• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Robust current and speed control of a permanent magnet synchronous motor using SMC and ADRC

    2019-05-08 03:56:58YangZHAOLiliDONG
    Control Theory and Technology 2019年2期

    Yang ZHAO, Lili DONG

    Department of Electrical Engineering and Computer Science,Cleveland State University,Cleveland,OH 44115,U.S.A.

    Abstract A second-order ordinary differential equation model is originally constructed for the phase q current system of a permanent magnet synchronous motor (PMSM). The phase q current model contains the effect of a counter electromotive force (CEMF),which introduces nonlinearity to the system. In order to compensate the nonlinearity and system uncertainties, a traditional sliding mode controller (SMC) combined with a low-pass filter (also known as a modified SMC) is designed on the phase q current model. The low-pass filter overcomes chattering effects in control efforts, and hence improves the performance of the controller.The phase q current control system is proved to be stable using Lyapunov approach.In addition,an alternative active disturbance rejection controller(ADRC)with a reduced-order extended state observer(ESO)is applied to control the speed output of PMSM. Both SMC and ADRC are simulated on the PMSM system. The simulation results demonstrate the effectiveness of these two controllers in successfully driving the current and speed outputs to desired values despite load disturbances and system uncertainties.

    Keywords: PMSM,SMC,ADRC,robustness,external disturbance,system uncertainty

    1 Introduction

    Permanent magnet synchronous motor (PMSM) or brushless alternating current motor(BLACM)has broad applications in industry due to its advantages of small volume,low cost, long life, high efficiency, high power density,and high torque to inertia ratio[1-3].Comparing to brushless direct current motor (BLDCM), PMSM has less torque ripples. Therefore, it is suitable for the systems requiring high precision performance. However, the dynamic features of PMSM make it challenging for control system design. The stator of a PMSM is installed with three-phase windings. The mutualinductance between each two phases results in coupling problem of the PMSM.The counter electromotive forces(CEMF) cause high nonlinearity in the current control system for PMSM. The load torque variations degrade the performance of the PMSM speed system.Therefore,a control system that can reduce the coupling effect,and is robust against nonlinearity and system uncertainties is crucial to improve the performance of the PMSM system.

    Field oriented control(FOC)has been a popular control strategy for PMSM drives. It performs coordinate transformation on a PMSM to enable the separate controls of the flux linkage and the electromagnetic torque[4]. Therefore, the FOC simplifies controller design.Specifically it allows independent developments of feedback control loops for the speed, phase d current, and phase q current systems of a PMSM.The traditional control methods used in industry are proportional-integral(PI)controllers.Although a PI controller has simple configuration, it is not robust enough against disturbance,nonlinearity and parameter variations [5]. To improve the performance of a PMSM system, many advanced control methods have been studied [3,6-13]. These studies focus on the speed control only,without phase d and phase q current control systems. In FOC strategy, the phase d current has to be driven to zero. A PI controller can achieve this control goal.The phase q current includes the nonlinearity caused by the CEMF.The PI controller is unable to compensate such nonlinearity.Therefore,an advanced controller has to be developed to control the phase q current.Moreover,the phase q current control loop is an inner loop of the speed feedback control system. If the phase q current is not controlled properly, the performance of the speed control system will be degraded. The main challenge of the phase q current control system is to compensate the effect of CEMF in a fast and accurate manner.The research on the phase q current control is reported in [14-18]. In [14],the load torque of a PMSM is estimated to compute the desired phase q current,so that the desired electromagnetic torque is produced to control the speed.A robust current and torque control system is designed in[15]to compensate the CEMF. In [16], a composite controller based on linear extented state observer is applied to both phase q current and speed systems to compensate the lumped disturbances.A fuzzy logic controller is proposed in [17] to minimize the torque ripples for both phase q current and speed systems. In [18], a generalized predictive controller is designed on the phase q current system to compensate model uncertainties and disturbances.The above advanced controllers in phase q current control system improve the overall performance of the PMSM speed system.But they are all designed on the first order phase q current model.

    In this paper,we propose a second-order ordinary differential equation(ODE)model to represent the phase q current system.This model contains the CEMF in term of phase q current,hence is practical.In contrast,the firstorder ODE model in [14,16-18] disregards the CEMF term.A modified sliding mode controller(SMC)is developed based on the second-order phase q current model.The modified SMC consists of a traditional SMC and a low-pass filter. It can effectively control the phase q current to a desired value without chattering effect in control effort.An alternative ADRC with a reduced-order extended state observer (ESO) is originally designed to achieve robust speed control for the PMSM. A classic ADRC, as a practical industrial solution, has been reported in [19-26]. For classic ADRC, both internal dynamics of a physical system and external disturbance are taken as an unknown generalized disturbance. A full-order ESO is designed to estimate the generalized disturbance. Then a feedback controller is constructed based on the outputs of the full-order ESO. However,for alternative ADRC,partially available model information is utilized in constructing the control law.We apply a reduced-order ESO to estimate the unknown external disturbance alone. Therefore, the ESO design is simplified. With the use of partial model information, the observer gains of reduced-order ESO are much smaller than the ones for full-order ESO. Small observer gains are attractive to practical applications since they are easier to implement compared to large gains. Our control objectives are driving both phase q current and speed output of the PMSM to their desired values respectively despite the presence of load disturbance, nonlinearity and system uncertainties.

    The remaining part of the paper is organized as follows.The mathematical model of a PMSM is presented in Section 2. In Section 3, the novel SMC current controller and ADRC are developed. Both controllers are then simulated on a PMSM in Matlab/Simulink.The simulation results are shown in Section 4.In Section 5,we make conclusions and suggest future research directions.

    2 Dynamic modeling of a PMSM

    The mathematical model of a PMSM in directquadrature(d-q)rotating coordinate is presented in this section.The novel second-order phase q current model is then developed. The equivalent circuits along phase d and phase q are demonstrated in Fig.1 and Fig.2, respectively.In these two figures,Rsrepresents the stator resistance,udand uqare voltage inputs,idand iqare current outputs, Ldand Lqrepresent the self inductances along phase d and phase q,ωerepresents the electrical angular speed of the rotor,and ψdand ψqrepresent the flux linkages along phase d and phase q,respectively.

    Fig.1 The PMSM equivalent circuit along phase d.

    Fig.2 The PMSM equivalent circuit along phase q.

    From Figs.1 and 2,the voltage equations of a PMSM are derived as

    where the CEMF terms are represented by ωeψqand ωeψd.

    The flux linkage along phases d and q are represented by

    where ψfis the constant flux generated by the permanent magnets.

    The electromagnetic torque is given by

    where npis the number of pole pairs.

    The torsion equation is represented by

    where J represents the moment of inertia for the PMSM,ωmthe mechanical angular speed of the rotor ωm=ωe/np, TLthe load torque, and B the damping coefficient.

    We adopt FOC strategy on the speed control system of a PMSM. The FOC structure on PMSM is shown in Fig.3.

    In Fig.3,there are three feedback control loops in the PMSM control system:the speed,phase d current,and phase q current control loops. If phase d current idis controlled to be zero, the air gap flux linkage will be equal to the flux linkage of the permanent magnets ψf,and the electromagnetic torque will be only related to phase q current iq. In this case, (2) and (3) could be rewritten as

    where Kt= 1.5npψf. Then for phase q current system,the CEMF term would become ωeψf, where ψfis constant.

    From(1),we can derive the transfer function for phase q current system as follows:

    Fig.3 The FOC schematic on PMSM.

    As discussed above,we include the CEMF term(ωeψf)into the phase q current system(7)by assuming that idis controlled to be zero. From the Laplace transforms of (4)-(6) and transfer function (7), the block diagram from phase q input voltage uqto the speed output ωmis shown in Fig.4.

    Fig.4 The block diagram between phase q voltage and speed

    According to Fig.4, we can derive the following second-order transfer function as the mathematical model for the phase q current control system design.

    In (8), the positive coefficients a2= LqJ, a1= LqB+RsJ,and a0=RsB+1.5n2pψ2f.From Fig.4 and(8),we can see that the CEMF term is incorporated in the transfer function model of phase q current system. Particularly the CEMF becomes part of the TLterm(the second term in the right side of(8)),which is to be compensated by a SMC.

    3 PMSM control system design

    3.1 Phase q current controller design

    A modified sliding mode controller is developed on(8) to realize fast and accurate control of phase q current iq.The following assumption is made for controller design.

    Assumption 1The load torque TLis bounded that is|TL|≤Tmax<∞,where Tmaxis a positive real number.

    The proposed SMC consists of a traditional first-order SMC and a low-pass filter(LPF).The LPF is designed as

    After applying the LPF to (8), we can derive the second-order differential equation model of(8)as

    Define the phase q current tracking error eqas

    where rqis the reference of iq.

    Based on(10),a SMC is developed as follows:

    Define the sliding surface as

    The derivative of the sliding surface sqis

    Making ˙sq= 0 and ignoring the load disturbance TL,we obtain the following equivalent control law:

    The switching control is designed as

    where K is a positive real number. The sign function sgn sqis defined as

    The first-order SMC is a combination of switch control law and equivalent control law.It is given by

    Substituting(14)and(15)into(17),we have

    Next we perform stability analysis by defining the Lyapunov function Vqas

    The derivative of Lyapunov function Vqhas the following form:

    Substituting(18)into(20),we obtain

    The controller gain K is chosen as

    Then from(21),we have

    Equation (23) shows that the derivative of Lyapunov function is negative definite.Therefore,it is proved that the current control system is asymptotically stable. Invoking Barbalat’s Lemma[27],we can conclude that the variable sqwill converge to zero as time goes to infinity.

    3.2 Speed controller design

    In this section, we originally apply an alternative ADRC with a reduced-order ESO[23]to the speed system of PMSM to achieve robust control system design.The classic ADRC with a full-order ESO has been broadly used in motion control [24-26]. However, an alternative ADRC with a reduced-order ESO is still an emerging technology,and has not previously applied to the PMSM systems.

    Assuming the phase d current idis controlled to be zero,we can rewrite(4)as

    Define

    where a and b are known parameters and f represents the unknown disturbance.

    Equation(24)is rewritten as

    where the speed output y=ωmand the speed controller input u =.For a classic ADRC,the system parameter a is considered unknown. Both f and ay constitute a generalized disturbance, which is then estimated by a full-order ESO. In the design of alternative ADRC, we suppose a is a known parameter, and y is measurable.Therefore, only f itself is taken as the generalized disturbance,and is observed by a reduced-order ESO.The alternative ADRC is developed as follows.It consists of a feedback controller and the reduced-order ESO.

    A speed controller is designed as

    where u0is a virtual controller.

    We suppose the disturbance f is estimated and canceled by ?f.Substituting(29)into(28)yields

    Then the virtual controller is designed as u0=kp(r-y),where kpis proportional gain and r is the reference speed signal.Here we select kpas ωcwhich is a positive controller bandwidth.

    The disturbance f is estimated by a reduced-order ESO that is derived from a full-order ESO.The full-order ESO is developed as follows:

    Define the state variables

    Assuming the disturbance f is differentiable,the statespace equations of(28)are written as

    The full-order ESO for(32)is represented by

    where the state vector z = [z1z2]T, the observer gain vector L=[l1l2]T.The state z1is an estimate of the output y (z1= ?y), and z2is an estimate of the disturbance f (z2= ?f). The full-order ESO is used to estimate both speed output y and external disturbance f.

    Define the estimation errors as e1= x1-z1and e2=x2-z2.Therefore,the error state vector is e=[e1e2]T.Then the ESO error system is represented by

    where the matrix Ae=A-LC.

    If the eigenvalues of the matrix Aeare in the open left half plane,the estimation errors e1and e2will converge to zero.The eigenvalues of Aeare computed as

    We select both eigenvalues of Aeas-ωo,where ωois a positive observer bandwidth. Then the characteristic equation(35)can be rewritten as

    where l1= 2ωo+a and l2=. The observer gains of a full-order ESO for the classic ADRC built on the first-order system are 2ωoand[20]. From (26), a is negative. Therefore, the observer gains for alternative ADRC are smaller than the ones for classic ADRC.

    The speed output of a PMSM is typically measurable with the use of an encoder, a tachometer, or a resolver[28].Therefore we assume the speed ωmin(4)is available.Then it is not necessary to estimate the y in(28).The reduced-order ESO is designed as follows.It is utilized to approximate the external disturbance f only.

    We can rewrite(33)as

    Simplifying(37)yields

    Since l1= 2ωo+a and l2=, the reduced-order ESO is represented by

    Compared to the full-order ESO in(33),the reducedorder ESO in(39)has simpler structure and thus is easier to implement. Equations (29) and (39) constitute alternative ADRC.

    4 Simulation results

    We simulate the current and speed control systems of a PMSM in MATLAB/Simulink.The parameter values of a PMSM are listed in Table 1[29].

    Table 1 System parameters of a PMSM.

    In the simulation, we compare the performances of two different closed-loop control systems.For one control loop, the speed system is controlled by the alternative ADRC with the reduced-order ESO, the phase q current is controlled by the modified SMC, and the phase d system is controlled by a PI controller. For the other control loop,only the PI controllers are utilized to control the PMSM’s speed, phase q current, and phase d current.

    For SMC and ADRC controlled PMSM system, the control parameters of the ADRC are ωc= 80 rad/s and ωo= 200 rad/s. According to [30], we could tell the bandwidth of the speed feedback loop is 80 rad/s. The control parameter of the SMC is K=5.The proportional and integral controller gains for phase d current are 4.25 and 1437.5.

    For the PI controlled PMSM system,the mathematical expressions of the PI controllers are presented in Table 2.From Table 2, the closed-loop bandwidths for phase d current,phase q current,and speed control systems are 500 rad/s,5000 rad/s,and 80 rad/s,respectively(just as explained in[30]).For the fair comparison between the ADRC and PI controller for speed control, the closedloop bandwidth for both control systems are set to be 80 rad/s.

    Table 2 PI controllers for a PMSM.

    In the first part of the simulation,we test the robustness of two kinds of control systems (one kind with SMC,alternative ADRC,and PI controller,and the other kind with PI controllers only)against load torque disturbances.

    The step responses for the phase q current are demonstrated in Fig.5.The reference current is 0.1 A.The load torque disturbance of 2 Nm is added to the system at 5 s. From Fig.5, we can see that the settling time (Ts)for SMC controlled system is 0.001 s (as shown in the zoom-in view), while the Tsfor PI controlled system is 1.6 s. In addition, the SMC controlled system is almost unaffected by the load disturbance.However,the PI controller produces a large overshoot percentage of 112%at t=5 s when the disturbance is added to the system.Therefore SMC shows superior transient performance and disturbance robustness to PI controller.The control voltages of the phase q current are shown in Fig.6. It can be seen that both SMC and PI controller use almost same amount of control effort.

    Fig.5 The step responses of phase q current.

    Fig.6 The control voltages for phase q current system.

    The step responses for the speed of PMSM are presented in Fig.7. The reference speed is 1000 r·min-1[31,32]. The load torque disturbance of 2 Nm is added to the system at 2 s.Both ADRC and PI controller drive the speed to the reference in 0.05 s.However,after the disturbance is added to the system,it takes much longer time for the PI controller (with a Tsof 3 s) to drive the speed back to reference,compared to the ADRC(with a Tsof 0.5 s).In addition,as t=2 s,the speed response of the ADRC controlled system drops 11.6%which is less than the speed drop of the system with PI controllers.The speed control signals are demonstrated in Fig.8.Both ADRC and PI controller use same amount of control effort till t = 2 s,when the load torque disturbance is added to the system.PI controller requires 38%larger effort than ADRC to compensate the disturbance.

    Fig. 7 The speed responses of alternative ADRC and PI controlled systems.

    Fig.8 The control signals for speed system.

    In the second part of the simulation, the robustness against system uncertainties is tested for the two kinds of control systems.

    For phase q current system, the stator resistance Rsis reduced by 50% and the inductance Lqis increased by 50%as suggested in[33].The step responses of the phase q current are demonstrated in Fig.9.In the presence of parameter variations,there is a 4.6%overshoot in the current response of PI controlled system at the beginning of the simulation. In contrast, the SMC controlled response is unaltered with the changes of parameter values.SMC shows much better robustness than PI controller against parameter variations.

    Fig. 9 The step responses of phase q current with parameter variations.

    For speed control system, the moment of inertia J is increased by 50% and the friction B is reduced by 50% [33]. The step responses of the speed system are presented in Fig.10. The parameter changes result in a small overshoot percentage of 1.1% in the speed response of PI controller.However,the alternative ADRC controlled system is not affected by the parameter variations.Alternative ADRC demonstrates superior robustness to PI controller against system uncertainties.

    Fig.10 The speed responses with parameter variations.

    In the third part of the simulation,the performance of classic ADRC is compared with alternative ADRC.

    The speed responses of the PMSM system under the control of both ADRCs are demonstrated in Fig.11.Both controllers drive the speed to the reference in 0.1 s.After the disturbance is added to the system at t = 0.2 s, the speed response of alternative ADRC drops 1.9% less than that of the classic ADRC. Therefore, alternative ADRC shows slightly better transient performance and robustness(against disturbance)than classic ADRC.The control signals of alternative ADRC and classic ADRC are illustrated in Fig.12.It can be seen that both ADRCs use almost same amount of control effort.

    To test the robustness against parameter variations,the moment of inertia J is increased by 50% and the friction B is reduced by 50%[33].The speed responses of the PMSM system under the control of both ADRCs are presented in Fig.13. It can be observed that classic ADRC produces 1%overshoot in speed response.However,alternative ADRC drives the speed to the reference without overshoot. Compared to classic ADRC, the alternative ADRC shows better robustness against system uncertainty.The control signals of alternative ADRC and classic ADRC are demonstrated in Fig.14.It can be seen that both ADRCs use almost same amount of control effort.

    From the simulation results, we observe that the alternative ADRC is more robust against disturbance than PI controller in speed control. In addition, the modified SMC is superior to the PI controller in terms of transient performance and disturbance robustness for phase q current control.Both modified SMC and ADRCs are robust against parameter variations.Particularly the alternative ADRC has better transient performance than the classic ADRC.

    Fig. 11 The speed responses of PMSM with alternative and classic ADRCs.

    Fig.12 The control signals of alternative and classic ADRCs.

    Fig.13 The speed responses of ADRC controlled systems with parameter variations.

    Fig. 14 The control signals of both ADRCs with parameter variations.

    5 Conclusions

    A novel second-order mathematical model of the phase q current system is proposed.In this new model,the unknown nonlinear CEMF is considered.A modified SMC is originally developed and applied to the phase q current system.The modified SMC is easy to implement in the real world with only one tuning parameter. The stability of the phase q current control system is proved theoretically. In addition, an alternative ADRC with a reduced-order ESO is initially designed for the speed control system of a PMSM to achieve robust speed control system. The alternative ADRC focuses on rejecting the unknown disturbance while using the partially known system information. It successfully reduces the complexity of control design and shows better transient performance than classic ADRC.The simulation results verify the effectiveness of the SMC and ADRC combined control system on the PMSM. They also demonstrate the robustness of the control system against load disturbances and system uncertainties.Both SMC and ADRC produce better performances in step responses than PI controllers.

    In summary, the novelties of the proposed research are: 1) an original second-order ODE model for the phase q current system of a PMSM,2)a modified SMC with only one tuning parameter for current control,and 3) an alternative ADRC with a reduced-order ESO for speed control.

    For future research, we plan to implement the proposed SMC and ADRC to a real PMSM system, and conduct hardware experiments to test the controllers in practice.

    国产精品日韩av在线免费观看| 国产男靠女视频免费网站| 亚洲成a人片在线一区二区| 嫩草影院入口| 香蕉丝袜av| av在线天堂中文字幕| 丰满人妻一区二区三区视频av | 国产伦在线观看视频一区| 夜夜躁狠狠躁天天躁| 精品日产1卡2卡| av女优亚洲男人天堂 | 一二三四在线观看免费中文在| 午夜日韩欧美国产| 亚洲av成人精品一区久久| 高清在线国产一区| 99精品久久久久人妻精品| 午夜福利在线观看吧| 日本a在线网址| 90打野战视频偷拍视频| 日韩成人在线观看一区二区三区| 999久久久精品免费观看国产| 黑人巨大精品欧美一区二区mp4| 亚洲最大成人中文| 超碰成人久久| 国产免费男女视频| 天堂av国产一区二区熟女人妻| 一卡2卡三卡四卡精品乱码亚洲| 老司机福利观看| 首页视频小说图片口味搜索| 国内精品久久久久久久电影| 操出白浆在线播放| 久久午夜亚洲精品久久| 桃红色精品国产亚洲av| 亚洲欧美日韩高清专用| 免费观看的影片在线观看| 久久久色成人| 两性夫妻黄色片| 男人和女人高潮做爰伦理| 长腿黑丝高跟| 色在线成人网| 日本五十路高清| 国产野战对白在线观看| 日韩成人在线观看一区二区三区| 欧美+亚洲+日韩+国产| 每晚都被弄得嗷嗷叫到高潮| 国产高潮美女av| 国产精品综合久久久久久久免费| 免费在线观看影片大全网站| 两个人的视频大全免费| 国产乱人视频| 2021天堂中文幕一二区在线观| 午夜福利欧美成人| 美女大奶头视频| 97人妻精品一区二区三区麻豆| 99国产极品粉嫩在线观看| 国产精品影院久久| 色哟哟哟哟哟哟| 日韩免费av在线播放| 一进一出抽搐gif免费好疼| 1000部很黄的大片| 日韩欧美 国产精品| 精品国产超薄肉色丝袜足j| 黄色成人免费大全| 又紧又爽又黄一区二区| 日韩中文字幕欧美一区二区| 久久精品91蜜桃| 国产视频一区二区在线看| 亚洲 欧美 日韩 在线 免费| 成年女人看的毛片在线观看| 亚洲中文字幕日韩| 又紧又爽又黄一区二区| 一个人看的www免费观看视频| 免费无遮挡裸体视频| 欧美激情久久久久久爽电影| 一本综合久久免费| 国产亚洲精品av在线| 亚洲中文日韩欧美视频| 亚洲中文日韩欧美视频| 亚洲成av人片在线播放无| 欧美不卡视频在线免费观看| 亚洲欧美日韩东京热| 一个人看视频在线观看www免费 | 老汉色∧v一级毛片| 成年女人看的毛片在线观看| 黄色日韩在线| 别揉我奶头~嗯~啊~动态视频| 两个人视频免费观看高清| 非洲黑人性xxxx精品又粗又长| 国产精华一区二区三区| 俺也久久电影网| a在线观看视频网站| 高清毛片免费观看视频网站| 精品欧美国产一区二区三| 1024手机看黄色片| 久久午夜亚洲精品久久| 一进一出抽搐动态| 亚洲欧美激情综合另类| 桃色一区二区三区在线观看| xxxwww97欧美| 99热这里只有精品一区 | 久久久久免费精品人妻一区二区| 99久久99久久久精品蜜桃| 国产伦一二天堂av在线观看| 久久久久久久久中文| 亚洲一区二区三区不卡视频| 亚洲最大成人中文| 亚洲人成网站在线播放欧美日韩| 精品国产超薄肉色丝袜足j| 国产精品久久久久久亚洲av鲁大| 无遮挡黄片免费观看| 久久精品aⅴ一区二区三区四区| 九九久久精品国产亚洲av麻豆 | 欧美xxxx黑人xx丫x性爽| 精品欧美国产一区二区三| 亚洲一区高清亚洲精品| 中出人妻视频一区二区| 午夜久久久久精精品| 啦啦啦韩国在线观看视频| 黑人操中国人逼视频| 免费无遮挡裸体视频| 亚洲一区二区三区色噜噜| 一区二区三区高清视频在线| 日本五十路高清| avwww免费| www.999成人在线观看| 听说在线观看完整版免费高清| 亚洲七黄色美女视频| 男女视频在线观看网站免费| 久久久久九九精品影院| 久久久色成人| 国产v大片淫在线免费观看| 国内精品久久久久精免费| 亚洲av电影不卡..在线观看| 蜜桃久久精品国产亚洲av| 天堂影院成人在线观看| 淫妇啪啪啪对白视频| 午夜日韩欧美国产| 国产午夜精品论理片| 精品不卡国产一区二区三区| 亚洲 国产 在线| 亚洲片人在线观看| 亚洲精品美女久久久久99蜜臀| 欧美性猛交黑人性爽| 国产成人精品久久二区二区91| 亚洲成av人片免费观看| 在线看三级毛片| 91老司机精品| 看片在线看免费视频| 成人高潮视频无遮挡免费网站| 99久久久亚洲精品蜜臀av| 亚洲精品一区av在线观看| 国产精品一及| 亚洲中文av在线| 久久久久久久精品吃奶| 久99久视频精品免费| 中出人妻视频一区二区| av黄色大香蕉| 欧美高清成人免费视频www| 亚洲欧美精品综合一区二区三区| 国产一区二区三区视频了| 丁香欧美五月| 日韩欧美一区二区三区在线观看| 中文字幕人妻丝袜一区二区| 一个人免费在线观看电影 | 免费看光身美女| 国产精品亚洲一级av第二区| 亚洲成人精品中文字幕电影| 99热只有精品国产| 俄罗斯特黄特色一大片| 母亲3免费完整高清在线观看| 国产成人aa在线观看| 欧美日韩亚洲国产一区二区在线观看| 日本一本二区三区精品| 成人永久免费在线观看视频| 国产精品1区2区在线观看.| 日韩精品青青久久久久久| 丰满的人妻完整版| 久久久水蜜桃国产精品网| 中文字幕熟女人妻在线| 午夜福利在线观看吧| 狂野欧美激情性xxxx| 91老司机精品| 日本熟妇午夜| www.自偷自拍.com| 国产精品av视频在线免费观看| 亚洲av美国av| 免费看美女性在线毛片视频| 欧美乱妇无乱码| 久久久久国产一级毛片高清牌| 国产精品一区二区免费欧美| 国产免费男女视频| 欧美日韩黄片免| 日韩欧美一区二区三区在线观看| 欧美性猛交╳xxx乱大交人| 又大又爽又粗| aaaaa片日本免费| 99热精品在线国产| av天堂中文字幕网| 神马国产精品三级电影在线观看| 美女黄网站色视频| 少妇裸体淫交视频免费看高清| 国产精华一区二区三区| 精品午夜福利视频在线观看一区| 亚洲av中文字字幕乱码综合| 手机成人av网站| 国产精品综合久久久久久久免费| 热99在线观看视频| or卡值多少钱| 日本一本二区三区精品| 毛片女人毛片| 校园春色视频在线观看| 99久久精品国产亚洲精品| 亚洲在线自拍视频| 曰老女人黄片| 成人三级黄色视频| 在线免费观看的www视频| 日韩av在线大香蕉| 精品日产1卡2卡| 一个人看视频在线观看www免费 | 久久精品人妻少妇| 免费电影在线观看免费观看| 男女视频在线观看网站免费| 女人被狂操c到高潮| 国产av麻豆久久久久久久| 动漫黄色视频在线观看| 久久婷婷人人爽人人干人人爱| 欧美成人性av电影在线观看| 性欧美人与动物交配| 国产97色在线日韩免费| 欧美日韩乱码在线| 国产欧美日韩一区二区精品| 亚洲人成网站高清观看| 成年版毛片免费区| 国产精品免费一区二区三区在线| 真人一进一出gif抽搐免费| 人妻丰满熟妇av一区二区三区| 日韩免费av在线播放| 国产精品久久久久久精品电影| 啪啪无遮挡十八禁网站| 国产v大片淫在线免费观看| av福利片在线观看| 亚洲片人在线观看| 日日干狠狠操夜夜爽| 高清在线国产一区| 亚洲国产高清在线一区二区三| 国产一区二区在线av高清观看| 老鸭窝网址在线观看| 国内精品久久久久久久电影| 欧美精品啪啪一区二区三区| 99热只有精品国产| e午夜精品久久久久久久| 欧美高清成人免费视频www| 夜夜看夜夜爽夜夜摸| svipshipincom国产片| 最新美女视频免费是黄的| 亚洲av成人一区二区三| 日韩欧美国产一区二区入口| 亚洲av电影在线进入| 一进一出抽搐动态| 日韩欧美在线乱码| 搡老岳熟女国产| 国产成人精品久久二区二区91| 欧美另类亚洲清纯唯美| 欧美不卡视频在线免费观看| 婷婷六月久久综合丁香| 久久精品91无色码中文字幕| 国产成人啪精品午夜网站| 国产黄片美女视频| 亚洲成人中文字幕在线播放| 国产黄色小视频在线观看| 美女高潮的动态| 搞女人的毛片| 美女午夜性视频免费| 亚洲黑人精品在线| 中文字幕最新亚洲高清| 99视频精品全部免费 在线 | 又大又爽又粗| 中文在线观看免费www的网站| 国产精品99久久99久久久不卡| 国产高清激情床上av| 母亲3免费完整高清在线观看| 色尼玛亚洲综合影院| 小说图片视频综合网站| 国产精品,欧美在线| 俺也久久电影网| 国内精品久久久久精免费| 久久久久久人人人人人| 亚洲性夜色夜夜综合| 欧美黄色淫秽网站| 香蕉久久夜色| 日韩 欧美 亚洲 中文字幕| 中亚洲国语对白在线视频| 变态另类丝袜制服| 村上凉子中文字幕在线| 88av欧美| 欧美色视频一区免费| 国产aⅴ精品一区二区三区波| 欧美不卡视频在线免费观看| 亚洲激情在线av| 美女cb高潮喷水在线观看 | 一级毛片高清免费大全| 老汉色∧v一级毛片| 亚洲国产精品sss在线观看| 亚洲色图 男人天堂 中文字幕| 两性午夜刺激爽爽歪歪视频在线观看| 国产三级在线视频| 中亚洲国语对白在线视频| 可以在线观看毛片的网站| 999久久久国产精品视频| 亚洲熟妇中文字幕五十中出| 久9热在线精品视频| 日韩大尺度精品在线看网址| 中文字幕av在线有码专区| 一区二区三区激情视频| 成人18禁在线播放| 日本熟妇午夜| 亚洲成人精品中文字幕电影| 久久中文字幕一级| 中文在线观看免费www的网站| 男女午夜视频在线观看| 波多野结衣高清作品| 中国美女看黄片| 亚洲人成电影免费在线| 91av网站免费观看| 午夜激情欧美在线| 久久久久久久久中文| 搡老岳熟女国产| 亚洲国产欧美一区二区综合| 最新美女视频免费是黄的| 午夜视频精品福利| 亚洲av电影在线进入| 国产单亲对白刺激| 国语自产精品视频在线第100页| 午夜免费观看网址| 在线观看日韩欧美| 韩国av一区二区三区四区| 天天躁狠狠躁夜夜躁狠狠躁| 老鸭窝网址在线观看| 亚洲欧美日韩高清在线视频| 大型黄色视频在线免费观看| 亚洲九九香蕉| 精品日产1卡2卡| 成人特级黄色片久久久久久久| 床上黄色一级片| 午夜福利成人在线免费观看| 一个人看的www免费观看视频| 一二三四社区在线视频社区8| 久久这里只有精品19| 欧美日韩精品网址| a级毛片a级免费在线| 国产精品久久电影中文字幕| 午夜视频精品福利| 亚洲性夜色夜夜综合| 成人18禁在线播放| 一进一出抽搐gif免费好疼| 我要搜黄色片| 两个人看的免费小视频| 亚洲精品在线观看二区| 亚洲狠狠婷婷综合久久图片| 狂野欧美激情性xxxx| 国产视频一区二区在线看| 综合色av麻豆| 成人亚洲精品av一区二区| 999精品在线视频| a级毛片a级免费在线| 成人18禁在线播放| 大型黄色视频在线免费观看| 亚洲国产精品成人综合色| 高潮久久久久久久久久久不卡| 亚洲乱码一区二区免费版| 国模一区二区三区四区视频 | 亚洲乱码一区二区免费版| 嫩草影院入口| 美女被艹到高潮喷水动态| 午夜福利高清视频| 亚洲av第一区精品v没综合| 日本三级黄在线观看| 九九在线视频观看精品| 色综合站精品国产| 国产激情久久老熟女| 两个人的视频大全免费| 51午夜福利影视在线观看| 久久国产精品人妻蜜桃| av天堂在线播放| 狠狠狠狠99中文字幕| 精品国产乱子伦一区二区三区| 最好的美女福利视频网| 亚洲五月天丁香| 日日夜夜操网爽| 在线观看一区二区三区| 成年人黄色毛片网站| 免费看光身美女| 十八禁网站免费在线| 中出人妻视频一区二区| 一区二区三区激情视频| 国内毛片毛片毛片毛片毛片| 久久伊人香网站| 精品电影一区二区在线| 免费人成视频x8x8入口观看| 国产aⅴ精品一区二区三区波| 国产高潮美女av| 一夜夜www| 天堂网av新在线| 成人三级黄色视频| tocl精华| 中文资源天堂在线| 久久精品国产清高在天天线| 精品无人区乱码1区二区| 全区人妻精品视频| 免费观看人在逋| 精品国产乱子伦一区二区三区| avwww免费| 无人区码免费观看不卡| 曰老女人黄片| 九色成人免费人妻av| 99久久综合精品五月天人人| 三级国产精品欧美在线观看 | 看片在线看免费视频| 热99在线观看视频| 国产成人一区二区三区免费视频网站| 又黄又爽又免费观看的视频| 欧美黑人欧美精品刺激| 久久久国产成人精品二区| 黄色 视频免费看| 99久久无色码亚洲精品果冻| 国产伦精品一区二区三区四那| 精华霜和精华液先用哪个| 好男人在线观看高清免费视频| 激情在线观看视频在线高清| 天堂√8在线中文| 级片在线观看| 18禁黄网站禁片免费观看直播| 一本一本综合久久| 亚洲国产精品合色在线| 久久久久久大精品| 精品久久久久久久久久久久久| 国产av在哪里看| 一本一本综合久久| 国产精品99久久99久久久不卡| 精品久久久久久久毛片微露脸| 国产又黄又爽又无遮挡在线| 91av网一区二区| 很黄的视频免费| 亚洲中文字幕一区二区三区有码在线看 | 精品久久久久久,| 麻豆国产av国片精品| 曰老女人黄片| 最近视频中文字幕2019在线8| 男女那种视频在线观看| 一区福利在线观看| 精品一区二区三区四区五区乱码| 久久精品91蜜桃| 国产成人精品久久二区二区91| 美女被艹到高潮喷水动态| 99久久精品热视频| 成人鲁丝片一二三区免费| 1000部很黄的大片| 这个男人来自地球电影免费观看| 午夜福利成人在线免费观看| 在线免费观看不下载黄p国产 | 嫩草影视91久久| 精品久久久久久久末码| 日日夜夜操网爽| 大型黄色视频在线免费观看| 91在线精品国自产拍蜜月 | 日本一本二区三区精品| 精品国产超薄肉色丝袜足j| 亚洲aⅴ乱码一区二区在线播放| 欧美国产日韩亚洲一区| 1000部很黄的大片| 中国美女看黄片| 亚洲自偷自拍图片 自拍| 亚洲精品粉嫩美女一区| 精品久久久久久久久久久久久| 五月伊人婷婷丁香| 免费在线观看成人毛片| 午夜福利在线观看免费完整高清在 | 亚洲精品粉嫩美女一区| 丰满人妻熟妇乱又伦精品不卡| 久久国产乱子伦精品免费另类| 欧美日韩福利视频一区二区| 在线观看免费视频日本深夜| 99国产精品一区二区蜜桃av| 一本综合久久免费| 久久久久久国产a免费观看| 黑人欧美特级aaaaaa片| 欧美在线黄色| 国产97色在线日韩免费| 国内少妇人妻偷人精品xxx网站 | 亚洲色图av天堂| 99国产综合亚洲精品| 99久久精品一区二区三区| 五月玫瑰六月丁香| 午夜久久久久精精品| 久久99热这里只有精品18| 男人和女人高潮做爰伦理| 中文字幕高清在线视频| 美女黄网站色视频| 国产av一区在线观看免费| 男人舔女人下体高潮全视频| 中出人妻视频一区二区| 国产av在哪里看| 99热6这里只有精品| 国产精品综合久久久久久久免费| www.www免费av| 免费无遮挡裸体视频| 亚洲欧美一区二区三区黑人| 在线观看舔阴道视频| 综合色av麻豆| 一级毛片高清免费大全| 国产午夜精品久久久久久| 国产精品一区二区免费欧美| 亚洲激情在线av| 制服人妻中文乱码| 久久久成人免费电影| 老司机福利观看| 五月伊人婷婷丁香| 性欧美人与动物交配| 2021天堂中文幕一二区在线观| 精品一区二区三区四区五区乱码| 国产午夜福利久久久久久| 久久久久国内视频| 全区人妻精品视频| 午夜福利视频1000在线观看| 欧美三级亚洲精品| 99riav亚洲国产免费| 免费无遮挡裸体视频| 日日干狠狠操夜夜爽| 一本综合久久免费| 叶爱在线成人免费视频播放| 小蜜桃在线观看免费完整版高清| 国产三级黄色录像| 窝窝影院91人妻| 久久久水蜜桃国产精品网| 看免费av毛片| 中文字幕人妻丝袜一区二区| xxx96com| 美女高潮喷水抽搐中文字幕| 精品一区二区三区av网在线观看| 99热只有精品国产| 亚洲人成网站高清观看| 97超视频在线观看视频| 最近最新中文字幕大全电影3| 丰满的人妻完整版| 高清在线国产一区| 国产精品久久久人人做人人爽| 日本三级黄在线观看| 久久这里只有精品中国| 成年女人毛片免费观看观看9| 国产精品久久久av美女十八| 国产成人欧美在线观看| 美女大奶头视频| 国产精品亚洲av一区麻豆| 久久人人精品亚洲av| e午夜精品久久久久久久| 午夜影院日韩av| 最新在线观看一区二区三区| 日本与韩国留学比较| 首页视频小说图片口味搜索| 91av网一区二区| 婷婷丁香在线五月| 国产精品香港三级国产av潘金莲| 美女高潮的动态| 午夜福利欧美成人| 法律面前人人平等表现在哪些方面| 男女做爰动态图高潮gif福利片| av黄色大香蕉| 97超视频在线观看视频| 精品久久久久久久久久免费视频| 欧美黑人欧美精品刺激| 高潮久久久久久久久久久不卡| 床上黄色一级片| 亚洲av片天天在线观看| 嫩草影院精品99| 免费看光身美女| 91久久精品国产一区二区成人 | 国产精品久久电影中文字幕| 日韩欧美一区二区三区在线观看| 国产aⅴ精品一区二区三区波| 久久天堂一区二区三区四区| 午夜久久久久精精品| 黄片小视频在线播放| 精品久久久久久久久久免费视频| 免费高清视频大片| 美女被艹到高潮喷水动态| 久久久国产精品麻豆| 人人妻人人看人人澡| 国产精品爽爽va在线观看网站| 午夜日韩欧美国产| 免费观看人在逋| 日韩精品中文字幕看吧| 中亚洲国语对白在线视频| 一区二区三区激情视频| 最近在线观看免费完整版| 男人舔女人的私密视频| 国产97色在线日韩免费| 18禁黄网站禁片免费观看直播| 成人亚洲精品av一区二区| 色综合亚洲欧美另类图片| 国产精品一区二区免费欧美| 天堂√8在线中文| 韩国av一区二区三区四区| 免费大片18禁| 亚洲国产色片| 午夜免费成人在线视频| 成年女人毛片免费观看观看9| 国内揄拍国产精品人妻在线| 制服人妻中文乱码| АⅤ资源中文在线天堂| 久久精品国产综合久久久| 69av精品久久久久久| 熟女电影av网| 在线观看免费午夜福利视频| 人人妻,人人澡人人爽秒播| 国产v大片淫在线免费观看|