• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Terminal sliding mode control of rail pressure for gasoline direct injection engines

    2019-05-08 03:56:36ChenZHANGYingZHANGCongCHAIMiaoleiZHOU
    Control Theory and Technology 2019年2期

    Chen ZHANG, Ying ZHANG, Cong CHAI, Miaolei ZHOU

    Department of Control Science and Engineering,Jilin University,Changchun Jilin 130022,China

    Abstract The desired fuel rail pressure is a crucial factor for guaranteeing the gasoline direct injection(GDI)engine to work stably.In order to solve the rail pressure control problem,the detailed nonlinear model of GDI is derived and reasonable simplification of this model is carried out for the following controller design.Terminal sliding mode control strategy is proposed to design the rail pressure controller with Lyapunov stability.The designed approach with the fast terminal sliding mode surface makes the system have the capacity of global fast convergence and achieves precise tracking control. To demonstrate the validity of the designed control method, simulations are conducted by tracking the different reference rail pressures. Results show that the designed controller tracks the given reference accurately and has strong robustness.

    Keywords: Rail pressure control,terminal sliding mode control,GDI system

    1 Introduction

    The problem of energy consumption and environmental pollution caused by the increased automobile usage has become a major challenge in recent years[1].To improve the fuel economy and reduce the engine emissions, more and more advanced technologies are applied to modern automobile engines, such as variable geometry turbocharger(VGT)[2],electronic throttle control[3],as well as variable valve timing(VVT)[4].Specifically, gasoline direct injection (GDI) technology shows the great potential in increasing fuel efficiency[5],making the engine work more efficient. However, the pressure fluctuation of common rail system in GDI system can seriously affect the performance of the engine,the rail pressure control is the main sticking point hindering the development of GDI technology.

    Scholars have developed some research works on the rail pressure control method for the GDI engine system.The earliest research on modeling and control of rail pressure problem was introduced in diesel engines,then extended to the field of gasoline engines[6].Taking the limitations of traditional PID control into account,a feed forward fuzzy PID controller had been designed in [7]and a mass of comparison experiments between the designed controller and the fuzzy PID controller were made to verify that the suggested method had better performance. Considering the nonlinearity and uncertainty of the system, Liu et al. [8] reported the active disturbance reject control (ADRC), which had a simple structure and the ability of solving the rail pressure tracking problem. Chen proposed a new nonlinear control strategy named triple-step method for rail pressure[9].Compared with the traditional control method,the proposed control method had a simple structure and less time-consuming[10].However,the precision of modeling had influence on the control effect to great extent.To address this problem,D.Gaeta et al.[11]proposed the common rail mean value model and experimentally validated the effectiveness of this model.Moreover,a model reference adaptive control (MRAC) [12] was proposed based on the common rail mean value model and the control method based on the minimal control synthesis algorithm was able to depress the residual pressure in the rail. Another problem is that the structure of the common rail system had a great impact on the design of the controller,hence,the characteristics analysis and optimization of this system were studied in [13,14] to facilitate the design of the controller.

    According to[15],the conventional sliding mode control is an effective method to track the rail pressure of GDI system. The design of the sliding mode control is divided into two parts: the design of sliding surface and the design of feedback control law. Z. Man et al. [16-18] indicated that the sliding mode control with a terminal sliding surface exhibits a better performance.Hence,we adopt the terminal sliding surface to describe the dynamic behavior of sliding mode control.The design of feedback control law is using the reaching law, which can attenuate chattering. The terminal sliding mode reaching law can improve the transient performance substantially. In this paper, we firstly adopt the terminal sliding mode control strategy to solve the tracking problem about rail pressure of GDI system.Simulation results show that the designed controller improves the tracking performance to some extent and effectively reduces the fluctuation of the rail pressure.

    2 Modeling of common rail system

    Common rail fuel injection system is the key component of GDI engine and a simplified model of this system is shown in Fig.1. qtis the fuel amount from the tank to the pressure control valve. The inlet and outlet fuel of the high-pressure pump are expressed as qinand qhc,respectively.qinj_kis the fuel injection amount of the k th injector and qci=qinj_k.qleakis the fuel leakage which can be ignored.

    Fig.1 Simplified model of common rail system.

    The expression of the common rail system is shown in (1), and the details about the specific derivation and simplifying process can be found in[15].

    where the pressure and volume of the high-pressure pump are represented by phand Vh,respectively.Similarly, the pressure and volume of the common rail are expressed in terms of pcand Vc. In the inlet and outlet of the pump, cin, coutare the flow coefficients and Ain,Aoutrepresent the cross sectional area. Hhis the instantaneous axial displacement of the piston inside the pump andis a nonlinear function which is related to the camshaft angle β. Ahis the area of piston, ω is the camshaft speed. Ucrepresents the action signal of the pressure control valve.Uc=0 indicates the value is off, while Uc= 1, the value is on. Kfis the modulus of bulk elasticity associating with the ph, but for the sake of controller design,we simplify the Kfas a constant.plis the pressure in the low pressure loop. ρdis the fuel density.The model parameters are given in Table 1.

    Table 1 Model parameters.

    3 Terminal sliding mode control

    3.1 Controller design

    The terminal sliding mode control is adopted by replacing the traditional linear sliding mode with nonlinear sliding mode, which makes the system state converge to the equilibrium point in finite time,and the dynamic performance of the system is better than sliding mode control.Fig.2 is the structure diagram of proposed controller.Minjis the injection mass.The control objective is that the system output pccan track the reference input pdthrough the adjustment of the designed control approach.According to the explanation of working principle of high-pressure pump in [8] and Fig.1, the inlet fuel of high-pressure pump qincan be controlled by adjusting the closed time (duty cycle) of pressure control valve at the entrance of high-pressure pump, thus changing the system output pressure pc.

    Fig.2 The diagram of proposed controller based on GDI system.

    According to (1), x1= phand x2= pcare selected as state variables,and high-pressure pump inlet flow is chosen as control input,that is,

    When x1√<x2, the one-way valve makes qhczero.He nce, z =is defined as the new state when x1>x2.The GDI engine system is described as

    where

    The parameters of (3) is given in Table 1. The control goal of rail pressure is to make the actual rail pressure track the reference rail pressure pdfast,and the rail pressure fluctuation is as small as possible.Set the pressure tracking error as

    When x1<x2, for the sake of simplicity, we choose u = 0. When x1>x2, that is the pressure in the highpressure pump is greater than in the common rail.In the paper,we adopt the following terminal sliding surface

    where α and λ are positive constants,which are relevant with the controller performance.p and q are positive odd constants.

    Reaching law is chosen as

    where φ, γ, m and n >0, and m, n are odd. When s is far from zero, s˙=-φs of the reaching law plays a major role in the sliding mode control.When s gradually close to zero,thewhich is called terminal attractor plays an important role in reducing chattering.

    Combined(5),(6)with(3),the control law is deduced as follows:

    3.2 Stability analysis

    With regard to the stability of the designed controller,is selected as Lyapunov function. According to the Lyapunov stability theorem,when(8)is satisfied,the system is in the stability condition.

    Substituting(6)and(3)into(8)gains

    According to (6), m + n >0, therefore we deduce ˙V <0. Hence, the proposed controller is stable and effective.

    4 Simulation results

    In this section, to verify the effectiveness of the proposed modeling and control scheme, quantitative simulations are conducted in the environment (MATLAB R2014a) on an Intel(R) Core(TM) i5-4460 CPU 3.20 GHz RAM 4 GB (LENOVO, Beijing, China). The controller parameters α, λ, φ and γ are obtained by the try-and-trial method and finally set as α = 1000,λ = 2,φ = γ = 40000. Given engine speed is 3200 r/min and injection pulse width is 2.2 ms.

    In order to verify the tracking performance of the designed controller under the steady-state condition, the step signal is chosen as the reference rail pressure.The tracking and error results are shown in Fig.3(a)and(c).As mentioned above,the control input qinis transformed into an pressure control valve action signal for implementation. That is, the adjustment about qinis realised by changing the valve closed duration(duty cycle).

    Fig. 3 Rail pressure tracking, error and enlarged duty cycle curves. (a) Step signal tracking curve. (b) Sinusoidal signal tracking curve.(c)Error curve of step signal.(d)Error curve of sinusoidal signal.(e)Enlarged duty cycle curve of step signal.(f)Enlarged duty cycle curve of sinusoidal signal.

    Fig.3(e) shows the enlarged duty cycle curve that is the response of the control action qin. It can be seen that the steady-state error is less than 3 bar and the settling time is 100 ms, which means that the designed controller meets the steady-state performance requirement of the common rail system. The sinusoidal signal is applied to valid the dynamic performance of the controller.The average value of this signal is 110 bar and the amplitude is 10 bar.Fig.3(b),(d)and(f)are the tracking curve,error curve of this reference and the enlarged duty cycle curve of pressure control valve corresponding to control law.The tracking error is less than 4 bar,which means the controller still achieve the performance of the common rail system.

    To further evidence the tracking capability of the controller,the step signal is adopted as the reference pressure and the range of the pressure is from 70 to 90 bar.The tracking, error and enlarged duty cycle curves under different engine speed and injection pulse width are shown in Fig.4.

    Fig. 4 Comparative tracking, error and enlarged duty cycle curves under different engine speed and injection pulse width.(a) Tracking curves. (b) Error curves. (c) Enlarged duty cycle curves.

    As listed in Table 2,when changing the engine speeds and injection pulse widths,the settling time is less than 100 ms and the mean steady-state error is less than 5 bar. The results demonstrate that the proposed controller has strong robustness.

    Table 2 Control performance of different work conditions.

    5 Conclusions

    In this paper, a nonlinear model of the common rail fuel injection system is presented based on the principle of the GDI engine. Terminal sliding mode control method is used to control the common rail pressure,and the stability of this designed system is proved by constructing the Lyapunov function.By tracking the different reference rail pressure signals and analysing the simulation results, the designed controller meets both the steady-state rail pressure control and dynamic rail pressure control requirements of common rail system.

    久久久久久久国产电影| 国产成人一区二区在线| 国产精品免费大片| 免费看不卡的av| 欧美成人一区二区免费高清观看| 汤姆久久久久久久影院中文字幕| 中文字幕免费在线视频6| 一级毛片 在线播放| h视频一区二区三区| 下体分泌物呈黄色| 国产老妇伦熟女老妇高清| 久久久久精品性色| 亚洲欧美日韩无卡精品| 免费高清在线观看视频在线观看| 午夜福利在线观看免费完整高清在| 国产有黄有色有爽视频| 小蜜桃在线观看免费完整版高清| 一级av片app| 午夜激情福利司机影院| 亚洲av二区三区四区| 免费不卡的大黄色大毛片视频在线观看| 在线观看美女被高潮喷水网站| 特大巨黑吊av在线直播| 黑人高潮一二区| 久久婷婷青草| 国产片特级美女逼逼视频| 高清不卡的av网站| 丰满乱子伦码专区| 寂寞人妻少妇视频99o| 国产男女超爽视频在线观看| 狂野欧美激情性bbbbbb| 成人亚洲欧美一区二区av| 伊人久久精品亚洲午夜| 一本久久精品| 永久网站在线| 黄色配什么色好看| 久久这里有精品视频免费| 亚洲人成网站高清观看| 亚洲成人一二三区av| 狂野欧美激情性bbbbbb| 99热6这里只有精品| 51国产日韩欧美| 亚洲,一卡二卡三卡| av一本久久久久| 一个人看视频在线观看www免费| 国产av国产精品国产| 日韩精品有码人妻一区| 免费看日本二区| 视频区图区小说| 偷拍熟女少妇极品色| 欧美一区二区亚洲| 黑人猛操日本美女一级片| 男人舔奶头视频| 美女中出高潮动态图| 国产精品一二三区在线看| 亚洲精品国产成人久久av| 欧美日韩在线观看h| 最近2019中文字幕mv第一页| 汤姆久久久久久久影院中文字幕| 国产伦精品一区二区三区四那| 人妻系列 视频| 少妇人妻 视频| 欧美激情国产日韩精品一区| 日韩三级伦理在线观看| 草草在线视频免费看| 香蕉精品网在线| 国产老妇伦熟女老妇高清| 国产高清不卡午夜福利| 欧美日本视频| 熟女av电影| 久久婷婷青草| 精品一区二区三卡| 91狼人影院| 国产精品99久久久久久久久| 内地一区二区视频在线| 国产伦精品一区二区三区四那| 在现免费观看毛片| 最近2019中文字幕mv第一页| 午夜精品国产一区二区电影| 中文字幕人妻熟人妻熟丝袜美| 另类亚洲欧美激情| 国产一区二区三区综合在线观看 | 高清视频免费观看一区二区| 亚洲精品日韩在线中文字幕| 麻豆国产97在线/欧美| 欧美xxxx黑人xx丫x性爽| 久热久热在线精品观看| 国产精品不卡视频一区二区| 国产乱人视频| 亚洲欧洲日产国产| 色婷婷久久久亚洲欧美| 高清毛片免费看| 少妇的逼好多水| 在线观看三级黄色| 91久久精品国产一区二区成人| 能在线免费看毛片的网站| 国产成人aa在线观看| 在线观看人妻少妇| 伦理电影大哥的女人| 日本av免费视频播放| 777米奇影视久久| 天天躁日日操中文字幕| 日本黄色片子视频| 97在线人人人人妻| 免费看光身美女| 在线看a的网站| 精品一区二区免费观看| 中国国产av一级| 丝袜脚勾引网站| 又爽又黄a免费视频| 十八禁网站网址无遮挡 | 久久久久久久久久人人人人人人| 亚洲精品久久久久久婷婷小说| 各种免费的搞黄视频| 91精品伊人久久大香线蕉| 韩国高清视频一区二区三区| 国产日韩欧美在线精品| 看十八女毛片水多多多| 亚洲欧美精品专区久久| 精品午夜福利在线看| videossex国产| 一级av片app| 亚洲国产毛片av蜜桃av| 久久久久国产网址| 在线天堂最新版资源| 国产女主播在线喷水免费视频网站| 久久精品国产亚洲av涩爱| 在线观看免费视频网站a站| 免费人成在线观看视频色| 另类亚洲欧美激情| 亚洲成人一二三区av| 成年人午夜在线观看视频| 亚洲精品久久午夜乱码| 又粗又硬又长又爽又黄的视频| 日韩av免费高清视频| 最近2019中文字幕mv第一页| 网址你懂的国产日韩在线| 丝袜喷水一区| 高清日韩中文字幕在线| 精品久久久久久电影网| 少妇人妻久久综合中文| 国产亚洲欧美精品永久| 欧美日韩视频高清一区二区三区二| 国产亚洲最大av| 亚洲国产av新网站| 午夜福利高清视频| 天天躁夜夜躁狠狠久久av| 夜夜看夜夜爽夜夜摸| 国产在线免费精品| 国产午夜精品一二区理论片| 下体分泌物呈黄色| 日韩不卡一区二区三区视频在线| 九草在线视频观看| 少妇精品久久久久久久| 人人妻人人添人人爽欧美一区卜 | 能在线免费看毛片的网站| 成人影院久久| 在线天堂最新版资源| 丝瓜视频免费看黄片| 夜夜骑夜夜射夜夜干| 亚洲,欧美,日韩| videos熟女内射| 大香蕉97超碰在线| av国产精品久久久久影院| 久久女婷五月综合色啪小说| 人人妻人人看人人澡| 啦啦啦在线观看免费高清www| 欧美精品人与动牲交sv欧美| 久久精品国产亚洲av涩爱| 精品亚洲成国产av| 三级国产精品片| 亚洲va在线va天堂va国产| 国产精品女同一区二区软件| 精品午夜福利在线看| 亚洲精品日韩av片在线观看| h日本视频在线播放| 免费看不卡的av| 国产精品麻豆人妻色哟哟久久| 亚洲图色成人| 少妇精品久久久久久久| 欧美日韩亚洲高清精品| 亚洲三级黄色毛片| 人人妻人人添人人爽欧美一区卜 | av黄色大香蕉| 肉色欧美久久久久久久蜜桃| 国产精品久久久久久av不卡| 欧美丝袜亚洲另类| 精品国产乱码久久久久久小说| 久久久国产一区二区| 午夜激情久久久久久久| 高清午夜精品一区二区三区| 国产成人aa在线观看| 一二三四中文在线观看免费高清| 下体分泌物呈黄色| 街头女战士在线观看网站| 内地一区二区视频在线| 欧美成人精品欧美一级黄| 精品国产三级普通话版| 欧美高清成人免费视频www| 久久97久久精品| 欧美精品一区二区免费开放| 欧美xxⅹ黑人| 国产在线一区二区三区精| 亚洲欧美成人综合另类久久久| 新久久久久国产一级毛片| 国产69精品久久久久777片| 亚洲欧美成人精品一区二区| 免费看光身美女| 久久 成人 亚洲| 少妇精品久久久久久久| 九九爱精品视频在线观看| 韩国av在线不卡| 一级毛片我不卡| 大香蕉97超碰在线| 久久人人爽av亚洲精品天堂 | 黄色视频在线播放观看不卡| 亚洲婷婷狠狠爱综合网| 天堂8中文在线网| 国产精品久久久久久精品古装| 人妻一区二区av| 精华霜和精华液先用哪个| 国产成人免费无遮挡视频| 亚洲av在线观看美女高潮| 久久国产精品大桥未久av | 免费久久久久久久精品成人欧美视频 | 欧美一级a爱片免费观看看| 永久免费av网站大全| 啦啦啦在线观看免费高清www| 在现免费观看毛片| av专区在线播放| 亚洲精品久久久久久婷婷小说| 国产综合精华液| 亚洲av不卡在线观看| 性高湖久久久久久久久免费观看| 日本vs欧美在线观看视频 | 水蜜桃什么品种好| 午夜免费男女啪啪视频观看| 日本av免费视频播放| 91久久精品国产一区二区成人| 日日啪夜夜爽| 在线看a的网站| 亚洲天堂av无毛| 亚洲精品久久午夜乱码| 亚洲av在线观看美女高潮| 全区人妻精品视频| 国产亚洲欧美精品永久| 亚洲av免费高清在线观看| 男女无遮挡免费网站观看| 婷婷色麻豆天堂久久| 天堂8中文在线网| 高清毛片免费看| 亚洲电影在线观看av| 久久久久视频综合| 亚洲欧美一区二区三区国产| 麻豆成人av视频| www.色视频.com| 夜夜骑夜夜射夜夜干| 男女无遮挡免费网站观看| 成人高潮视频无遮挡免费网站| 国产精品一及| 91久久精品国产一区二区成人| 欧美一区二区亚洲| 国产精品99久久99久久久不卡 | 久久久欧美国产精品| 人妻制服诱惑在线中文字幕| 男人舔奶头视频| 欧美日韩在线观看h| 在线观看国产h片| 麻豆精品久久久久久蜜桃| 色5月婷婷丁香| 免费观看a级毛片全部| 嫩草影院入口| 国产精品麻豆人妻色哟哟久久| 亚洲精品aⅴ在线观看| 久久国产亚洲av麻豆专区| 九九爱精品视频在线观看| 国产爱豆传媒在线观看| 国产综合精华液| 乱码一卡2卡4卡精品| 一区二区三区精品91| 热99国产精品久久久久久7| 久久久久久久国产电影| 成人毛片a级毛片在线播放| 少妇裸体淫交视频免费看高清| 九九爱精品视频在线观看| 欧美三级亚洲精品| 深爱激情五月婷婷| 亚洲不卡免费看| 久久久久久久亚洲中文字幕| 91午夜精品亚洲一区二区三区| 亚洲精品国产成人久久av| 欧美高清性xxxxhd video| 日本-黄色视频高清免费观看| 男女边摸边吃奶| 久久99热这里只频精品6学生| 国产久久久一区二区三区| 国产女主播在线喷水免费视频网站| 亚洲av电影在线观看一区二区三区| 国产精品伦人一区二区| 欧美日韩综合久久久久久| 国产男人的电影天堂91| 国产高清国产精品国产三级 | 黄色欧美视频在线观看| 男人舔奶头视频| 男男h啪啪无遮挡| 午夜视频国产福利| 亚洲精品,欧美精品| 亚洲欧美清纯卡通| 亚洲欧美成人精品一区二区| 久久精品久久久久久噜噜老黄| 国产精品一区www在线观看| 国产伦精品一区二区三区四那| 国产精品偷伦视频观看了| 久久 成人 亚洲| 久久精品熟女亚洲av麻豆精品| 日产精品乱码卡一卡2卡三| 国产精品久久久久成人av| kizo精华| 少妇被粗大猛烈的视频| 能在线免费看毛片的网站| 久久精品熟女亚洲av麻豆精品| 免费高清在线观看视频在线观看| 久久人人爽av亚洲精品天堂 | 日本vs欧美在线观看视频 | 国产亚洲精品久久久com| 午夜视频国产福利| 欧美bdsm另类| 久久久久网色| 国产探花极品一区二区| 97超碰精品成人国产| 国产黄色免费在线视频| 久久午夜福利片| 免费看不卡的av| 又大又黄又爽视频免费| 美女cb高潮喷水在线观看| 另类亚洲欧美激情| 国产伦精品一区二区三区视频9| 久久久久精品性色| 伦理电影大哥的女人| 亚洲欧洲日产国产| 久久久久久久久久久丰满| 中文天堂在线官网| 亚洲精品久久午夜乱码| 青春草视频在线免费观看| 视频区图区小说| av不卡在线播放| 日韩成人伦理影院| 中国三级夫妇交换| 国产美女午夜福利| 成人高潮视频无遮挡免费网站| 一区二区av电影网| 精品一区二区三区视频在线| 九草在线视频观看| 中国三级夫妇交换| 日本黄色片子视频| 在线看a的网站| 欧美成人a在线观看| 日日摸夜夜添夜夜添av毛片| 日韩大片免费观看网站| 久热久热在线精品观看| 在线看a的网站| 久久韩国三级中文字幕| 欧美高清成人免费视频www| 一本色道久久久久久精品综合| 中文字幕制服av| 日韩一本色道免费dvd| 亚洲va在线va天堂va国产| 欧美激情极品国产一区二区三区 | 午夜激情福利司机影院| 国产成人精品久久久久久| 91精品伊人久久大香线蕉| 在线精品无人区一区二区三 | 成人午夜精彩视频在线观看| 3wmmmm亚洲av在线观看| 韩国高清视频一区二区三区| 精品人妻偷拍中文字幕| 免费观看的影片在线观看| .国产精品久久| 国产高清有码在线观看视频| 日韩在线高清观看一区二区三区| 一级片'在线观看视频| 久久精品国产鲁丝片午夜精品| 亚洲熟女精品中文字幕| 在线免费观看不下载黄p国产| 全区人妻精品视频| 天天躁日日操中文字幕| 免费看光身美女| 深爱激情五月婷婷| 午夜免费观看性视频| 亚洲一级一片aⅴ在线观看| 欧美 日韩 精品 国产| 男女边摸边吃奶| 婷婷色综合www| 国产午夜精品一二区理论片| 日韩大片免费观看网站| 晚上一个人看的免费电影| 永久免费av网站大全| 嫩草影院入口| 人妻一区二区av| 亚洲内射少妇av| 亚洲图色成人| 亚洲真实伦在线观看| 热99国产精品久久久久久7| 国产在线免费精品| 久久ye,这里只有精品| 国产日韩欧美在线精品| 在线观看一区二区三区| 秋霞在线观看毛片| 最近中文字幕2019免费版| 狂野欧美激情性xxxx在线观看| 国产成人a区在线观看| 男女下面进入的视频免费午夜| 久久人人爽人人片av| 你懂的网址亚洲精品在线观看| 一二三四中文在线观看免费高清| 亚洲国产精品999| 一本色道久久久久久精品综合| 美女视频免费永久观看网站| 一级毛片黄色毛片免费观看视频| 青青草视频在线视频观看| 精品一品国产午夜福利视频| 成人午夜精彩视频在线观看| 亚洲怡红院男人天堂| 免费在线观看成人毛片| h视频一区二区三区| 国产精品无大码| 男人和女人高潮做爰伦理| 人人妻人人澡人人爽人人夜夜| 一级毛片电影观看| 国产一区有黄有色的免费视频| 成人亚洲精品一区在线观看 | 国产中年淑女户外野战色| 肉色欧美久久久久久久蜜桃| 黑人猛操日本美女一级片| 国产高清三级在线| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品456在线播放app| 亚洲av中文av极速乱| 一区二区三区乱码不卡18| 女性生殖器流出的白浆| 国产综合精华液| 国产av一区二区精品久久 | 国产av国产精品国产| 人妻 亚洲 视频| 亚洲怡红院男人天堂| 水蜜桃什么品种好| 国产av码专区亚洲av| 深爱激情五月婷婷| 又黄又爽又刺激的免费视频.| 午夜福利高清视频| 国内精品宾馆在线| 久久久久国产网址| 天堂8中文在线网| 午夜免费男女啪啪视频观看| 大片电影免费在线观看免费| 国产深夜福利视频在线观看| 99精国产麻豆久久婷婷| 美女xxoo啪啪120秒动态图| www.av在线官网国产| 卡戴珊不雅视频在线播放| av.在线天堂| 久久久久精品性色| 精品人妻视频免费看| 亚洲av在线观看美女高潮| 日韩中文字幕视频在线看片 | 国产综合精华液| 三级经典国产精品| 男人和女人高潮做爰伦理| 这个男人来自地球电影免费观看 | 亚洲四区av| 男的添女的下面高潮视频| 日本黄色片子视频| 久久久成人免费电影| 日韩电影二区| 青青草视频在线视频观看| 亚洲经典国产精华液单| 国产老妇伦熟女老妇高清| 自拍偷自拍亚洲精品老妇| 熟妇人妻不卡中文字幕| 大码成人一级视频| 国产又色又爽无遮挡免| 午夜福利视频精品| 大陆偷拍与自拍| 精品人妻熟女av久视频| 日本午夜av视频| 久久精品国产鲁丝片午夜精品| 高清av免费在线| 伦精品一区二区三区| 91精品伊人久久大香线蕉| 大话2 男鬼变身卡| 热re99久久精品国产66热6| 一区二区av电影网| av专区在线播放| 嫩草影院新地址| 国产有黄有色有爽视频| 久久人人爽人人片av| 日韩精品有码人妻一区| 美女中出高潮动态图| 国产综合精华液| 美女脱内裤让男人舔精品视频| 国产成人aa在线观看| 日韩中字成人| 精品一区二区三卡| 久久久久久久精品精品| 国产熟女欧美一区二区| 国产精品久久久久久精品电影小说 | 亚洲精品国产成人久久av| 岛国毛片在线播放| 亚洲精品日本国产第一区| 国产一区二区三区av在线| 乱码一卡2卡4卡精品| 激情五月婷婷亚洲| 成人免费观看视频高清| 亚洲国产色片| av在线观看视频网站免费| 亚洲国产精品国产精品| 亚洲国产欧美人成| 亚洲国产日韩一区二区| 五月天丁香电影| 欧美日韩视频精品一区| 免费少妇av软件| 观看美女的网站| 肉色欧美久久久久久久蜜桃| 性色av一级| 中国三级夫妇交换| 国产成人一区二区在线| 夜夜骑夜夜射夜夜干| 蜜臀久久99精品久久宅男| 久久久久久久久久久丰满| 97在线视频观看| 精品酒店卫生间| 国产精品久久久久久精品电影小说 | 一区二区三区乱码不卡18| freevideosex欧美| 新久久久久国产一级毛片| 狂野欧美激情性xxxx在线观看| 亚洲经典国产精华液单| 最近的中文字幕免费完整| 搡女人真爽免费视频火全软件| 美女中出高潮动态图| 亚洲,一卡二卡三卡| 1000部很黄的大片| 超碰97精品在线观看| 日韩三级伦理在线观看| 一个人看视频在线观看www免费| 最后的刺客免费高清国语| 午夜日本视频在线| 亚洲av不卡在线观看| 免费久久久久久久精品成人欧美视频 | 午夜日本视频在线| 精品亚洲乱码少妇综合久久| 狂野欧美激情性xxxx在线观看| 久久久久久久久久人人人人人人| 黄色视频在线播放观看不卡| 一区二区av电影网| 午夜免费男女啪啪视频观看| 能在线免费看毛片的网站| 免费人妻精品一区二区三区视频| av黄色大香蕉| 免费大片18禁| 身体一侧抽搐| 精品99又大又爽又粗少妇毛片| 免费av中文字幕在线| av天堂中文字幕网| 最近2019中文字幕mv第一页| 精品久久久久久久久亚洲| av在线老鸭窝| av国产精品久久久久影院| 欧美精品人与动牲交sv欧美| 亚洲图色成人| 青春草亚洲视频在线观看| 亚洲电影在线观看av| 久热久热在线精品观看| 精品久久久久久久久av| 欧美最新免费一区二区三区| 麻豆精品久久久久久蜜桃| 爱豆传媒免费全集在线观看| 人妻制服诱惑在线中文字幕| 国产黄色视频一区二区在线观看| 色婷婷av一区二区三区视频| 国产毛片在线视频| 一本久久精品| 日本午夜av视频| 亚洲经典国产精华液单| 欧美精品亚洲一区二区| 亚洲国产精品专区欧美| 欧美人与善性xxx| 亚洲国产色片| 国产伦精品一区二区三区视频9| 在线播放无遮挡| 久久国内精品自在自线图片| 3wmmmm亚洲av在线观看| av视频免费观看在线观看| 久久午夜福利片| 欧美精品一区二区免费开放| 大又大粗又爽又黄少妇毛片口| 久久国产亚洲av麻豆专区| 这个男人来自地球电影免费观看 | 日韩一区二区三区影片| 国产欧美另类精品又又久久亚洲欧美| 久久久久国产网址| 免费黄色在线免费观看| 18禁裸乳无遮挡动漫免费视频| 91精品一卡2卡3卡4卡| 最近手机中文字幕大全| 久久国产乱子免费精品| a级一级毛片免费在线观看| 一区二区三区免费毛片| 亚洲欧美日韩无卡精品| 丝袜喷水一区| 啦啦啦视频在线资源免费观看| 这个男人来自地球电影免费观看 | 男人狂女人下面高潮的视频| 亚洲欧洲日产国产| 在线天堂最新版资源|