• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Definition of failure criterion for frozen soil under directional shear-stress path

    2019-06-11 03:05:24DunChenWeiMaGuoYuLiZhiWeiZhouYanHuMuShiJieChen
    Sciences in Cold and Arid Regions 2019年6期

    Dun Chen,Wei Ma,GuoYu Li,3*,ZhiWei Zhou,YanHu Mu,ShiJie Chen

    1. State Key Laboratory of Frozen Soils Engineering, Northwest Institute of Eco-Environment and Resources, CAS, Lanzhou,Gansu 730000,China

    2.State Key Laboratory for GeoMechanics and Deep Underground Engineering,China University of Mining and Technology,Xuzhou,Jiangsu 221116,China

    3.Da Xing'anling Observation and Research Station of Frozen-Ground Engineering and Environment,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Jiagedaqi,Heilongjiang 165000,China

    ABSTRACT A series of directional shear tests on remolded frozen soil was carried out at -10 °C by using a hollow cylinder apparatus to study failure criterion under a directional shear-stress path. Directional shear tests were conducted at five shear rates(10, 20, 30, 40, and 50 kPa/min) and five intermediate principal stress coefficients (b=0, 0.25, 0.5, 0.75, and 1), with the mean principal stress (p=4.5 MPa) kept constant.The results show that the torsional strength and the generalized strength both increase with the increase of the shear rates.According to the failure modes of frozen soil under different shear rates,the specimens present obvious plastic failure and shear band; and the torsional shear component dominates the failure modes of hollow cylindrical specimens.A shear rate of 30 kPa/min is chosen as the loading rate in the directional shear tests of frozen soil.The shape of the failure curve in the π plane is dependent on the directional angles α of the major principal stress. It is reasonable to use the strain-hardening curves to define the deviatoric stress value at γg=15% (generalized shear strain)as the failure criterion of frozen soil under a directional shear-stress path.

    Keywords: frozen soil; hollow cylinder apparatus; intermediate principal stress coefficient; failure criterion; directional shear-stress path

    1 Introduction

    Failure criterion is not only an indispensable technical index in engineering design, but it is also the basis for the further study of soil mechanics (Li, 2005). In other words, failure criterion means the strength point of soil. So the failure criterion plays an important role in soil mechanics and engineering.According to the experimental results of soil mechanics, the stress-strain curves of soil under complex stress paths can be divided into strain-softening and strain-hardening curves(Shen,2000;Yin,2007).When the stress-strain curves present softening phenomena, the peak values of stress are generally taken as the failure criterion. However,there is not a unified failure criterion for the strain-hardening curves under complex stress paths.

    Generally speaking, for the stress-strain curves of soil, the failure criterion of the strain-hardening curves can be defined by two methods. First, the stress corresponding to the major principal strain is taken as the failure criterion, such as ε1=15% in the triaxial tests(Lai et al., 2010, 2016; Xu et al., 2011; Zhou et al.,2016, 2017, 2018). Second, four of strain components(axial strain (εz), shear strain (γzθ), radial strain (εr),and circumferential strain(εθ))can be obtained by hollow cylinder tests under complex stress paths (Hight et al., 1983; Yoshimine et al., 1999; O'Kelly and Naughtion, 2009; Jiang et al., 2012). Therefore, the deviatoric stress corresponding to the generalized shear strain γgis taken as the failure criterion for the strain-hardening curves (γg=5%, 8%, 10%, and 13%)(Shen et al., 1996; Kumruzzaman and Yin, 2010;Nishimura et al., 2010; Wen et al., 2010; Lade et al.,2013;Zhang et al.,2015).

    Considering that, up to the present, no failure criterion could describe the failure behavior for frozen soil under complex stress path; the objective of this study was to define a failure criterion for further determinations of the mechanical properties of frozen soil.In this study, experimental investigations of directional shear tests, conducted on the hollow cylindrical specimens of frozen soil under different shear rates and intermediate principal stress coefficients, were made. The optimal loading rate of directional shear tests for frozen soil was proposed. And based on the experimental results in the π plane, the failure criterion of frozen soil for strain hardening under a directional shear-stress path was defined.

    2 Test conditions

    2.1 Test preparation

    The Hollow Cylinder Apparatus for Frozen Soil(FHCA-300)was used for this experimental investigation. The apparatus is able to independently control the axial load (W), torque (MT), internal cell pressure(pi), external cell pressure (po), and temperature (T)(Hightet al., 1983; Vaidet al., 1990). The measurement range of the temperature control system used in the test is from -40 °C to 80 °C, and the accuracy is±0.01 °C. In this study, the soil used was taken from the Qinghai-Tibet Plateau(Chenet al.,2019).The average water content and the dry density of the tested specimens were 19.8% and 1.9 g/cm3, respectively(Chenet al., 2019). The specimens were prepared as hollow cylinders, 200 mm in height, 100 mm in outer diameter, and 60 mm in inner diameter. Then, the specimens were placed into a hollow cylindrical pressure cell and quickly frozen under conditions of -30 °C for 48 hours.After the specimens were warmed to the temperature of-10°C,and kept at a constant temperature for 12 hours,the directional shear tests began.

    2.2 Theoretical derivation of complex stress path

    To obtain the complex stress path by hollow cylinder apparatus, it is necessary to convert the generalized stress(shear stress qs,mean principal stress p,the directional angle α of the major principal stress, and the intermediate principal stress coefficient b) into the control parameters of the hollow cylinder apparatus(axial load W, torque MT, internal cell pressure pi, and external cell pressurepo) (Hightet al., 1983; Shen,2007).So,the conversion process is as follows:

    (1) Conversion from generalized stress to principal stress

    (2) Conversion from principal stress to element stress

    (3) Conversion from element stress to control parameters of the hollow cylinder apparatus

    where σ1is major principal stress; σ2is intermediate principal stress; σ3is minor principal stress; σzis axial stress; σris radial stress; σθis circumferential normal stress; τzθis circumferential shear stress; riis inner specimen radius; rois outer specimen radius; and rpis loading-rod radius.

    Through three conversions, the following formula has been obtained.

    Mean principal stress p:

    Shear stress qs:

    Intermediate principal stress coefficient b:

    Directional angle α of the major principal stress:

    1) when σz>σθ, W >πrori(po- pi)+po

    And α ∈( - 45°,45°).

    2)when σz<σθ, W <πrori(po- pi)+po

    In(16),when τzθ≤0,n=1;when τzθ≥0,n=2.

    And α ∈[ - 90°, - 45°]∪[45°,90°].

    The shear rate (q·s) is usually used to control the process of the directional shear test by using the hollow cylinder apparatus. Based on the theoretical derivation of the complex stress path,the loading mode of the directional shear tests (shear rate) is dependent on the relative magnitude of the axial load, torque, internal cell pressure, and external cell pressure. The values of loading parameters at different shear rates are obtained by calculating the above formulas.

    2.3 Directional shear-stress path

    The stress path of the directional shear tests can be divided into two steps, as shown in Figure 1. First,the axial load,torque,internal cell pressure,and external cell pressure were loaded, following stress path OA, to reach the tested mean principal stressp. Second, the shear stress qswas increased at a constant rate until the axial strain reached 20% or the torsional shear strain reached 30%, as the path AB shows in Figure 1. During the second step, the mean principal stress p, the directional angle α of the major principal stress, and the intermediate principal stress coefficient b remained constant.

    Figure 1 Stress path of directional shear tests

    3 Test results and analyses

    3.1 Choice of the shear rate in directional shear tests

    The loading rate is one of the most important factors in mechanical experiments of frozen soil (Bragg and Andersland, 1981; Li et al., 2004; Du et al.,2016).In order to choose the optimal shear rate of frozen soil,the directional shear tests were conducted under five shear rates (10, 20, 30, 40, and 50 kPa/min)at the temperature of -10 °C. During the directional shear process, the mean principal stress p=4.5 MPa,the directional angle α of the major principal stress α=45°, and the intermediate principal stress coefficient b=0.5 were kept constant.

    The experimental relationship between stress and strain at different shear rates is presented in Figures 2-4.From Figure 2, it can be seen that the shape of axial stress-strain curves does not change with the increase of the shear rate. And all the specimens are stretched in the axial direction. The torsional and generalized shear stress-strain curves of frozen soil all perform as strain-hardening phenomena under different shear rates, as shown in Figures 3 and 4. With increase in the shear rate, both the torsional strength and the generalized strength increased.So the shear rate has a significant influence on the torsional and generalized shear stress-strain curves, but that has little effect on the axial stress-strain curves.

    Figure 2 Axial stress-strain curves under different shear rates

    Figure 5 shows the failure modes of hollow cylindrical specimens under different shear rates at a negative temperature. All specimens show plastic failure and obvious shear bands.Therefore, the failure modes of hollow cylindrical specimens are not affected by shear rate; and the torsional shear component dominates the failure modes of hollow cylindrical specimens of frozen soil. Based on the analytical results of specimens in the failure process, failure time decreases considerably with increasing shear rate, as shown in Table 1.

    Figure 3 Torsional stress-strain curves under different shear rates

    Figure 4 Generalized shear stress-strain curves under different shear rates

    Figure 5 Failure modes of specimens of frozen soil under different shear rates.

    In summary, when the shear rate is 30 kPa/min,the data acquisition of directional shear tests for frozen soil is more stable and comprehensive; and the continuous development of the strain component is beneficial to the data supervision of stress - strain curves. So, 30 kPa/min is chosen as the shear rate in the following directional shear tests of frozen soil.

    Table 1 Failure time of hollow cylindrical specimens of frozen soil in the directional shear tests

    3.2 Definition of the failure criterion for frozen soil

    A series of the directional shear tests at p=4.5 MPa, T=-10 °C, and α=30° on frozen soil under the intermediate principal stress coefficients b from 0 to 1 (b=0, 0.25, 0.5, 0.75, and 1) was carried out; the corresponding test results are shown in Figures 6-8.From these figures, it can be seen that the axial and torsional strengths are observed to change with the increasing intermediate principal stress coefficient.However, the intermediate principal stress coefficient has little influence on the relationship between the generalized shear stress and strain.

    Figure 6 Axial stress-strain curves under different intermediate principal stress coefficients at α=30°

    Based on the definition of the stress Lode angle θσand the intermediate principal stress coefficient b (Li,2005), the relationship between the stress Lode angle and the intermediate principal stress coefficient can be obtained (as shown in Equation (17)). Then, from Equation (17), b=0, 0.25, 0.5, 0.75, and 1 are respectively correspondent with θσ=-30°, -16.1°, 0°, 16.1°,and 30° (Chen et al., 2018). So the stress Lode angle of those tests can be presented in the π plane, as shown in Figure 9(Chen et al,2018).

    Figure 7 Torsional stress-strain curves under different intermediate principal stress coefficients at α=30°

    Figure 8 Generalized shear stress-strain curves under different intermediate principal stress coefficients at α=30°

    According to the results of the directional shear tests, the deviatoric stress loci can be obtained that correspond to the different generalized shear strains.And Figure 10 shows the deviatoric stress loci with the generalized shear strain ranging from 0.6% to 18% in the π plane under the directional angle of the major principal stress α=30°. From Figure 10, it can be seen that the deviatoric stress loci only at θσ=-30°and -16.1° are presented, when the generalized shear strain is high. However, when the generalized shear strain γg≤5%,the deviatoric stress loci exist completely in the π plane, corresponding to the different stress Lode angles. So the failure curves can be plotted by the deviatoric stress loci. It can be seen that the shape of the failure curves does not change with the generalized shear strain ranging from 0.6% to 8% in the π plane. And with the increase of generalized shear strain, the failure curves are getting closer and closer to each other.

    The shape of the failure curve in the π plane remains constant under two directional angles of the major principal stress(α=30°and 0°),no matter what the generalized shear-strain change (as shown in Figure 11) (Chen et al., 2019). By comparing Figures 10 and 11,it can be seen that the shape of the failure curve in the π plane is dependent on the directional angles α of the major principal stress. When the directional angles of the major principal stress α=30°, the shape of the failure curve is a circle. However, when the directional angles of the major principal stress α=0°, the shape of the failure curve is a smooth, curve-sided triangle. When the generalized shear strain reaches 15%, the shape of the failure curve remains constant under the different directional angles α of the major principal stress. Therefore, the deviatoric stress at γg=15% is taken as the failure criterion of frozen soil under the directional shear-stress path.

    Figure 9 Stress Lode angles in the π plane

    Figure 10 Failure curves of frozen soil under α=0°with different failure criteria in the π plane

    Figure 11 Failure curves of frozen soil under α=30°with different failure criteria in the π plane(Chen et al.,2019)

    4 Conclusions

    Based on the experimental data, a shear rate was proposed in order to reasonably conduct the directional shear tests for frozen soil;and according to the analytical data results of the directional shear tests on various values of the intermediate principal stress coefficients,the failure criterion of frozen soil under a directional shear-stress path was defined. Therefore, the following conclusions were reached, based on the results obtained:

    (1) The torsional and generalized shear stressstrain curves of frozen clay present strain-hardening phenomena with different shear rates under a directional shear-stress path. And with the increase in the shear rate, the torsional strength and the generalized strength both increased.

    (2) The shear rate has little influence on the failure modes of hollow cylindrical specimens of frozen soil, and the torsional shear component dominates the failure modes.The shear rate of 30 kPa/min is chosen in the directional shear tests of frozen soil.

    (3)The shape of the failure curve in the π plane is dependent on the directional anglesαof the major principal stress.According to the evolution characteristics of the failure curves with the increase of generalized shear strain, the deviatoric stress at γg=15% is taken as the failure criterion of frozen soil for strain hardening under a directional shear-stress path. Meanwhile, when the stress-strain curves present softening phenomena, the peak values of stress are generally taken as the failure criterion.

    Acknowledgments:

    The work presented in this paper was supported by the National Natural Science Foundation of China(Nos. U1703244 and 41672310); the State Key Laboratory for GeoMechanics and Deep Underground Engineering, the China University of Mining and Technology (SKLGDUEK1904); the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA2003020102); the National Key Research and Development Program(2017YFC0405101); the Major Program of Bureau of International Cooperation, the Chinese Academy of Sciences (131B62KYSB20170012); the Research Project of the State Key Laboratory of Frozen Soils Engineering (Grant No. SKLFSE-ZY-16); the Science and Technology Major Project of Gansu Province(143GKDA007); the National Natural Science Foundation of China (No. 41801038); and the Science and Technology Planning Project of Gansu Province (No.18JR3RA376).

    在线观看美女被高潮喷水网站 | 蜜桃久久精品国产亚洲av| 国产视频内射| 老司机午夜十八禁免费视频| 99久久国产精品久久久| 精品熟女少妇八av免费久了| 又大又爽又粗| 久久久久九九精品影院| 日韩高清综合在线| 成年人黄色毛片网站| 一本久久中文字幕| 午夜免费激情av| 欧美日韩福利视频一区二区| 国产精品久久电影中文字幕| 久久久精品大字幕| 亚洲va日本ⅴa欧美va伊人久久| 久久欧美精品欧美久久欧美| 国产精品av久久久久免费| 可以在线观看的亚洲视频| 50天的宝宝边吃奶边哭怎么回事| 国产视频一区二区在线看| av在线播放免费不卡| 91av网站免费观看| 成年女人毛片免费观看观看9| 亚洲国产欧美网| 18禁观看日本| a级毛片a级免费在线| 国产成人aa在线观看| 欧美最黄视频在线播放免费| 欧美+亚洲+日韩+国产| 床上黄色一级片| 国产欧美日韩一区二区精品| 99国产精品99久久久久| 久久久久亚洲av毛片大全| 日韩三级视频一区二区三区| tocl精华| 国产99久久九九免费精品| 色哟哟哟哟哟哟| 99热只有精品国产| 亚洲人成电影免费在线| 丁香六月欧美| 亚洲精品一区av在线观看| 久久香蕉国产精品| 欧美乱妇无乱码| 观看免费一级毛片| 悠悠久久av| 国产欧美日韩精品亚洲av| 91国产中文字幕| 国产aⅴ精品一区二区三区波| 婷婷精品国产亚洲av| 亚洲国产看品久久| 1024视频免费在线观看| 欧美极品一区二区三区四区| 亚洲精品一卡2卡三卡4卡5卡| 97人妻精品一区二区三区麻豆| 欧美日韩亚洲综合一区二区三区_| 精品一区二区三区四区五区乱码| 国产伦在线观看视频一区| 精品人妻1区二区| 久久精品综合一区二区三区| 桃色一区二区三区在线观看| 麻豆一二三区av精品| 动漫黄色视频在线观看| 亚洲熟妇熟女久久| 亚洲欧美日韩高清专用| 制服人妻中文乱码| 在线观看舔阴道视频| 欧美色欧美亚洲另类二区| 黄色 视频免费看| 一二三四在线观看免费中文在| 白带黄色成豆腐渣| 全区人妻精品视频| 日韩免费av在线播放| 色在线成人网| 日韩 欧美 亚洲 中文字幕| 2021天堂中文幕一二区在线观| 亚洲中文字幕日韩| 黑人巨大精品欧美一区二区mp4| 免费在线观看影片大全网站| 国产成人系列免费观看| 99精品欧美一区二区三区四区| 99在线人妻在线中文字幕| 在线观看美女被高潮喷水网站 | 亚洲av第一区精品v没综合| 亚洲成av人片免费观看| 久久草成人影院| 窝窝影院91人妻| 成人国产综合亚洲| 亚洲 国产 在线| videosex国产| 成人亚洲精品av一区二区| 成人国产综合亚洲| 免费高清视频大片| 亚洲一区高清亚洲精品| 在线a可以看的网站| 国产私拍福利视频在线观看| 三级毛片av免费| 国产熟女xx| 国产成人系列免费观看| 久久久精品欧美日韩精品| 最新在线观看一区二区三区| 欧美高清成人免费视频www| 国产男靠女视频免费网站| 亚洲男人天堂网一区| 在线看三级毛片| 久久久久性生活片| 女警被强在线播放| 老司机午夜福利在线观看视频| 怎么达到女性高潮| 亚洲一区中文字幕在线| 18禁观看日本| 国产91精品成人一区二区三区| 精品免费久久久久久久清纯| 欧美人与性动交α欧美精品济南到| 国产成人啪精品午夜网站| 国产成人精品久久二区二区免费| 免费在线观看日本一区| 成人高潮视频无遮挡免费网站| av欧美777| 黄片大片在线免费观看| 国产精品野战在线观看| 在线观看一区二区三区| 一级作爱视频免费观看| 一本综合久久免费| 在线免费观看的www视频| 一级作爱视频免费观看| 亚洲自偷自拍图片 自拍| 国内揄拍国产精品人妻在线| 丝袜人妻中文字幕| 成人一区二区视频在线观看| 中文字幕人成人乱码亚洲影| 又大又爽又粗| netflix在线观看网站| 午夜福利高清视频| 美女黄网站色视频| 亚洲成a人片在线一区二区| 欧美久久黑人一区二区| 久久久久久免费高清国产稀缺| 女生性感内裤真人,穿戴方法视频| 桃色一区二区三区在线观看| 夜夜看夜夜爽夜夜摸| 欧美日韩中文字幕国产精品一区二区三区| 国产精品久久电影中文字幕| 一进一出抽搐gif免费好疼| 99国产综合亚洲精品| 婷婷丁香在线五月| 老汉色∧v一级毛片| 亚洲av电影在线进入| 色综合欧美亚洲国产小说| 国产亚洲av高清不卡| 久久久久久久午夜电影| 国产精品 欧美亚洲| 亚洲中文字幕一区二区三区有码在线看 | 婷婷精品国产亚洲av| 十八禁网站免费在线| 很黄的视频免费| 欧美性长视频在线观看| 亚洲精品美女久久av网站| 两人在一起打扑克的视频| 亚洲av五月六月丁香网| 麻豆国产97在线/欧美 | 久久国产乱子伦精品免费另类| 大型av网站在线播放| 久久久久久久久免费视频了| 亚洲精品在线观看二区| 久久久久九九精品影院| 人人妻人人看人人澡| 日韩 欧美 亚洲 中文字幕| 成人午夜高清在线视频| 国产激情欧美一区二区| 免费看a级黄色片| 久久精品91无色码中文字幕| 99国产精品99久久久久| 午夜免费观看网址| 首页视频小说图片口味搜索| 亚洲熟女毛片儿| 久久久久久大精品| 91大片在线观看| 久久精品人妻少妇| 亚洲国产欧美一区二区综合| 成熟少妇高潮喷水视频| xxx96com| 日韩欧美免费精品| 国模一区二区三区四区视频 | 在线观看午夜福利视频| 亚洲人成电影免费在线| 天堂√8在线中文| 床上黄色一级片| 俄罗斯特黄特色一大片| 色播亚洲综合网| 亚洲成人久久爱视频| 天堂影院成人在线观看| 日本成人三级电影网站| 国内揄拍国产精品人妻在线| 亚洲av电影在线进入| 欧美人与性动交α欧美精品济南到| 50天的宝宝边吃奶边哭怎么回事| 亚洲精品在线美女| 他把我摸到了高潮在线观看| 久久天躁狠狠躁夜夜2o2o| 亚洲av电影不卡..在线观看| 国产熟女xx| 91字幕亚洲| 99精品欧美一区二区三区四区| 高清毛片免费观看视频网站| 免费看日本二区| 中文资源天堂在线| 18禁观看日本| 黄色女人牲交| 欧美日韩中文字幕国产精品一区二区三区| 精品熟女少妇八av免费久了| 男女那种视频在线观看| 日韩精品中文字幕看吧| 国产成人系列免费观看| 亚洲国产精品成人综合色| 精品熟女少妇八av免费久了| 国内精品久久久久精免费| 757午夜福利合集在线观看| 午夜福利在线在线| 亚洲人成77777在线视频| 久久久久性生活片| 高潮久久久久久久久久久不卡| 一本大道久久a久久精品| 午夜福利在线在线| 丝袜美腿诱惑在线| 精品熟女少妇八av免费久了| 欧美中文综合在线视频| 99国产精品99久久久久| 一进一出抽搐gif免费好疼| 免费观看精品视频网站| 全区人妻精品视频| 亚洲成人国产一区在线观看| 这个男人来自地球电影免费观看| 亚洲欧洲精品一区二区精品久久久| 777久久人妻少妇嫩草av网站| 日韩 欧美 亚洲 中文字幕| 日本 欧美在线| 成人18禁在线播放| 亚洲专区字幕在线| 欧美 亚洲 国产 日韩一| 国产真实乱freesex| 午夜福利成人在线免费观看| 国语自产精品视频在线第100页| 国产亚洲欧美在线一区二区| 欧美大码av| 色在线成人网| 亚洲人成伊人成综合网2020| 国产精品综合久久久久久久免费| 国产成人精品无人区| 亚洲欧美精品综合久久99| 身体一侧抽搐| 桃红色精品国产亚洲av| 一二三四在线观看免费中文在| 黄色视频,在线免费观看| 最近最新中文字幕大全电影3| 亚洲欧美日韩无卡精品| 国产欧美日韩一区二区精品| 动漫黄色视频在线观看| av超薄肉色丝袜交足视频| 日韩欧美在线乱码| 国产午夜精品久久久久久| 成人三级做爰电影| 国产午夜精品论理片| 一本久久中文字幕| 99精品久久久久人妻精品| 国产99久久九九免费精品| 久久这里只有精品中国| www国产在线视频色| 999久久久国产精品视频| 国产成人影院久久av| 精品国内亚洲2022精品成人| 身体一侧抽搐| 国产真人三级小视频在线观看| 成在线人永久免费视频| 久久久久久久久免费视频了| 1024香蕉在线观看| 亚洲第一电影网av| 草草在线视频免费看| 国产区一区二久久| 国产爱豆传媒在线观看 | 亚洲一区中文字幕在线| 国内毛片毛片毛片毛片毛片| 亚洲中文日韩欧美视频| 国产一区二区激情短视频| 亚洲天堂国产精品一区在线| 国产av一区二区精品久久| 久久久久久亚洲精品国产蜜桃av| 国内少妇人妻偷人精品xxx网站 | 一级毛片精品| 波多野结衣高清作品| 欧美国产日韩亚洲一区| 日韩 欧美 亚洲 中文字幕| 日本撒尿小便嘘嘘汇集6| 麻豆久久精品国产亚洲av| 在线观看午夜福利视频| 欧美精品亚洲一区二区| 夜夜爽天天搞| 成人国产综合亚洲| cao死你这个sao货| 亚洲国产精品合色在线| 极品教师在线免费播放| 人人妻人人看人人澡| 国产av不卡久久| 最近最新中文字幕大全电影3| 日韩精品免费视频一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 亚洲精品一区av在线观看| 操出白浆在线播放| 日韩欧美 国产精品| 亚洲黑人精品在线| 成年版毛片免费区| 亚洲黑人精品在线| 成年版毛片免费区| 老鸭窝网址在线观看| 欧美 亚洲 国产 日韩一| 最近视频中文字幕2019在线8| 亚洲精品av麻豆狂野| 深夜精品福利| 国内精品久久久久精免费| 国产私拍福利视频在线观看| 最新美女视频免费是黄的| 国产主播在线观看一区二区| 亚洲国产精品久久男人天堂| 草草在线视频免费看| 老司机福利观看| 少妇人妻一区二区三区视频| 少妇的丰满在线观看| 亚洲精品一区av在线观看| 热99re8久久精品国产| 黄色 视频免费看| 国产亚洲av嫩草精品影院| 变态另类成人亚洲欧美熟女| 叶爱在线成人免费视频播放| 一本大道久久a久久精品| 嫩草影院精品99| 丁香六月欧美| 视频区欧美日本亚洲| 久久热在线av| 十八禁网站免费在线| 亚洲天堂国产精品一区在线| 99热只有精品国产| 色综合欧美亚洲国产小说| 亚洲国产精品999在线| 两人在一起打扑克的视频| 久久久久亚洲av毛片大全| 99久久国产精品久久久| av天堂在线播放| 99久久国产精品久久久| av中文乱码字幕在线| 免费在线观看亚洲国产| 村上凉子中文字幕在线| 久久精品国产99精品国产亚洲性色| 亚洲真实伦在线观看| 无人区码免费观看不卡| 人人妻人人澡欧美一区二区| 国产亚洲欧美98| 99国产极品粉嫩在线观看| 黄色片一级片一级黄色片| 国内少妇人妻偷人精品xxx网站 | 久久精品亚洲精品国产色婷小说| 日本a在线网址| 黄色毛片三级朝国网站| АⅤ资源中文在线天堂| 免费在线观看日本一区| 亚洲精品粉嫩美女一区| 看黄色毛片网站| 婷婷六月久久综合丁香| 制服人妻中文乱码| 亚洲精品美女久久久久99蜜臀| 91老司机精品| 国产一区二区在线av高清观看| 欧美最黄视频在线播放免费| 90打野战视频偷拍视频| 欧美日韩国产亚洲二区| 亚洲欧美一区二区三区黑人| 欧美日韩精品网址| www.www免费av| 亚洲成人免费电影在线观看| tocl精华| 欧美+亚洲+日韩+国产| 中文字幕精品亚洲无线码一区| 神马国产精品三级电影在线观看 | 久久精品国产亚洲av香蕉五月| 国产精品 欧美亚洲| 免费av毛片视频| 国产又黄又爽又无遮挡在线| 久久精品影院6| 日日摸夜夜添夜夜添小说| 国产精品日韩av在线免费观看| 中文字幕久久专区| 视频区欧美日本亚洲| 亚洲午夜理论影院| 性色av乱码一区二区三区2| 亚洲va日本ⅴa欧美va伊人久久| 亚洲欧美一区二区三区黑人| 国产精品免费视频内射| 两性夫妻黄色片| 亚洲精品中文字幕在线视频| 国产成人av教育| 国产精品影院久久| 精品欧美一区二区三区在线| 色综合亚洲欧美另类图片| 一本精品99久久精品77| 91在线观看av| 波多野结衣巨乳人妻| 精品第一国产精品| 又粗又爽又猛毛片免费看| 久久精品91无色码中文字幕| 在线观看www视频免费| 最近在线观看免费完整版| 天天躁夜夜躁狠狠躁躁| 久久久国产成人精品二区| www日本黄色视频网| 欧美中文综合在线视频| 亚洲男人天堂网一区| 国产探花在线观看一区二区| 国产一区二区在线av高清观看| 午夜日韩欧美国产| 一夜夜www| 色综合婷婷激情| 亚洲成人国产一区在线观看| 日本 av在线| 一级片免费观看大全| 亚洲午夜理论影院| 丰满人妻一区二区三区视频av | 欧美日韩国产亚洲二区| 亚洲精品美女久久av网站| www.熟女人妻精品国产| 亚洲乱码一区二区免费版| 麻豆成人午夜福利视频| av福利片在线观看| 精品免费久久久久久久清纯| 亚洲中文日韩欧美视频| 日本精品一区二区三区蜜桃| 精品午夜福利视频在线观看一区| 欧美+亚洲+日韩+国产| 午夜福利视频1000在线观看| 亚洲午夜精品一区,二区,三区| 舔av片在线| 99精品在免费线老司机午夜| 香蕉av资源在线| 欧美日韩亚洲国产一区二区在线观看| 日韩欧美一区二区三区在线观看| 国产成人av激情在线播放| 久久精品影院6| 91在线观看av| 欧美绝顶高潮抽搐喷水| 日本a在线网址| 一级黄色大片毛片| 精品熟女少妇八av免费久了| 无遮挡黄片免费观看| 精品日产1卡2卡| 男人舔女人下体高潮全视频| 亚洲第一欧美日韩一区二区三区| 人人妻,人人澡人人爽秒播| 午夜精品在线福利| 亚洲欧美精品综合一区二区三区| 性色av乱码一区二区三区2| 777久久人妻少妇嫩草av网站| 成人手机av| 大型黄色视频在线免费观看| 久久久久国产一级毛片高清牌| 丰满的人妻完整版| 看片在线看免费视频| 香蕉丝袜av| 国产精品一区二区精品视频观看| 好男人在线观看高清免费视频| 人人妻,人人澡人人爽秒播| 色av中文字幕| 丰满人妻一区二区三区视频av | bbb黄色大片| 亚洲乱码一区二区免费版| 日本三级黄在线观看| 免费高清视频大片| 一本大道久久a久久精品| 麻豆av在线久日| 99久久久亚洲精品蜜臀av| 最新在线观看一区二区三区| 丰满的人妻完整版| 一区二区三区国产精品乱码| а√天堂www在线а√下载| 久久香蕉精品热| 国产成人av教育| 国产又色又爽无遮挡免费看| 亚洲av成人精品一区久久| 亚洲国产欧美人成| 亚洲午夜精品一区,二区,三区| 91国产中文字幕| av天堂在线播放| 亚洲av电影不卡..在线观看| 老汉色av国产亚洲站长工具| 99国产精品一区二区三区| 高清毛片免费观看视频网站| 97碰自拍视频| 色尼玛亚洲综合影院| 国产一区二区在线av高清观看| 不卡av一区二区三区| 国产精华一区二区三区| 亚洲真实伦在线观看| 国产精品永久免费网站| videosex国产| 亚洲精品一卡2卡三卡4卡5卡| 欧美日韩一级在线毛片| 亚洲成人精品中文字幕电影| 久久人妻av系列| 久久久精品欧美日韩精品| 国产精品1区2区在线观看.| 可以在线观看的亚洲视频| 日韩 欧美 亚洲 中文字幕| 50天的宝宝边吃奶边哭怎么回事| 免费观看人在逋| 亚洲人成网站在线播放欧美日韩| x7x7x7水蜜桃| 国产av一区二区精品久久| 精品久久久久久久人妻蜜臀av| 欧美在线一区亚洲| 国内少妇人妻偷人精品xxx网站 | 亚洲专区国产一区二区| 国产熟女午夜一区二区三区| 老熟妇仑乱视频hdxx| 母亲3免费完整高清在线观看| 91国产中文字幕| 亚洲专区国产一区二区| 免费看美女性在线毛片视频| 亚洲国产欧美网| 哪里可以看免费的av片| 淫妇啪啪啪对白视频| 一进一出好大好爽视频| 法律面前人人平等表现在哪些方面| 亚洲成人中文字幕在线播放| 少妇的丰满在线观看| 国产一区在线观看成人免费| 欧美一级毛片孕妇| 国产精品久久久av美女十八| 91麻豆av在线| 日本 av在线| 级片在线观看| 男女床上黄色一级片免费看| 啦啦啦韩国在线观看视频| 久久久久久国产a免费观看| 9191精品国产免费久久| 少妇裸体淫交视频免费看高清 | 国内少妇人妻偷人精品xxx网站 | 成人亚洲精品av一区二区| avwww免费| 丰满人妻熟妇乱又伦精品不卡| 国产欧美日韩精品亚洲av| 岛国在线观看网站| 亚洲人与动物交配视频| 色综合亚洲欧美另类图片| 亚洲国产日韩欧美精品在线观看 | 夜夜爽天天搞| 午夜福利在线在线| 国内久久婷婷六月综合欲色啪| 亚洲av电影在线进入| 国产亚洲精品久久久久久毛片| 国产视频内射| 亚洲18禁久久av| 国产精品国产高清国产av| 18禁黄网站禁片午夜丰满| 久久久国产欧美日韩av| 熟女少妇亚洲综合色aaa.| 久久精品人妻少妇| 免费在线观看完整版高清| 狂野欧美激情性xxxx| 18禁黄网站禁片免费观看直播| 久久久久国产一级毛片高清牌| 搡老岳熟女国产| 精品久久久久久久久久久久久| 亚洲性夜色夜夜综合| 亚洲电影在线观看av| 99久久综合精品五月天人人| 亚洲熟妇熟女久久| 亚洲专区国产一区二区| 久久久久久亚洲精品国产蜜桃av| 男女床上黄色一级片免费看| 手机成人av网站| 很黄的视频免费| 亚洲男人天堂网一区| 久久久久国产精品人妻aⅴ院| 黄色片一级片一级黄色片| 国产精品一及| 少妇熟女aⅴ在线视频| 一进一出抽搐动态| 91麻豆精品激情在线观看国产| 国产免费男女视频| 在线观看日韩欧美| 亚洲激情在线av| 日本熟妇午夜| 操出白浆在线播放| 国产精品一及| 成人高潮视频无遮挡免费网站| 亚洲人与动物交配视频| 黄片小视频在线播放| 又粗又爽又猛毛片免费看| 女人被狂操c到高潮| 欧美精品啪啪一区二区三区| 欧美av亚洲av综合av国产av| 精品欧美一区二区三区在线| 日韩精品免费视频一区二区三区| 欧美中文综合在线视频| 国产午夜精品久久久久久| 日本成人三级电影网站| 中出人妻视频一区二区| 亚洲无线在线观看| 精品国产亚洲在线| 亚洲精品国产一区二区精华液| 精品久久久久久久毛片微露脸| 999久久久精品免费观看国产| 国产成人啪精品午夜网站| av在线天堂中文字幕| 一进一出抽搐gif免费好疼| 亚洲天堂国产精品一区在线| av视频在线观看入口| 日本五十路高清|