• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An evaluation of soil moisture from AMSR-E over source area of the Yellow River,China

    2019-06-11 03:05:30TangTangZhangMekonnenGebremichaelAkashKoppaXianHongMengQunDuJunWen
    Sciences in Cold and Arid Regions 2019年6期

    TangTang Zhang,Mekonnen Gebremichael,Akash Koppa,XianHong Meng,Qun Du,Jun Wen

    1.Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou,Gansu 730000,China

    2. Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095-1593,USA

    3.Zoige Wetland and Ecosystem Research Station,NIEER,Zoige,Sichuan 624500,China

    4. State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China

    5.College of Atmospheric Sciences,Chengdu University of Information Technology,Chengdu,Sichuan 610225,China

    ABSTRACT In this study, in-situ soil moisture measurements are used to evaluate the accuracy of three AMSR-E soil moisture products from NASA(National Aeronautics and Space Administration), JAXA(Japanese Aerospace Exploration Agency) and VUA(Vrije University Amsterdam and NASA) over Maqu County, Source Area of the Yellow River (SAYR), China. Results show that the VUA soil moisture product performs the best among the three AMSR-E soil moisture products in the study area, with a minimum RMSE (root mean square error) of 0.08 (0.10) m3/m3 and smallest absolute error of 0.07 (0.08) m3/m3 at the grassland area with ascending (descending) data. Therefore, the VUA soil moisture product is used to describe the spatial variation of soil moisture during the 2010 growing season over SAYR.The VUA soil moisture product shows that soil moisture presents a declining trend from east south (0.42 m3/m3) to west north (0.23 m3/m3), with good agreement with a general precipitation distribution.The center of SAYR presents extreme wetness (0.60 m3/m3)during the whole study period, especially in July, while the head of SAYR presents a high level soil moisture (0.23 m3/m3) in July,August and September.

    Keywords: AMSR-E soil moisture products; soil moisture ground measurements; source area of the Yellow River;AMSR-E soil moisture products applicability

    1 Introduction

    Soil moisture is a key parameter in meteorology and hydrology and also an important land surface state variable that has long memory to affect the exchange of water, energy, and carbon between the land surface and atmosphere (Albergel et al., 2012). Soil moisture is tightly coupled with land-atmosphere processes and variables, such as evapotranspiration, sensible heat flux and regional air temperature, and can directly affect global circulation because of its memory to precipitation (Orth and Seneviratne, 2012). Most importantly, soil moisture can affect the onset, duration and strength of monsoons and hence holds potential for improving weather forecasts and climate predictions (Douvilleet al., 2001; Xueet al., 2004; Zuo and Zhang,2016).

    Soil moisture is spatially and temporally heterogeneous, even in small catchments (Gómez-Plaza et al.,2000; Susan et al., 2007).This heterogeneity is due to variability in soil physical properties (Hawley et al.,1983), geology, land use (De Rosnay et al., 2006;Zucco et al.,2014),rainfall distribution,irrigation and topography (Western and Bl?schl, 1999; Qiu et al.,2001).Therefore,accurate measurements of soil moisture at relevant spatial and temporal resolutions are necessary.

    Conventional ground measurements are usually used to measure soil moisture at a specific depth.Although in-situ soil moisture measurements are extremely valuable, they have some practical limitations(Su et al., 2011). As point observations, ground measurements do not adequately represent the spatial heterogeneity of soil moisture(Bi et al.,2016).Also,it is laborious and time consuming to obtain reasonable large spatial and temporal estimates of soil moisture(Wen and Su, 2003; Qin et al., 2009; Zhang et al.,2009).

    Satellite remote sensing has emerged as an alternative source of spatially and temporally consistent soil moisture datasets. Passive and active microwave technologies can provide measurements of surface soil moisture (Schmugge, 1983; Jackson and Schmugge, 1989; Njoku and Entekhabi, 1996; Wagner et al., 1999; Colliander et al., 2017; Chan et al.,2018). Soil moisture retrieval from active microwave sensors is seen to be less reliable due to surface roughness interference (Kerr, 2007). The Advanced Microwave Scanning Radiometer on the Earth Observing System (AMSR-E) is one such passive microwave sensor onboard the Aqua satellite from which soil moisture estimates have been successfully retrieved (Njoku et al., 2003; Njoku and Chan, 2005; Bindlish et al., 2006; Ray and Jacobs,2006; Sahoo et al., 2008; Draper et al., 2009; Kang and Kanniah, 2013; Cho et al., 2017). The satellite was launched on May 4, 2002 and provides a potentially improved soil moisture sensing capability over previous spaceborne radiometers such as the Scanning Multichannel Microwave Radiometer and Special Sensor Microwave/imager due to its combination of low frequency and high spatial resolution(Njoku et al.,2003;Njoku and Chan,2005).

    From literature, AMSR-E soil moisture products have been widely validated in different hydroclimatic regions, e.g., the United States,Australia, France, Italy, Spain and China (Njoku et al., 2003; Njoku et al.,2005; Draper et al., 2009; Jackson et al., 2010; Dente et al.,2012a;Chen et al.,2013;Draper et al.,2013;Jiang et al., 2017). Also, evaluations of soil moisture from AMSR-E were conducted over the Tibetan Plateau (Chen et al., 2013; Zeng et al., 2015), which focused on the difference between AMSR-E soil moisture products and reanalysis soil moisture products or simulations from different models (Chen et al., 2013;Zeng et al.,2015;Bing et al.,2016).Actually,there is a big difference of soil water content with different algorithms, which presents a challenge of which algorithm is robust enough to estimate soil moisture even in a certain area (Draper et al., 2013). It is also very important to closely estimate soil moisture to the real value with AMSR-E sensor over the source area of the Yellow River for its potential applications of AMSR-E at large scale during 2002-2011. Therefore, in this study we investigate the potential of three different AMSR-E soil water content products using ground measurements over the source area of the Yellow River.

    2 Study area

    The Source Area of the Yellow River is located(SAYR) in the northeastern part of the Tibetan Plateau, China. Geographically, it lies between 95.5°E-103.5°E and 32.5°N-36.5°N. SAYR covers a catchment area of 121,972 km2which is 16% of the Yellow River Basin. The annual average temperature in the study region is below zero, and the average precipitation is about 485.9 mm between 1956 and 2010 (Pan et al.,2015).There is no clear division of seasons,but diurnal variations of temperatures are large (Jin et al.,2009).More than 75% of the total annual rainfall falls in the wet season (June to September) caused by the southwest monsoon from the Bay of Bengal. Rainfall tends to decrease from the southeast (about 600 mm/a)to the northwest (about 400 mm/a) (Hu et al., 2012;Iqbal et al., 2018). The annual average temperature varies from -5 °C to -2.4 °C,and topography elevation ranges from 2,392 m to 6,248 m (Wang et al.,2015).

    3 Materials and methods

    3.1 AMSR-E soil moisture data

    AMSR-E onboard the Aqua satellite is a passive microwave sensor, operated between May 2002 and October 2011 (Njoku et al., 2003), and provides measurements at six different frequencies. Near surface soil moisture can be obtained through microwave brightness temperature with a C-band observation (Njoku et al., 2003), and the algorithm was updated in 2005 (Njoku and Chan, 2005).A few methods are usually used to retrieve soil moisture from AMSR-E data, but three different soil moisture products generated by (1) NASA(National aeronautics and space administration); (2) JAXA (Japanese aerospace exploration agency); and (3) VUA-NASA(Vrije University Amsterdam and NASA) (Draper etal., 2013) are used in this study, and all observations are with C-band observations. All these soil moisture products are based on different frequency microwave brightness temperature of AMSR-E, and all three brightness temperature data (25km×25km)are resampled of overlayed stripe data (45km×75km).The main difference between the three methods lies in the way the unknown parameters (vegetation and soil temperature) are estimated. NASA uses a semiempirical regression algorithm for soil moisture estimation (Njoku et al., 2003; Njoku and Chan,2005). JAXA retrieves soil moisture by introducing a soil moisture index (Draper et al., 2009); and VUA estimates soil moisture and vegetation optical depth by using the index difference of polarization(Owe et al.,2001).

    3.2 In-situ moisture data

    Time series of AMSR-E soil moisture are compared to in-situ soil moisture data from Source Area of the Yellow River. The network was installed in 2008 at the northeastern edge of the Tibetan Plateau,located in the southern part of Maqu County, China.The network consists of 20 sites (Table 1) which cover approximately 40km×80km. These sites recorded soil moisture and temperature every 15 minutes at different soil depths including 5,10,20,40 and 80 cm.Elevations at these sites range from 3,430 m to 3,750 m above sea level including typical landscapes with hills, valleys and grasslands. The climate of these sites is cold and humid with dry winters and rainy summers due to the influence of monsoons. Details of this network can be found in Dente et al. (2012b) and Su et al. (2011). Ground measurements data of 2010 are used in this study.

    Table 1 Maqu network station information(Dente et al.,2012b)

    3.3 Evaluation strategies

    In order to effectively validate AMSR-E soil moisture over the entire network, the following rule is adopted. If an AMSR-E pixel is occupied by three or less nodes in the network, the spatial variability of the soil moisture might not be well monitored. Therefore,it was checked if AMSR-E pixels cover at least half the area (33°35'N-34°05'N, 101°45'E-102°45'E) of ground network measurements. If yes, then the average of spatial soil moisture over the network is computed to be the measurements for this pixel. As the pixel of the satellite data does not always cover all ground measurements, the value of soil moisture from ground-based network is computed as follows:

    A time series of AMSR-E average soil moisture is obtained for the time period between January 1 and December 31, 2010. Data analysis is carried out separately for products retrieved from AMSR-E ascending data and those retrieved from descending data, because these are characterized by a different acquisition time and by different RFI effects, as they each have different swath coverage.

    Firstly, the general seasonal behavior of the time series of the AMSR-E data spatial average is compared to the corresponding spatial average of in-situ measurements (Figure 1) at 5 cm depth. Then, the determination coefficient (DC), the root mean standard error (RMSE), and AE (absolute error) between AMSR-E soil moisture spatial average and in situ spatial average with data from August to September are investigated (Table 2, the units of RMSE and AE are m3/m3).The scatter plots are also presented in Figure 3.

    Finally, the spatial distribution (averaged by all the available soil moisture from VUA) of soil moisture (June, July, August and September) of VUA are investigated(Figure 2).

    Figure 1 Temporal variation of three soil moisture products obtained from ascending overpasses(top)and from descending overpasses(bottom),compared with in situ soil moisture measurements and precipitation in 2010

    Table 2 Statistics of AMSR-E soil moisture and soil moisture of network measurements

    Figure 2 Variation of soil moisture over the SAYR during the period from June to September(the unit of soil moisture is m3/m3)

    Figure 3 The three soil moisture data from AMSR-E versus ground measurements of top layer soil moisture(July,August and September)for ascending passes(top)and for descending passes(bottom)

    4 Results

    4.1 Temporal analysis

    The time series of AMSR-E products,spatially averaged over the area of interest, are compared with the in situ average,as presented in Figure 1.The comparison is done separately for ascending and descending products. The soil moisture from ascending of JAXA and NASA shows good agreement with in situ measurements except the VUA product during the period from January 1 to the end of May and the period from October 1 to the end of December (Figure 1,upper).All the soil moisture products show good agreement with in situ measurements during the period from the beginning of June to the end of September(Figure 1,upper).However,the soil moisture from descending of VUA shows better agreement with in situ measurements during the period from the beginning of March to the end of November than that of NASA and JAXA(Figure 1,lower).

    The seasonal behavior of the AMSR-E products is in agreement with that of in situ measurements. Figure 1 shows that the soil moisture values are pretty low from January till March and from mid-November till the end of the year, and then increases during the period from March to May due to melt water from snow accumulation in the winter of 2009. Precipitation is the main driver of soil moisture which fluctuates from May to October, and is concentrated between May to September. Thus, soil moisture values are always high during the period from May to October, and fluctuate according to changes in precipitation.

    4.2 Spatial analysis

    Figure 2 shows the spatial variation of soil moisture over the SAYR during the period from June to September.As seen in Figure 2, soil moisture shows a declining trend from east south (0.42 m3/m3) to west north (0.23 m3/m3), which is in good agreement with the spatial precipitation distribution (Hu et al.,2012; Iqbal et al., 2018). Their research shows that the spatial pattern of precipitation in SAYR is also a declining trend from east south (Ruoergai with around 600 mm/a) to west north (Maduo with around 400 mm/a). The center of SAYA shows extreme wetness (0.60 m3/m3) in the whole study period, especially in July,while the head of SAYR has high soil moisture values (0.23 m3/m3) in July, August and September. Figure 3 shows that there is the best relationship between the VUA soil products and the in situ measurements than that of between NASA, JAXA and in situ measurements.

    4.3 Discussion

    In this research,we find that the VUA soil moisture product shows the best accuracy between the three soil moisture products of JAXA, NASA and VUA. The JAXA product shows higher fluctuations of the retrieved soil moisture product and seems best to capture variations in ground measurements(Figure 2).The soil moisture of ascending product reaches a maximum(0.59 m3/m3) in mid-June, and reaches a minimum(0.04 m3/m3) in the beginning of August (Table 3).The average value of a whole year is 0.18 m3/m3with good agreement compared with the ground observation 0.22 (m3/m3). The soil moisture of descending product reaches a maximum (0.54 m3/m3) in mid-June,and reaches a minimum(0.03 m3/m3)in the beginning of August. The average value of the whole year calculated from ground measurements is 0.22 m3/m3.The maximum(minimum)ground measurements of soil moisture is 0.47 m3/m3(0.08 m3/m3) for ascending pass,with the average value of soil moisture is 0.22 m3/m3,while the minimum ground measurements of soil moisture is 0.07 m3/m3for descending pass.

    Table 3 Statistics of the AMSR-E soil moisture and ground measurements in 2010(units:m3/m3)

    The NASA product shows an underestimation of soil moisture during the whole year except the period during October to the March of next year.The ascending product has a maximum value of 0.24 (m3/m3),and a minimum of 0.11,the average value is 0.16.The descending product has a maximum of 0.29 (m3/m3),and the minimum value of 0.11 (m3/m3), the average value is 0.13(m3/m3).

    The VUA product (ascending and descending)shows the best agreement with in situ measurements from June to September.The ascending product reaches a maximum of 0.60 m3/m3and a minimum of 0.21 m3/m3respectively, with an average 0.39 m3/m3for the whole year. The descending product reaches a maximum of 0.57 m3/m3and a minimum of 0.18 m3/m3respectively, with an average 0.34 m3/m3in a whole year.Figure 2 shows that all three AMSR-E soil moisture from ascending passes are higher than descending passes.

    These results are from an assumption in the retrieval algorithm. The plant layer and ground surface have the same temperature, although vegetation has resistance effect for temperature to increase. One should also note that recent studies have demonstrated the understanding of L-Band microwave emission in the frozen soil from various perspectives (e.g., discrete scattering model (Zheng et al., 2017)), such as soil temperature sensing depth (Lv et al., 2018; Lv etal., 2019). These developments will eventually contribute to the retrieval of soil moisture over high latitude regions during the winter period.

    Figure 2 shows that there is higher agreement between AMSR-E soil moisture retrieved from descending data and in situ data, than that from ascending data for all three products, although R2remains relatively low from descending passes, i.e., 0.63 for JAXA,0.72 for NASA, and 0.52 for VUA (Table 2). The plots also show that RMSE from AMSR-E ascending passes retrieval is a little smaller than RMSE from descending passes retrieval, i.e., 0.15 m3/m3for JAXA,0.19 m3/m3for NASA and 0.08 m3/m3for VUA(Table 2), and AE also show similar results with RMSE.Therefore, we can conclude that the soil moisture from descending pass can better capture the trend of soil moisture variation, while the soil moisture from ascending pass can better capture the quantity of soil moisture.

    Most importantly, we find that irrespective of whether the soil moisture is derived from ascending or descending passes, soil moisture from the VUA algorithm does the best job in capturing the quantity and soil moisture trend (Table 2). RMSE and AE are both the smallest among the three soil moisture products. Hence we utilize the VUA product to investigate the spatial variation of soil moisture over SAYR of the Tibetan Plateau(Figure 2).

    5 Conclusions

    The validation of AMSR-E soil moisture products is a crucial step before planned application.The application of AMSR-E products is expected to contribute to a better understanding of the hydrologic processes in the source area of the Yellow River. Thus, the primary contribution of this study is to comprehensively validate AMSR-E soil moisture products by comparing them with in situ data collected from Maqu soil moisture networks observation in 2010.

    It can be seen that the NASA product could reflect the trend of soil moisture variation in the whole period,and the DC reaches 0.72 for descending data,with the root square error of less than 0.19 m3/m3for ascending data. Unfortunately, this product excessively underestimates soil moisture in the period of August and September in which the soil is covered by dense vegetation.

    Whether the soil moisture is from ascending or descending passes, soil moisture from VUA is the best in capturing true soil moisture. Compared with ground measurements, both RMSE and AE of the VUA product are the least among the three soil moisture products, expect for the cold period. RMSE of VUA is 0.08(0.10)m3/m3and AE is 0.07(0.08)m3/m3for ascending(descending)data.

    The presence of frozen soil and snow in Maqu might be one of the causes of low retrieval accuracy in the period of frozen soil, amplified by the fact that the input information about frozen surfaces used in the three AMSR-E retrieval processes was probably inaccurate. A further analysis of the input parameters in the algorithms is needed to assess its accuracy during the frozen season over the source area of the Yellow River.

    Acknowledgments:

    This study was supported in part by the Programs of National Natural Science Foundation of China(41675157,91537212).

    久热久热在线精品观看| 看十八女毛片水多多多| 午夜日韩欧美国产| 亚洲内射少妇av| 色婷婷av一区二区三区视频| 久久99精品国语久久久| 久久国产精品大桥未久av| 国产精品二区激情视频| 精品一品国产午夜福利视频| 国产亚洲精品第一综合不卡| 伊人久久大香线蕉亚洲五| 午夜福利影视在线免费观看| 日日爽夜夜爽网站| 人人妻人人添人人爽欧美一区卜| 国产一区亚洲一区在线观看| 国产黄色免费在线视频| av.在线天堂| 国产av码专区亚洲av| 日韩熟女老妇一区二区性免费视频| 18+在线观看网站| 男人添女人高潮全过程视频| 国产亚洲av片在线观看秒播厂| 如何舔出高潮| 女的被弄到高潮叫床怎么办| 啦啦啦啦在线视频资源| 亚洲国产最新在线播放| 在线观看美女被高潮喷水网站| 午夜激情久久久久久久| 美女国产视频在线观看| 26uuu在线亚洲综合色| 精品午夜福利在线看| 欧美少妇被猛烈插入视频| 国产亚洲欧美精品永久| 精品一区二区三区四区五区乱码 | 免费在线观看黄色视频的| 国产有黄有色有爽视频| 欧美激情极品国产一区二区三区| 亚洲成av片中文字幕在线观看 | 国产女主播在线喷水免费视频网站| 天堂中文最新版在线下载| 人体艺术视频欧美日本| 久久国产精品大桥未久av| 亚洲国产日韩一区二区| 欧美+日韩+精品| 欧美老熟妇乱子伦牲交| 久久狼人影院| 精品一区二区三卡| 国产精品久久久av美女十八| 在线观看人妻少妇| 精品亚洲乱码少妇综合久久| 中文字幕制服av| 女的被弄到高潮叫床怎么办| 丝瓜视频免费看黄片| 精品99又大又爽又粗少妇毛片| 激情视频va一区二区三区| 麻豆精品久久久久久蜜桃| 最近2019中文字幕mv第一页| 日韩 亚洲 欧美在线| 黄网站色视频无遮挡免费观看| 性色av一级| 丰满饥渴人妻一区二区三| 亚洲精品成人av观看孕妇| 亚洲精品第二区| 精品99又大又爽又粗少妇毛片| 欧美97在线视频| 欧美黄色片欧美黄色片| 欧美日本中文国产一区发布| 久久久精品免费免费高清| 免费少妇av软件| 男人添女人高潮全过程视频| 熟女av电影| 精品酒店卫生间| 国产一区二区激情短视频 | 老鸭窝网址在线观看| 国产成人精品无人区| 只有这里有精品99| 亚洲精品,欧美精品| 免费人妻精品一区二区三区视频| 69精品国产乱码久久久| 桃花免费在线播放| 777米奇影视久久| 久久青草综合色| 一本久久精品| 日韩一区二区三区影片| 久久精品国产亚洲av天美| 国产xxxxx性猛交| av视频免费观看在线观看| av有码第一页| 成年美女黄网站色视频大全免费| www.熟女人妻精品国产| 精品少妇久久久久久888优播| av电影中文网址| 建设人人有责人人尽责人人享有的| 在线亚洲精品国产二区图片欧美| 国产又爽黄色视频| 日韩,欧美,国产一区二区三区| 精品国产乱码久久久久久男人| 这个男人来自地球电影免费观看 | 久久久久精品久久久久真实原创| 日韩三级伦理在线观看| 成人影院久久| 99久久综合免费| 一本大道久久a久久精品| 久久久久久免费高清国产稀缺| 熟妇人妻不卡中文字幕| 国产午夜精品一二区理论片| 亚洲精品美女久久av网站| 欧美最新免费一区二区三区| a级毛片在线看网站| 国产极品粉嫩免费观看在线| 国产成人精品婷婷| 亚洲国产精品一区三区| 男男h啪啪无遮挡| 少妇人妻精品综合一区二区| 涩涩av久久男人的天堂| 亚洲精品美女久久av网站| 男女边摸边吃奶| 一本—道久久a久久精品蜜桃钙片| 色视频在线一区二区三区| 午夜激情av网站| 国产日韩欧美在线精品| 免费大片黄手机在线观看| 男女边摸边吃奶| 午夜激情久久久久久久| 欧美日韩亚洲国产一区二区在线观看 | 纯流量卡能插随身wifi吗| 日韩精品免费视频一区二区三区| 久久鲁丝午夜福利片| 国产成人精品久久二区二区91 | 日本-黄色视频高清免费观看| 一区在线观看完整版| 亚洲一级一片aⅴ在线观看| 黄色怎么调成土黄色| 777久久人妻少妇嫩草av网站| 亚洲国产成人一精品久久久| 久久精品aⅴ一区二区三区四区 | 国产熟女午夜一区二区三区| 2018国产大陆天天弄谢| av卡一久久| 超碰97精品在线观看| 久久精品熟女亚洲av麻豆精品| 国产白丝娇喘喷水9色精品| 一级,二级,三级黄色视频| 搡女人真爽免费视频火全软件| 国产综合精华液| 欧美日韩av久久| 极品少妇高潮喷水抽搐| 欧美黄色片欧美黄色片| 满18在线观看网站| 亚洲国产av影院在线观看| 久久97久久精品| 人妻少妇偷人精品九色| 国产深夜福利视频在线观看| 欧美+日韩+精品| 亚洲一区二区三区欧美精品| 亚洲美女视频黄频| 国产男女内射视频| 咕卡用的链子| 18禁观看日本| 80岁老熟妇乱子伦牲交| 夫妻性生交免费视频一级片| 久久精品亚洲av国产电影网| 日韩大片免费观看网站| 欧美日韩视频高清一区二区三区二| www日本在线高清视频| www.自偷自拍.com| 亚洲精品美女久久av网站| 亚洲人成电影观看| 亚洲av福利一区| 欧美日韩国产mv在线观看视频| 亚洲av综合色区一区| h视频一区二区三区| 久久99一区二区三区| 国产麻豆69| 成人漫画全彩无遮挡| 亚洲五月色婷婷综合| 欧美在线黄色| 人人妻人人澡人人爽人人夜夜| 69精品国产乱码久久久| 国产一区二区 视频在线| 夜夜骑夜夜射夜夜干| 妹子高潮喷水视频| 欧美激情 高清一区二区三区| 汤姆久久久久久久影院中文字幕| 激情五月婷婷亚洲| 超碰成人久久| 国产欧美日韩一区二区三区在线| 亚洲成av片中文字幕在线观看 | 亚洲欧洲国产日韩| 97在线视频观看| 老司机亚洲免费影院| 18禁动态无遮挡网站| 深夜精品福利| 精品福利永久在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 日日爽夜夜爽网站| 欧美成人精品欧美一级黄| av视频免费观看在线观看| 另类精品久久| 久久人人97超碰香蕉20202| 熟女av电影| 汤姆久久久久久久影院中文字幕| 国产男女内射视频| 不卡av一区二区三区| 久久久a久久爽久久v久久| 99国产综合亚洲精品| 视频区图区小说| 日本爱情动作片www.在线观看| 黄色 视频免费看| 亚洲男人天堂网一区| 成人手机av| 精品一区在线观看国产| 亚洲国产色片| 精品亚洲成国产av| 夫妻性生交免费视频一级片| 七月丁香在线播放| 亚洲成人手机| 999久久久国产精品视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 最新中文字幕久久久久| 国产成人av激情在线播放| 免费看av在线观看网站| 人妻一区二区av| 丝袜人妻中文字幕| √禁漫天堂资源中文www| 热99国产精品久久久久久7| 日本91视频免费播放| www.av在线官网国产| 波多野结衣一区麻豆| 国产一区二区 视频在线| 青春草国产在线视频| 亚洲精品一二三| 日韩av不卡免费在线播放| 亚洲精品国产一区二区精华液| 9热在线视频观看99| 男女无遮挡免费网站观看| 在线看a的网站| av又黄又爽大尺度在线免费看| 天天躁日日躁夜夜躁夜夜| 建设人人有责人人尽责人人享有的| 少妇被粗大的猛进出69影院| 麻豆av在线久日| 国产精品一区二区在线不卡| 人妻少妇偷人精品九色| 男女无遮挡免费网站观看| 日韩av不卡免费在线播放| 国产亚洲最大av| 九色亚洲精品在线播放| 蜜桃在线观看..| 麻豆av在线久日| 久久热在线av| 亚洲精品国产av蜜桃| av有码第一页| 国产成人91sexporn| 国产免费一区二区三区四区乱码| 新久久久久国产一级毛片| 亚洲第一区二区三区不卡| 日韩一卡2卡3卡4卡2021年| 色播在线永久视频| 欧美成人午夜免费资源| 久久鲁丝午夜福利片| 又大又黄又爽视频免费| 在线观看免费高清a一片| 亚洲图色成人| 女人久久www免费人成看片| 日本午夜av视频| 91精品国产国语对白视频| 韩国精品一区二区三区| 九草在线视频观看| 日韩不卡一区二区三区视频在线| 国产综合精华液| 激情视频va一区二区三区| 又黄又粗又硬又大视频| 汤姆久久久久久久影院中文字幕| 国产综合精华液| 99久久中文字幕三级久久日本| 在线观看一区二区三区激情| 欧美成人精品欧美一级黄| 深夜精品福利| 国产 一区精品| 精品一区在线观看国产| 一二三四在线观看免费中文在| 另类亚洲欧美激情| 日韩一本色道免费dvd| 黑人猛操日本美女一级片| 麻豆乱淫一区二区| 国产精品二区激情视频| 超色免费av| 久久久久久久久免费视频了| 丝袜在线中文字幕| www.av在线官网国产| 中国三级夫妇交换| 最近手机中文字幕大全| 国产精品香港三级国产av潘金莲 | 性色av一级| 黄色配什么色好看| 又大又黄又爽视频免费| 又黄又粗又硬又大视频| 巨乳人妻的诱惑在线观看| 视频在线观看一区二区三区| 久久影院123| 国产精品蜜桃在线观看| 捣出白浆h1v1| 中国三级夫妇交换| 国产精品久久久久成人av| 欧美在线黄色| 麻豆av在线久日| 亚洲,一卡二卡三卡| 国产成人精品一,二区| 纵有疾风起免费观看全集完整版| 男女国产视频网站| 999精品在线视频| 成人亚洲欧美一区二区av| 国产97色在线日韩免费| 9热在线视频观看99| 熟女av电影| 26uuu在线亚洲综合色| 中文字幕精品免费在线观看视频| 国产色婷婷99| 精品福利永久在线观看| 久久热在线av| 亚洲伊人色综图| 最近最新中文字幕大全免费视频 | 日本午夜av视频| 亚洲婷婷狠狠爱综合网| 久久久国产欧美日韩av| 精品福利永久在线观看| 综合色丁香网| av线在线观看网站| 国产免费福利视频在线观看| 多毛熟女@视频| 一区二区三区激情视频| 看十八女毛片水多多多| 一本色道久久久久久精品综合| 日本欧美国产在线视频| 国产精品国产av在线观看| av免费观看日本| 美国免费a级毛片| 热99久久久久精品小说推荐| 日本av免费视频播放| 天天躁日日躁夜夜躁夜夜| 秋霞伦理黄片| 如日韩欧美国产精品一区二区三区| 丝袜美足系列| 午夜福利视频在线观看免费| 丝袜人妻中文字幕| 国产成人a∨麻豆精品| 亚洲精品久久成人aⅴ小说| 亚洲美女黄色视频免费看| 日日摸夜夜添夜夜爱| 丝袜喷水一区| 男女啪啪激烈高潮av片| 国产av国产精品国产| 国产亚洲av片在线观看秒播厂| 18在线观看网站| 国产高清国产精品国产三级| 一级黄片播放器| 人人妻人人澡人人爽人人夜夜| 色哟哟·www| 国产日韩欧美视频二区| 国产白丝娇喘喷水9色精品| 久久久久久伊人网av| 一边摸一边做爽爽视频免费| 黄色一级大片看看| 又粗又硬又长又爽又黄的视频| 丰满饥渴人妻一区二区三| 性高湖久久久久久久久免费观看| 人人妻人人澡人人看| 王馨瑶露胸无遮挡在线观看| av线在线观看网站| 最近最新中文字幕大全免费视频 | 日本91视频免费播放| 亚洲激情五月婷婷啪啪| 午夜免费鲁丝| 国产深夜福利视频在线观看| 人体艺术视频欧美日本| 制服人妻中文乱码| 丝瓜视频免费看黄片| 亚洲av欧美aⅴ国产| 一二三四中文在线观看免费高清| 日韩视频在线欧美| 大香蕉久久成人网| 欧美人与性动交α欧美软件| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久影院123| 老女人水多毛片| 18在线观看网站| 久久 成人 亚洲| 精品视频人人做人人爽| 看非洲黑人一级黄片| 亚洲欧美中文字幕日韩二区| 不卡视频在线观看欧美| 中文精品一卡2卡3卡4更新| 亚洲三区欧美一区| 欧美激情高清一区二区三区 | 丰满乱子伦码专区| 国产精品蜜桃在线观看| 高清黄色对白视频在线免费看| 午夜免费鲁丝| 久久久久久久大尺度免费视频| 国产福利在线免费观看视频| 国产综合精华液| 国产一区有黄有色的免费视频| 午夜av观看不卡| 国产精品熟女久久久久浪| 精品酒店卫生间| 欧美日韩亚洲国产一区二区在线观看 | 又大又黄又爽视频免费| 亚洲欧美一区二区三区国产| 国产免费现黄频在线看| av天堂久久9| 精品一区二区三卡| 一区二区av电影网| 久久人人爽人人片av| 免费观看在线日韩| 久久久久久久久免费视频了| 欧美97在线视频| 看非洲黑人一级黄片| 精品少妇一区二区三区视频日本电影 | 亚洲欧美一区二区三区久久| 国产成人午夜福利电影在线观看| 国产97色在线日韩免费| 国产成人欧美| 纵有疾风起免费观看全集完整版| 日日爽夜夜爽网站| 国产又爽黄色视频| 一区在线观看完整版| 婷婷色综合www| 高清视频免费观看一区二区| 免费久久久久久久精品成人欧美视频| 亚洲精品国产av蜜桃| 一区二区三区精品91| 亚洲精品日本国产第一区| 99国产精品免费福利视频| 欧美少妇被猛烈插入视频| 国产亚洲av片在线观看秒播厂| 亚洲天堂av无毛| 在现免费观看毛片| 免费高清在线观看日韩| 久久久久久久久免费视频了| 日韩电影二区| 一本—道久久a久久精品蜜桃钙片| 国产成人欧美| 寂寞人妻少妇视频99o| 久久午夜福利片| 亚洲国产日韩一区二区| 搡老乐熟女国产| 精品一区二区三卡| 亚洲av.av天堂| 中文字幕制服av| av在线观看视频网站免费| a级毛片黄视频| 午夜福利在线免费观看网站| 天堂8中文在线网| 国产成人午夜福利电影在线观看| 国产一区亚洲一区在线观看| 国产在线一区二区三区精| 日产精品乱码卡一卡2卡三| 成年人午夜在线观看视频| 久久久国产精品麻豆| 黑人猛操日本美女一级片| 国产亚洲av片在线观看秒播厂| 国产日韩欧美亚洲二区| 午夜免费男女啪啪视频观看| 国产成人免费观看mmmm| 国产精品久久久久久久久免| 伊人亚洲综合成人网| 美国免费a级毛片| 成人免费观看视频高清| 日本av手机在线免费观看| 久久亚洲国产成人精品v| www.精华液| 巨乳人妻的诱惑在线观看| 美女国产视频在线观看| 日韩制服丝袜自拍偷拍| 亚洲熟女精品中文字幕| 9热在线视频观看99| 欧美日韩一区二区视频在线观看视频在线| 亚洲精品av麻豆狂野| 中文字幕人妻丝袜一区二区 | 久久人人爽av亚洲精品天堂| 成年动漫av网址| 中文精品一卡2卡3卡4更新| 免费黄频网站在线观看国产| 国产极品粉嫩免费观看在线| 飞空精品影院首页| 国产福利在线免费观看视频| 王馨瑶露胸无遮挡在线观看| 日本黄色日本黄色录像| 国产一区二区 视频在线| 欧美变态另类bdsm刘玥| 国产精品免费大片| 久久精品国产亚洲av天美| 国产精品一国产av| 国产精品免费视频内射| 伊人亚洲综合成人网| 2021少妇久久久久久久久久久| 亚洲经典国产精华液单| 久久久久久久精品精品| 热99久久久久精品小说推荐| 免费久久久久久久精品成人欧美视频| 波多野结衣av一区二区av| 亚洲av.av天堂| 高清在线视频一区二区三区| 精品一区二区三区四区五区乱码 | 制服丝袜香蕉在线| 美国免费a级毛片| 国产精品av久久久久免费| 久久精品国产综合久久久| 大香蕉久久网| 啦啦啦视频在线资源免费观看| 久久精品国产亚洲av涩爱| 天美传媒精品一区二区| 伦精品一区二区三区| 久久综合国产亚洲精品| 国产毛片在线视频| 成人18禁高潮啪啪吃奶动态图| 国产午夜精品一二区理论片| 欧美国产精品一级二级三级| 午夜免费观看性视频| 日韩av免费高清视频| 久久狼人影院| 日本猛色少妇xxxxx猛交久久| 一区福利在线观看| 国产精品欧美亚洲77777| 热99久久久久精品小说推荐| av一本久久久久| 亚洲精华国产精华液的使用体验| 激情五月婷婷亚洲| 亚洲人成网站在线观看播放| 亚洲精品国产一区二区精华液| 青春草视频在线免费观看| 久久久久国产一级毛片高清牌| 国产xxxxx性猛交| 在线观看三级黄色| 久久国产精品男人的天堂亚洲| 久久久国产一区二区| 精品一区二区三卡| 2018国产大陆天天弄谢| 一区二区日韩欧美中文字幕| 激情五月婷婷亚洲| 1024香蕉在线观看| 9色porny在线观看| 午夜福利,免费看| 啦啦啦中文免费视频观看日本| 女人久久www免费人成看片| 色播在线永久视频| 中文字幕另类日韩欧美亚洲嫩草| av不卡在线播放| 亚洲欧美一区二区三区黑人 | 你懂的网址亚洲精品在线观看| 亚洲欧美清纯卡通| 香蕉丝袜av| 一区二区三区乱码不卡18| 永久网站在线| 黄色视频在线播放观看不卡| 日韩av在线免费看完整版不卡| 日韩一区二区三区影片| 亚洲美女黄色视频免费看| 女的被弄到高潮叫床怎么办| 日本wwww免费看| 波多野结衣av一区二区av| 啦啦啦在线观看免费高清www| 秋霞伦理黄片| 久久久久人妻精品一区果冻| a级片在线免费高清观看视频| 精品第一国产精品| www.av在线官网国产| 色播在线永久视频| 天堂中文最新版在线下载| 午夜激情av网站| 亚洲精品,欧美精品| 久久久久久久大尺度免费视频| 亚洲欧洲国产日韩| av在线老鸭窝| 午夜激情久久久久久久| 国产成人午夜福利电影在线观看| 久久热在线av| 国产精品.久久久| 天天躁日日躁夜夜躁夜夜| 亚洲av日韩在线播放| 一二三四在线观看免费中文在| 91国产中文字幕| 三上悠亚av全集在线观看| 色婷婷av一区二区三区视频| 国产免费又黄又爽又色| 久久久精品94久久精品| 欧美黄色片欧美黄色片| 免费观看无遮挡的男女| 精品国产露脸久久av麻豆| 亚洲精品日本国产第一区| 日产精品乱码卡一卡2卡三| 亚洲国产成人一精品久久久| 成人国产av品久久久| 日韩不卡一区二区三区视频在线| 国产在线一区二区三区精| 女人精品久久久久毛片| av在线老鸭窝| 亚洲精品国产一区二区精华液| 少妇的逼水好多| 国产高清国产精品国产三级| 久久久久精品人妻al黑| 毛片一级片免费看久久久久| 国产高清不卡午夜福利| 中文乱码字字幕精品一区二区三区| 亚洲av中文av极速乱| 欧美 日韩 精品 国产| 免费播放大片免费观看视频在线观看| 精品亚洲成a人片在线观看| 高清av免费在线| 宅男免费午夜| 男男h啪啪无遮挡| 制服丝袜香蕉在线| 秋霞在线观看毛片| 中文字幕人妻熟女乱码|