Kurdi,Altamimi et al.(2017)].Malicious groups are intelligent models of malicious peers that form groups and mislead good peers [Alhussain and Kurdi (2018)].They do this by giving malicious peers high reputation values or by being inconsistent about the authenticity of the files they provide [Kurdi,Alfaries,Al-Anazi et al.(2018)].

    Trust management systems are crucial in all environments that involve exchanging and sharing data or services between different entities,including edge computing,cloud computing,and P2P network environments.Number of reputation systems have been introduced in the P2P network,which is considered a main precursor for edge computing [Lopez,Montresor,Epema et al.(2015)]

    The EigenTrust algorithm [Kamvar,Schlosser and Garcia-Molina (2003)] is a wellestablished reputation algorithm;it has many reputation systems that appear to enhance it in order to eliminate the need for pre-trusted peers,as seen in Kurdi [Kurdi (2015)].This study hypothesizes that the honest peer is the one with the maximum reputation value.A similar goal was discussed in the trust mirroring that was used in Shirgahi et al.[Shirgahi,Mohsenzadeh and Javadi (2017)] to predict trust in social networks without the need for global trust information.However,a limitation existed in that study:the trust value could not be calculated unless direct trust existed between the two nodes.

    The inverse of the PageRank (PR)algorithm used in Lee [Lee (2016)] is the idea that if one can recognize peers as dishonest,he can reasonably filter out their dishonest friend peers from the environment,which is the opposite of the approach taken with most reputation systems,such as subjective logic [Jsang,Hayward and Pope (2006)] and its variants [Kurdi,Alfaries,Al-Anazi et al.(2018);Kurdi,Alshayban,Altoaimy et al.2018)].

    Despite that the previous mentioned schemes have improved its efficiency,there is still a need to identify more complicated types of malicious peers,such as collective malicious peers.

    To the best of our knowledge,no studies have combined the advantages of traditional trust algorithms and machine learning.Therefore,this paper introduces the NNTrust algorithm for the purpose of reputation management in P2P networks.It focuses on recognizing malicious peers using a neural network algorithm that analyzes peers' transaction histories.In addition,we use a well-controlled experimental framework to evaluate NNTrust against other benchmark algorithms.

    The remainder of this paper is organized as follows.Section 2 introduces the proposed NNTrust algorithm.Sections 3 and 4 discuss the evaluation plan and the experimental results.Finally,Section 5 summarizes and concludes the paper.

    2 System design

    This section describes the design and architecture of the proposed NNTrust system,which determines trustworthiness among interacting edge devices (peers)to enhance the robustness of the file-sharing network in a P2P environment.The NNTrust system uses EigenTrust to compute local and global trust values among peers and an NN to predict malicious behaviors.The architecture of the NNTrust system,shown in Fig.1,consists of the following components:

    Figure 1:System architecture

    1.System registry:

    This database contains a list of the files and their owners.It arranges the file requests as a queue of transaction requests,and it links each receiver to the sender in a relationship.It also maintains all files and dynamically updates their statuses.

    2.Reputation database management system:

    This database stores and updates the reputation matrix calculated using EigenTrust.

    3.Peers:

    Each peer has the following three components:

    3.1.Trust calculator:It receives the sender and its score from the transaction manager to compute the trust matrix,and it sends the updates to the local trust database.

    3.2.Trust database:It contains the matrices of trust for all peers in the system and the history of the peer's transactions itself.It also receives requests from the trust calculator to store or update the matrix and the to-whom list after each transaction.

    3.3.Transaction manager:It contains the list of files and accepts the requests for the files.It finds the best senders and sends their information to the NN to predict whether the senders are malicious.In addition,it rates and normalizes the received files.It also sends the scores of rated senders and their files to the trust calculator.

    4.Neural network (NN):

    The NN contains the following:

    4.1.The trainer:It takes the offline dataset and constructs the layers of the NN to teach the network how to classify each peer.The trained network is used later by the predictor to predict the type of sender.

    4.2.The predictor:It receives the peer’s information,analyzes it to extract the peer’s features,and enters it into the NN to predict the type of provider.The transaction manager,based on the type of provider,will decide to either accept or reject its offer.

    3 Evaluation methodology

    This paper introduces a very well-controlled evaluation framework in a P2P network model.All the control variables and performance measures were obtained from the application field,which is file sharing to increase the level of assurance that no specific strategy in the selection is favored over any other strategies.Two performance measures were considered:

    1.The percentage of invalid files exchanged by good peers,which needs to be minimized.

    2.The success rate,which represents the number of valid files received by good peers over the number of transactions attempted by good peers as:

    3.1 Dataset

    The dataset was constructed by simulating a P2P network using TM-SIM [West,Kannan,Lee et al.(2010)].The network contains 5,000 users,and 100,000 files,and 100,000 transactions.Regarding users,there are 2,500 well-behaved users,including 500 pretrusted ones.The network also contains five different types of malicious peers,which are purely malicious users,feedback-skewing users,malignancy-providing users,disguised malicious users,and sybil attack users,in order to teach the machine all possible scenarios of malicious behavior.Each type of malicious peer has 500 peers that represent its behavior.Tab.1 summarizes the dataset characteristics.

    The dataset contains 5,000 instances and nine numeric attributes:1)positive ratings from a good peer,2)negative ratings from a good peer,3)positive ratings from a malicious peer,4)negative ratings from a malicious peer,5)positive ratings for a good peer,6)negative ratings for a good peer,7)positive ratings for a malicious peer,8)negative ratings for a malicious peer,and 9)transactions.Peers are classified using the class attribute,which is either 0 or 1,where 0 represents a good user and 1 represents a malicious user.

    Table 1:Dataset characteristics

    4 Experimental setup

    In an approach similar to that used in Kurdi et al.[Kurdi (2015);Lu,Wang,Xie et al.2016)],the number of peers and files were varied to represent a meaningful sample of P2P environments.There were two sets of experiments,as summarized in Tab.2.

    Table 2:Experimental settings

    As in Kurdi et al.[Kurdi,Alshayban,Altoaimy et al.(2018)],the peer models included pre-trusted,good,and malicious peers.The pre-trusted peers had high trust values.In this paper,we considered two types of malicious peers:purely single malicious peers and purely collective malicious peers.We also selected three benchmark trust systems to compare and evaluate the performance of the proposed NNTrust system.These were:1)EigenTrust [Kamvar,Schlosser and Gareia-Molina (2003)].2)Incremental EigenTrust [West,Kannan and Lee (2010)] and 3)the base case,None,in which there was no reputation management system and each peer randomly chose its file provider.

    5 Results and discussion

    A summary of the results of running 100,000 transactions for the two sets of experiments is shown in Figs.2-9.As discussed previously,we used the percentage of invalid files and the success rates to evaluate the efficiency of NNTrust.

    Figs.2 and 3 illustrate the relationship between the percentage of invalid files exchanged by good peers and the number of files in the system.On the other hand,Figs.4 and 5 show the relationship between the percentage of invalid services exchanged by good peers and the number of peers in the network.From the figures,we can see that for both malicious types,NNTrust had more success decreasing the percentage of invalid files than other benchmark systems.

    Figure 2:Percentage of invalid files when different numbers of files are considered (purely single malicious peers)

    Figure 3:Percentage of invalid files when different numbers of files are considered (purely collective malicious)

    Figure 4:Percentage of invalid files when different numbers of peers are considered (purely single malicious)

    Figure 5:Percentage of invalid files when different numbers of peers are considered (purely collective malicious)

    Figure 6:Success rate when different numbers of files are considered (purely single malicious)

    Figure 7:Success rate when different numbers of files are considered (purely collective malicious)

    In Figs.6 and 7,the success rate is plotted against the number of files in the system.Although the success rate of NNTrust dropped slightly in the case of 500 files and purely single malicious peers,its performance increased with increased number of files in the system.The reason behind this is that NNTrust analyzed larger log histories that increased as the number of transactions increased,and thus,improved its performance.In Figs.8 and 9 the success rate is plotted against the number of peers in the network.We can see that for all scenarios,NNTrust had a higher success rate than other benchmark systems.

    Figure 8:Success rate when different numbers of peers are considered (purely single malicious)

    Figure 9:Success rate when different numbers of peers are considered (purely collective malicious)

    6 Conclusion

    In this paper,we proposed the use of historical data to keep track of all transactions that had been processed by edge devices in P2P networks.In the simulation setup,we compared the proposed NNTrust system with EigenTrust,Incremental EigenTrust,and the base case,None.We also evaluated the performance in terms of the percentage of invalid files and success rates of good peers.The results showed that NNTrust outperformed the other systems,minimizing the percentage of invalid files and maximizing the success rate of good peers.In our future work,we plan to produce a new dataset according to different patterns of malicious behaviors.

    Acknowledgement:This research was supported by a grant from the Research Center of the Center for Female Scientific and Medical Colleges Deanship of Scientific Research,King Saud University.

    特级一级黄色大片| 欧美人与善性xxx| 男人的好看免费观看在线视频| 床上黄色一级片| 自拍偷自拍亚洲精品老妇| 欧美不卡视频在线免费观看| 乱码一卡2卡4卡精品| 欧美xxxx性猛交bbbb| 97在线视频观看| 国产精品久久久久久久电影| 男女那种视频在线观看| 99国产精品一区二区蜜桃av| 久久久久免费精品人妻一区二区| 人妻少妇偷人精品九色| 国产一区二区激情短视频| 欧美又色又爽又黄视频| 久久久久久久久久久丰满| 欧美成人a在线观看| 婷婷六月久久综合丁香| 午夜日韩欧美国产| 熟女人妻精品中文字幕| 精品久久国产蜜桃| 国产三级中文精品| 国产成人freesex在线 | 97热精品久久久久久| 国产一区二区三区av在线 | 特大巨黑吊av在线直播| 69av精品久久久久久| 嫩草影视91久久| 悠悠久久av| 国产av一区在线观看免费| 久久精品人妻少妇| 插阴视频在线观看视频| 欧美一区二区精品小视频在线| 欧美潮喷喷水| 51国产日韩欧美| 哪里可以看免费的av片| 国产精品一区二区三区四区免费观看 | 色综合色国产| 又爽又黄无遮挡网站| 深爱激情五月婷婷| 日产精品乱码卡一卡2卡三| 看黄色毛片网站| 夜夜夜夜夜久久久久| 国产国拍精品亚洲av在线观看| 全区人妻精品视频| 中文字幕人妻熟人妻熟丝袜美| 国产精品久久久久久av不卡| 99久久中文字幕三级久久日本| 国产精品1区2区在线观看.| 午夜福利成人在线免费观看| 午夜福利在线观看吧| 久久99热这里只有精品18| 亚洲中文字幕日韩| 亚洲经典国产精华液单| 国产伦精品一区二区三区四那| 欧美色视频一区免费| 一级毛片电影观看 | 最近手机中文字幕大全| 精品一区二区免费观看| 国产亚洲精品久久久久久毛片| 99热这里只有精品一区| 岛国在线免费视频观看| 欧美日本亚洲视频在线播放| 一个人看视频在线观看www免费| 美女高潮的动态| 丝袜美腿在线中文| 99久久久亚洲精品蜜臀av| 中文资源天堂在线| 国产伦在线观看视频一区| 别揉我奶头~嗯~啊~动态视频| 淫秽高清视频在线观看| 午夜影院日韩av| 大香蕉久久网| 亚洲国产精品国产精品| 国产亚洲精品久久久com| 亚洲精品粉嫩美女一区| 久久热精品热| 真人做人爱边吃奶动态| 国产欧美日韩一区二区精品| 久久久久久大精品| 国产午夜精品久久久久久一区二区三区 | 亚洲中文字幕日韩| 人妻丰满熟妇av一区二区三区| 性插视频无遮挡在线免费观看| 一级a爱片免费观看的视频| 色综合色国产| 最近最新中文字幕大全电影3| 在现免费观看毛片| 久久久久久伊人网av| 亚洲人成网站在线播放欧美日韩| 大又大粗又爽又黄少妇毛片口| 精品一区二区三区视频在线| 久久久久久久午夜电影| 97超碰精品成人国产| 97热精品久久久久久| 国产欧美日韩精品亚洲av| 22中文网久久字幕| 伦理电影大哥的女人| 极品教师在线视频| 嫩草影院新地址| 国内揄拍国产精品人妻在线| 国产黄片美女视频| 午夜福利在线在线| 在现免费观看毛片| 中文字幕熟女人妻在线| 草草在线视频免费看| 一区二区三区高清视频在线| 国产精品一区二区免费欧美| 久久久久性生活片| 18禁在线播放成人免费| 色在线成人网| 全区人妻精品视频| 亚洲最大成人中文| 成人欧美大片| 1024手机看黄色片| 欧美在线一区亚洲| 亚洲自偷自拍三级| 国产不卡一卡二| 亚洲欧美精品自产自拍| 两性午夜刺激爽爽歪歪视频在线观看| 精品久久久久久久久久久久久| 能在线免费观看的黄片| 亚洲av熟女| 欧美一区二区国产精品久久精品| 99久久精品热视频| 亚洲精品一区av在线观看| 亚洲电影在线观看av| 亚洲欧美日韩东京热| 国产午夜精品论理片| 国产综合懂色| 国产美女午夜福利| 六月丁香七月| 亚洲精品国产成人久久av| 午夜福利18| 亚洲一区二区三区色噜噜| av在线亚洲专区| 久久久久精品国产欧美久久久| 日韩 亚洲 欧美在线| 在线观看美女被高潮喷水网站| 看非洲黑人一级黄片| 国产一级毛片七仙女欲春2| 国产伦精品一区二区三区四那| 美女 人体艺术 gogo| 亚洲五月天丁香| 舔av片在线| 91av网一区二区| 亚洲精品日韩在线中文字幕 | 国产不卡一卡二| 你懂的网址亚洲精品在线观看 | 久久精品国产鲁丝片午夜精品| 校园人妻丝袜中文字幕| 久久亚洲精品不卡| 91午夜精品亚洲一区二区三区| 久久久久国产精品人妻aⅴ院| 亚洲欧美日韩高清在线视频| 久久精品国产亚洲网站| 午夜老司机福利剧场| 嫩草影院新地址| 国产亚洲91精品色在线| 99热网站在线观看| 亚洲av中文av极速乱| 亚洲精品一卡2卡三卡4卡5卡| 免费观看精品视频网站| 国产日本99.免费观看| 一本一本综合久久| 一夜夜www| 国产成年人精品一区二区| 久久国产乱子免费精品| 欧美日韩一区二区视频在线观看视频在线 | 亚洲熟妇中文字幕五十中出| 在线观看一区二区三区| 国产精品久久久久久亚洲av鲁大| 国产探花极品一区二区| 国产在线男女| 日本一本二区三区精品| 国产v大片淫在线免费观看| 欧美xxxx性猛交bbbb| 亚洲av第一区精品v没综合| a级毛片免费高清观看在线播放| 九九久久精品国产亚洲av麻豆| 无遮挡黄片免费观看| 日本黄色视频三级网站网址| 欧美三级亚洲精品| 三级男女做爰猛烈吃奶摸视频| 一个人看的www免费观看视频| 色综合色国产| 亚洲经典国产精华液单| 国产亚洲精品久久久久久毛片| 一级黄色大片毛片| 午夜福利在线观看免费完整高清在 | 18禁裸乳无遮挡免费网站照片| 亚洲精品粉嫩美女一区| 亚洲美女视频黄频| 一级a爱片免费观看的视频| 又粗又爽又猛毛片免费看| 全区人妻精品视频| 中文字幕人妻熟人妻熟丝袜美| 欧美色视频一区免费| 六月丁香七月| 狠狠狠狠99中文字幕| 97在线视频观看| 国产精品一区二区三区四区久久| 日韩中字成人| 午夜福利在线在线| 成人av一区二区三区在线看| av天堂中文字幕网| 国产精品1区2区在线观看.| 亚洲国产日韩欧美精品在线观看| 亚洲人成网站高清观看| 精品日产1卡2卡| 一本精品99久久精品77| aaaaa片日本免费| 午夜爱爱视频在线播放| 国产成人aa在线观看| 精品无人区乱码1区二区| 国产黄色视频一区二区在线观看 | 亚洲av二区三区四区| 免费一级毛片在线播放高清视频| 丝袜喷水一区| 欧美成人免费av一区二区三区| 少妇人妻精品综合一区二区 | 性欧美人与动物交配| 最近手机中文字幕大全| 国模一区二区三区四区视频| 欧美在线一区亚洲| 国产高清视频在线观看网站| 麻豆国产97在线/欧美| 丰满的人妻完整版| 美女免费视频网站| 亚洲美女黄片视频| 国产午夜精品久久久久久一区二区三区 | 97碰自拍视频| 欧美三级亚洲精品| 亚洲人成网站在线播放欧美日韩| 国产精品乱码一区二三区的特点| 久久久a久久爽久久v久久| 欧美色欧美亚洲另类二区| 又粗又爽又猛毛片免费看| 蜜臀久久99精品久久宅男| 亚洲欧美成人综合另类久久久 | 国产麻豆成人av免费视频| 亚洲五月天丁香| 久久久久九九精品影院| 最近手机中文字幕大全| 嫩草影院入口| 欧美成人a在线观看| 性色avwww在线观看| 久久久久九九精品影院| 在线观看午夜福利视频| 69人妻影院| 欧美日韩乱码在线| а√天堂www在线а√下载| 我要看日韩黄色一级片| 搡老妇女老女人老熟妇| 亚洲av免费在线观看| 噜噜噜噜噜久久久久久91| 男女之事视频高清在线观看| 激情 狠狠 欧美| 欧美日韩乱码在线| 日韩成人av中文字幕在线观看 | 国产精品久久久久久精品电影| 波野结衣二区三区在线| 亚洲国产高清在线一区二区三| 人人妻人人澡欧美一区二区| 香蕉av资源在线| 偷拍熟女少妇极品色| 欧美xxxx黑人xx丫x性爽| 桃色一区二区三区在线观看| 精品一区二区三区av网在线观看| 又黄又爽又免费观看的视频| 老熟妇仑乱视频hdxx| 少妇丰满av| 国产精品三级大全| 97热精品久久久久久| 国产视频内射| 麻豆一二三区av精品| 欧美日韩一区二区视频在线观看视频在线 | av专区在线播放| 亚洲专区国产一区二区| 成人三级黄色视频| 国产成人福利小说| 亚洲精品久久国产高清桃花| 一级黄片播放器| 精品人妻一区二区三区麻豆 | 在线观看66精品国产| 久久国产乱子免费精品| 天堂√8在线中文| 91久久精品国产一区二区成人| 国产精品一区www在线观看| 日韩一区二区视频免费看| 亚洲一区二区三区色噜噜| 国产精品福利在线免费观看| 五月玫瑰六月丁香| 久久韩国三级中文字幕| 少妇熟女欧美另类| av专区在线播放| 中文亚洲av片在线观看爽| 欧美日韩精品成人综合77777| 亚洲精品粉嫩美女一区| 亚洲av免费高清在线观看| 亚洲不卡免费看| 又黄又爽又免费观看的视频| 国产一区二区三区av在线 | 日韩欧美精品v在线| 亚洲av美国av| 亚洲精品久久国产高清桃花| 日本三级黄在线观看| 欧美绝顶高潮抽搐喷水| 麻豆久久精品国产亚洲av| 精品午夜福利在线看| а√天堂www在线а√下载| 女人被狂操c到高潮| 人人妻人人看人人澡| 久久精品人妻少妇| 插逼视频在线观看| 国产精品无大码| 搡老妇女老女人老熟妇| 女人被狂操c到高潮| 久久久久久久久中文| 中文字幕av成人在线电影| 久久久精品94久久精品| 精品一区二区三区视频在线| 亚洲在线观看片| 婷婷精品国产亚洲av| 在线观看一区二区三区| 成人午夜高清在线视频| 成人鲁丝片一二三区免费| 中国美白少妇内射xxxbb| 99国产极品粉嫩在线观看| 欧美日韩乱码在线| 国产人妻一区二区三区在| 可以在线观看毛片的网站| 全区人妻精品视频| 最新中文字幕久久久久| 嫩草影院新地址| 最新在线观看一区二区三区| 波多野结衣巨乳人妻| 国产免费一级a男人的天堂| 国产精品国产三级国产av玫瑰| 卡戴珊不雅视频在线播放| 干丝袜人妻中文字幕| 在线国产一区二区在线| 91午夜精品亚洲一区二区三区| 日本精品一区二区三区蜜桃| 欧美成人一区二区免费高清观看| 亚洲av不卡在线观看| 网址你懂的国产日韩在线| 一a级毛片在线观看| 99九九线精品视频在线观看视频| 国产淫片久久久久久久久| 国产大屁股一区二区在线视频| 三级男女做爰猛烈吃奶摸视频| 久久精品国产自在天天线| 观看美女的网站| 亚洲欧美精品综合久久99| 亚洲,欧美,日韩| 蜜臀久久99精品久久宅男| 黄色视频,在线免费观看| 秋霞在线观看毛片| 午夜视频国产福利| 精品人妻偷拍中文字幕| 日韩三级伦理在线观看| 春色校园在线视频观看| 最近最新中文字幕大全电影3| 国产精品亚洲一级av第二区| 美女黄网站色视频| 天天躁日日操中文字幕| 国产91av在线免费观看| 黄色配什么色好看| 一a级毛片在线观看| 岛国在线免费视频观看| 久久99热6这里只有精品| 不卡视频在线观看欧美| 国产精品无大码| 99九九线精品视频在线观看视频| 麻豆av噜噜一区二区三区| 国产午夜精品论理片| 亚洲乱码一区二区免费版| 嫩草影院新地址| 一卡2卡三卡四卡精品乱码亚洲| 亚洲av五月六月丁香网| 少妇丰满av| 99riav亚洲国产免费| 精品国内亚洲2022精品成人| 国产精品久久久久久亚洲av鲁大| 免费看美女性在线毛片视频| 亚洲一区高清亚洲精品| 欧美日本视频| 美女免费视频网站| 性插视频无遮挡在线免费观看| 在线播放国产精品三级| .国产精品久久| 免费不卡的大黄色大毛片视频在线观看 | a级一级毛片免费在线观看| 婷婷精品国产亚洲av在线| av在线播放精品| 午夜精品国产一区二区电影 | 国产视频一区二区在线看| 国产精品,欧美在线| 国产精品嫩草影院av在线观看| 午夜视频国产福利| 亚洲成人久久性| 久久久久久大精品| 精品99又大又爽又粗少妇毛片| 国产毛片a区久久久久| 精品国产三级普通话版| 99riav亚洲国产免费| 99热精品在线国产| 村上凉子中文字幕在线| 亚洲婷婷狠狠爱综合网| 日韩成人伦理影院| 黄片wwwwww| 国产精品美女特级片免费视频播放器| 亚洲欧美成人精品一区二区| 日本与韩国留学比较| 99久久无色码亚洲精品果冻| 国产 一区 欧美 日韩| 亚洲成人久久性| 乱人视频在线观看| 欧美成人精品欧美一级黄| 欧美日韩综合久久久久久| 国产欧美日韩精品亚洲av| 99热这里只有是精品在线观看| 国产精品一区二区三区四区免费观看 | 国产av不卡久久| 麻豆精品久久久久久蜜桃| 国语自产精品视频在线第100页| 亚州av有码| 国产69精品久久久久777片| 免费av不卡在线播放| 亚洲18禁久久av| 国产视频内射| 搞女人的毛片| 免费电影在线观看免费观看| 51国产日韩欧美| 99久久九九国产精品国产免费| 久久精品影院6| 国产精品伦人一区二区| 国产精品久久久久久久电影| 国国产精品蜜臀av免费| 蜜桃亚洲精品一区二区三区| 国产真实伦视频高清在线观看| 少妇猛男粗大的猛烈进出视频 | 长腿黑丝高跟| 亚洲成a人片在线一区二区| 成年女人看的毛片在线观看| 少妇的逼好多水| av在线天堂中文字幕| 九九爱精品视频在线观看| ponron亚洲| 久久韩国三级中文字幕| 黄色欧美视频在线观看| 无遮挡黄片免费观看| 午夜福利视频1000在线观看| 在线播放无遮挡| 99久久中文字幕三级久久日本| 韩国av在线不卡| 国产高清不卡午夜福利| 噜噜噜噜噜久久久久久91| 内地一区二区视频在线| 成人毛片a级毛片在线播放| 久久6这里有精品| 一级毛片aaaaaa免费看小| 精品人妻视频免费看| 一区二区三区免费毛片| 亚洲中文日韩欧美视频| 久久这里只有精品中国| 狂野欧美白嫩少妇大欣赏| h日本视频在线播放| 天堂√8在线中文| 老司机午夜福利在线观看视频| 99久久久亚洲精品蜜臀av| 欧美在线一区亚洲| 免费一级毛片在线播放高清视频| 一a级毛片在线观看| 麻豆成人午夜福利视频| 欧美最新免费一区二区三区| 亚洲无线在线观看| 日本三级黄在线观看| av天堂在线播放| 久久久久九九精品影院| 成人永久免费在线观看视频| 变态另类丝袜制服| 国产精品永久免费网站| 又粗又爽又猛毛片免费看| 午夜老司机福利剧场| 尾随美女入室| 国产一区亚洲一区在线观看| 久久精品国产亚洲av天美| 久久欧美精品欧美久久欧美| 春色校园在线视频观看| 免费看光身美女| 欧美性猛交黑人性爽| 亚洲在线自拍视频| 99久久精品热视频| 成人二区视频| 此物有八面人人有两片| 性色avwww在线观看| 亚洲经典国产精华液单| 舔av片在线| 亚洲在线观看片| 免费av毛片视频| 亚洲精品456在线播放app| 亚洲精品亚洲一区二区| 99久久精品国产国产毛片| 国产精品乱码一区二三区的特点| 国产一区二区在线av高清观看| 久久人妻av系列| 久久久久久久久大av| 久久精品国产99精品国产亚洲性色| 亚洲国产高清在线一区二区三| 两个人视频免费观看高清| 人人妻人人看人人澡| 国产高清视频在线观看网站| 亚洲第一电影网av| 国产精品无大码| 精品无人区乱码1区二区| 老熟妇仑乱视频hdxx| 亚洲精品影视一区二区三区av| 国产精品乱码一区二三区的特点| 国产精品精品国产色婷婷| 亚洲在线观看片| 国产私拍福利视频在线观看| 最新在线观看一区二区三区| 亚洲激情五月婷婷啪啪| 国产淫片久久久久久久久| 国产黄片美女视频| 天美传媒精品一区二区| 欧美高清成人免费视频www| 亚州av有码| 直男gayav资源| 久久精品久久久久久噜噜老黄 | 蜜臀久久99精品久久宅男| 99riav亚洲国产免费| 亚洲成人av在线免费| 久久韩国三级中文字幕| 国产伦在线观看视频一区| 变态另类丝袜制服| 国产在线精品亚洲第一网站| 国产成人91sexporn| 成年av动漫网址| 午夜福利18| 午夜激情欧美在线| 寂寞人妻少妇视频99o| 一级毛片我不卡| 亚洲精品一卡2卡三卡4卡5卡| 97热精品久久久久久| 精品一区二区三区视频在线观看免费| 日本欧美国产在线视频| 男人和女人高潮做爰伦理| 又黄又爽又免费观看的视频| 日韩欧美精品免费久久| 国产高清不卡午夜福利| 麻豆成人午夜福利视频| 日本五十路高清| 成熟少妇高潮喷水视频| 国产不卡一卡二| 久久精品国产鲁丝片午夜精品| 国产亚洲91精品色在线| 美女被艹到高潮喷水动态| 99九九线精品视频在线观看视频| 不卡视频在线观看欧美| videossex国产| 99久久久亚洲精品蜜臀av| 色视频www国产| 日本与韩国留学比较| 久久99热6这里只有精品| 婷婷精品国产亚洲av在线| 国产精品伦人一区二区| 亚洲成人精品中文字幕电影| 能在线免费观看的黄片| 日本黄大片高清| 99热6这里只有精品| 精华霜和精华液先用哪个| 在线播放国产精品三级| 波多野结衣高清作品| 免费一级毛片在线播放高清视频| 中国国产av一级| 久久久久免费精品人妻一区二区| 狠狠狠狠99中文字幕| 熟女电影av网| 可以在线观看的亚洲视频| 日本色播在线视频| 精品久久久久久久久久久久久| 91麻豆精品激情在线观看国产| 99精品在免费线老司机午夜| 深爱激情五月婷婷| 日韩,欧美,国产一区二区三区 | 久久综合国产亚洲精品| 国产激情偷乱视频一区二区| 欧美中文日本在线观看视频| 五月伊人婷婷丁香| 精品久久久久久成人av| 国产蜜桃级精品一区二区三区| 欧美成人免费av一区二区三区| 国产真实伦视频高清在线观看| 色视频www国产| 国产一区二区三区av在线 | 国产伦精品一区二区三区视频9| 国内精品宾馆在线| 网址你懂的国产日韩在线| 岛国在线免费视频观看| 欧美绝顶高潮抽搐喷水| a级毛片a级免费在线| 大又大粗又爽又黄少妇毛片口| 一a级毛片在线观看| 亚洲欧美中文字幕日韩二区| 欧美+亚洲+日韩+国产| 成人二区视频| 久久精品夜夜夜夜夜久久蜜豆| 久久久久久久久久久丰满| av国产免费在线观看| 久久久久精品国产欧美久久久| 国产精品人妻久久久影院|