• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Revisiting the benchmark problem of starting control of combustion engines

    2019-05-08 03:55:00JiangyanZHANGZhenhuiXUJinwuGAO
    Control Theory and Technology 2019年2期

    Jiangyan ZHANG , Zhenhui XU , Jinwu GAO

    1.State Key Laboratory of Automotive Simulation and Control,Changchun Jilin 130025,China;

    2.Department of Control Science and Engineering,Jilin University,Changchun Jilin 130025,China;

    3.College of Mechanical and Electronic Engineering,Dalian Minzu University,Dalian Liaoning 116600,China;

    4.Department of Engineering and Applied Sciences,Sophia University,Tokyo,102-8554,Japan

    Abstract Starting of combustion engines is a typical transient operating mode that has significant influence to the engine performance.Due to the distinct variations in the pathes of air intake and fuel injection,the model of the engine system contains considerable uncertain parameters.To search effective control schemes that guarantee desired performance,engine starting control is proposed as a benchmark challenge problem.As a challenging result,a model-based control scheme is developed perviously.In this work,the benchmark problem is revisited and a modification for the fuel injection path control of the previous work is proposed by integrating a time sequence regressive based parameter tuning strategy.Validation by the benchmark problem simulator shows that although the new strategy has simple structure, similar control performance is obtained. Especially, the new strategy has potential extensibility with learning based methods to further improve the performance of the benchmark problem on engine starting control.

    Keywords: Combustion engine,starting control,transient performance,benchmark challenging

    1 Introduction

    The SICE benchmark problem on starting control of combustion engine is proposed by the research committee on advanced engine powertrain control theory of Society of Instrument and Control Engineers (SICE)of Japan [1]. The challenging problem is motivated by automotive industry, and is formulated by industrialacademic collaboration. During the last ten years, several challenging results have been reported from both sides of academic and industrial community as reported in the papers[2-7].Meanwhile,the technology of quick starting control which is targeted by the benchmark problem has been widely applied to the production engines with the conception such as idling stop, fuel cutting,especially mode switching in hybrid electric powertrain[8,9]where the combustion engine is stopped and restarted frequently. However, it is still an open challenging issue to starting a combustion engine with high performance.

    The most challenge in starting of gasoline engine is the controls for the air path and fuel path,since the dynamics of the air intake path and the fuel injection path are dramatically changed during the first a few combustion cycles.For example,the intake manifold pressure is normally high during the cranking period before getting the first firing in cylinder. In this case, the air charge is much over than the required volume, and as a result,it will lead to over torque generation that drives the crank to higher overshoot. Moreover, the wall-wetting phenomenon causes cylinder-to-cylinder and cycle-tocycle variation in the fuel mass injected to individual cylinders. Therefore, it is difficult to handle the fuel injection mass during the first a few cycles. In the result in[7]presented by the first author of this paper,an openloop observer-based air charge mass estimation method is proposed and with the estimation, the fuel injection is decided individually where the fuel injection mass of each cylinder is generated by an inverse-dynamicsbased prediction.It should be noted that this approach is in principle a model-depended approach. However,obtaining a model of air intake path with higher accuracy is a difficult task,and estimation provided by open-loop observer depends on the model accuracy.

    In this paper,we revisit this challenging problem.The aim of this work is to simplify the fuel path control design of the proposed approach in [7] by removing the open-loop observer. Instead of the observer-based control law, an autoregressive model with feedforward of air mass flow is proposed. Top dead center (TDC)-based and cycle-based multi-sampling rates are used for the time sequence regressive model. It allows to use learning algorithm for the regressive model parameters.Combining with the control loops for the ignition and the throttle opening, the modified control scheme is validated with the simulator provided by the SICE benchmark problem[10,11].

    2 Brief review of the benchmark problem

    The benchmark problem on starting control considers a V-type four-stroke spark ignition (SI) engine with six cylinders as sketched in Fig.1 where only one cylinder is plotted for simplicity.

    Fig.1 Schematic of engine system.

    When the engine starts to provide driving torque for a vehicle, it relies on an initial rotational speed of the crankshaft performed by the equipped starting motor.Then, according to the commands from the electronic control unit(ECU)of the engine,the starting motor is cut off and each cylinder starts to generate driving torque serially acted at the crankshaft. The rotational speed of the crankshaft is the so-called engine speed which is concerned at this work.The main purpose of the engine starting control is to let the engine speed be quickly and smoothly stable at a desired value.The performance of the starting speed is determined by the proper control of the driving torque which is generated by the combustion of the air-fuel mixture in each cylinder.

    During the intake stroke,the air intake into the cylinders is through the air path that consists of the throttle valve, the intake manifold, intake runner and the intake valve. For fuel injection, the engine system uses port injection, hence the fuel path of each cylinder possesses the wall-wetting phenomenon.Then,in each cylinder, the air-fuel mixture is ignited by the spark at the MBT(minimum spark advance(SA)for best torque)of the compression stroke. The generated energy by combustion is transferred to be the driving torque at the crankshaft due to the movement of the piston during the power stroke.Finally,the exhaust stroke follows and forms the emission of the vehicle.Moreover,for the engine with six cylinders,one cycle is completed in 720°crank angle θ,and the TDC timing interval of each cylinder is 120°.In view of the above facts,the actuators for the engine starting control include the throttle opening uth,the individual fuel injection ufiof each cylinder and the spark timing which is usually called as SA usiof each cylinder. That is, there are 13 control input variables,and the engine speed w is the output as shown in Fig.2.In addition, the air mass flow rate ˙mipassing through the throttle valve and the θ are measurable for control law development.

    Fig.2 System inputs and outputs.

    The constraint conditions for starting the engine in the benchmark problem and the design specifications for the starting engine speed are as shown in Table 1.

    For the above formulated starting control problem,the challenging points lie in the proper management of the in-cylinder A/F during the first a few cycles for successful ignition, since the intake manifold has a higher pressure than the value at steady state, and the wallwetting phenomenon of each cylinder has distinct variance after the first combustion event. Moreover, to get the desired starting speed performance,the torque generation management by the coordination control of the 13 actuators is significant.

    Evaluation of the proposed control scheme should use the provided simulator by the SICE benchmark problem.The simulator is constructed in Matlab/Simulink and is available from the attached CD ROM of the book[10].

    Table 1 Problem formulation.

    Finally, in the previous work [7], a control scheme that includes a fuel injection control block and control blocks for the throttle opening and SA, respectively, is proposed for successful combustion and starting speed regulation,shown in Fig.3.Note that the fuel path control is constructed with an open-loop observer and the inverse dynamics. In this work, the fuel path control block is redesigned by replacing the observer with a learning-based control law.

    3 Modif ied approach

    In this section,a new fuel control law is designed and combined with the control laws of the SA and throttle opening, to solve the benchmark problem. In particular, the redesigning of the fuel injection control law includes two steps: first, propose a control law based on autoregressive model with feedforward of air mass;then identify the model parameters in the controller by auto-tuning algorithm.

    3.1 Fuel path control law

    Fig.3 Block diagram of previous proposed control scheme in[7].

    To decide the fuel injection mass for each cylinder,especially, during the transient response period at the starting operation,the air charge estimation of individual cylinder is a bottleneck due to the dramatic variation of the air state in the intake manifold and the wall-wetting phenomenon.Due to the constraint on A/F of the benchmark problem, the manifold state and wall-wetting for the fuel path control design are the main factors for determining the air and the fuel mass in individual cylinders.In the following,an autoregressive model of the air path is constructed first to realize the air charge estimation. With the air charge estimation, the fuel injection control law for each cylinder can be designed based on the fuel path wall-wetting dynamical model.

    It is known that the behavior of the air path can be characterised by the following equations:

    where pmdenotes the intake manifold pressure, c1and c2are composed coefficients with time-varying physical parameters, and ˙modenotes the air mass flow rate leaving the manifold into the cylinders. The fuel path is modeled as the well-known wall-wetting model as follows:

    where mfiand mfcirepresent the fuel mass entering the intake port per induction stroke and the fuel mass injected into each cylinder,respectively,and ? and χ represent the fraction of fuel deposited on the inlet port and the inlet port time constant,respectively.

    Since the individual fuel injections should be decided per 120°at each TDC timing, the air-path model is discretized with TDC-based sampling period with ?tdc(l)=2π/(3ω(l))where l(=1,2,...)denotes the TDCbased sampling sequence (Note that l = 1 means the TDC timing of the cylinder that is first ignited).Then the model(1)is approximated by the forward differential as follows:

    Furthermore,since the exact air charge for each cylinder can only be obtained after the whole intake stroke,while the fuel injection should be decided at the corresponding TDC timing,an estimation for the air charge of each cylinder is constructed by

    where ?mcylrepresents the air charge into each cylinder.Then, taking the relation (1b) and the equation (3) into account obtains the time serial model of the air charge estimation as follows:

    where a1=(2π/3)2c1·c2and a2=1-c1c22π/3.It should be noted that this regressive algorithm is deduced based on the intake manifold model(1),while no more parameters of the model (1) and pressure measurement are needed, since parameter of auto-regressive term and the external control term, a1and a2, might be directly tuned combining with the following fuel injection mass command.

    With the air charge estimation(5),for the i th cylinder,the fuel injection during a cycle can be calculated as

    where λdrepresents the desired A/F and k denotes the cycle-based sampling sequence.For the engine with six cylinders,it can be deduced that the relation between k and l is k = f ix((l-1)/6)+1,where“f ix”is the Matlab function that rounds the element l-1 to the nearest integer towards zero.Then,in order to decide the individual fuel injection command for each cylinder,the fuel path model(2)is discretized with cycle-based sampling rate as follows:

    where i = 1,...,6.Finally,the fuel control law for individual fuel injection command can be obtained from the inverse dynamics of the model(7),

    where

    The above proposed control scheme for fuel injection is summarized as Fig.4.

    Fig.4 Structure of the fuel path control system.

    3.2 Parameter-tuning algorithm

    As a result, the fuel injection mass is decided by the algorithms(5)and(8)with two sampling rates.To guarantee successful firing and reject larger overshoot of starting speed response, the fuel injection mass at the first cycle is directly tuned with the coefficients of the algorithms(5)and(8).The evaluating index for the tuning is the overshoot and the regulating time.

    For tuning the fuel injection mass of the first cycle,the only index is getting firing successful. Due to the initial position of the crank angle is uncertain, it is not possible to calculate exactly the fuel injection mass for the cylinder which gets the first firing and it is unknown which cylinder gets the first firing. Monitoring the first firing and followed by a few firing events in the other cylinders will lead to the decision of the fuel injection mass for the first cycle.Then,during a starting process,online tuning the parameters of algorithm(5)and(8)can be focused on stable combustion in the cylinders and rejection undesired over torque generation as possible.

    It should be noted that tuning all parameters is not easy by online during the stating process,however,primary tuning a1and a2, and secondary tuning ? should be a feasible way to avoid complexity. In this paper, ? is used as the tuning parameter, since this physical parameter directly influences how much fuel is injected immediately into the current cylinder.As shown by the equation (8), increasing the value of ? can cause more fuel mass injected into the current cylinder during the first a few cycles and also increase the deposited fuel in the wall which is inlet to the cylinder with delay.In this case,this delayed fuel injection may cause much speed regulation time.Based-on this observation,the logic for fuel injection tuning can be described as shown in Fig.5.It should be noted from Fig.5 that the parameter tuning is by online during a starting process. In this work,the error of the speed response to the speed reference,denoted as δ:=|ω-ωref|,is taken as the tuning index.

    Fig.5 Flowchart of auto-tuning algorithm.

    Finally, it should be noted that the proposed autotuning algorithm is the first step for the control design.The flow chart shown in Fig.5 suggests that the tuning process might be conducted by an extreme seeking or learning algorithm by minimizing a cost function J,such as

    where T denotes a given finite time variable.

    4 Simulation validation

    Combining the control laws for the throttle opening and the SA in the previous work [7], the redesigned control scheme is evaluated by the provided simulator from the SICE benchmark problem.The simulator is constructed mainly by a 46th-order model which is oriented to industrial development. More detail introduction of the inside on the simulator is referred to the[1,10].

    In the validation simulation, the reference starting speed is set as ωref= 750 r·min-1. The open-loop observer based fuel path control loop in the control scheme presented in [7] is replaced by the new control algorithms(5)and(8)as shown in Fig.6.

    Fig.6 Block diagram of modified control scheme.

    With the tuning policy in Section 3.2,the fuel injection control law is tuned as follows:

    1)During the first cycle, the fuel injection command is delivered serially with an identical value, while from the second cycle, quite different injection commands are applied to the fuel path of each cylinder;

    2) the parameters of algorithm (5) is chosen as a1=0.1089 and a2=0.752×10-8;and

    3)the parameters of control law(8)are set as χ=0.01 and ?0=0.13.

    Figs.7-9 show the simulation result. The air charge estimation by the control law (5) is as shown in Fig.7,and Fig.8 provides the individual fuel injection commands by the controller (8) and the responses of the fuel path in terms of the in-cylinder A/F.Especially,from the starting speed response curves shown in Fig.9 with three different ? values,it can be observed that the influence of the parameter ? to the regulation performance.Bigger ? leads to a longer regulation time as mentioned above.

    Fig.7 Air charge estimation by the control law(5)(?=0.1).

    Fig.8 Fuel injection and the individual A/F curves(?=0.1).

    Fig.9 Starting speed response.

    5 Conclusions

    During the starting operation, thermal environment and dynamical characteristics of the air path and the fuel injection path of gasoline engine change dramatically,especially,before and after a cylinder getting successful firing. Furthermore, randomly stopped piston position causes the initial position of the crank angle uncertain and the stochastically getting firing of in-cylinder gas makes modeling the behavior of engine starting difficult.This paper recalled the model-based design approach for the SICE benchmark problem of engine starting control.Mainly,a time sequence regressive based fuel injection decision algorithm is proposed to replace the fuel injection control loop of the previous scheme.Combining with the parameter tunning procedure, the validation with the SICE benchmark simulator demonstrates that a solution that guarantees the response performance closed to the previous solution is achieved. The benefit of the modified scheme is that the control design is independent on the system model, and the control parameter tuning policy suggests to use learning or extremal seeking methods.This issue will be remained as the future challenge.

    极品教师在线视频| 国产国拍精品亚洲av在线观看| 精品国产露脸久久av麻豆| 国产精品久久久久久久电影| 久久女婷五月综合色啪小说| 精品视频人人做人人爽| 国产69精品久久久久777片| 中文乱码字字幕精品一区二区三区| 日韩大片免费观看网站| 成人国产麻豆网| 午夜福利网站1000一区二区三区| 午夜福利在线在线| 精品久久久久久电影网| 国产成人精品久久久久久| 三级经典国产精品| 欧美最新免费一区二区三区| 亚洲色图av天堂| 人妻 亚洲 视频| 九九爱精品视频在线观看| 亚洲精品一区蜜桃| 国产精品麻豆人妻色哟哟久久| 色视频www国产| 国产男女内射视频| av播播在线观看一区| 国产精品成人在线| 精华霜和精华液先用哪个| 亚洲无线观看免费| 亚洲无线观看免费| 国产在线免费精品| 国产伦理片在线播放av一区| 久久精品国产亚洲av天美| 五月天丁香电影| videossex国产| 性色avwww在线观看| av卡一久久| 搡老乐熟女国产| av在线播放精品| 亚洲欧美清纯卡通| 亚洲欧美日韩另类电影网站 | 久久久a久久爽久久v久久| 建设人人有责人人尽责人人享有的 | 超碰av人人做人人爽久久| 十分钟在线观看高清视频www | 精品人妻视频免费看| 插逼视频在线观看| 亚洲欧美成人精品一区二区| 97超视频在线观看视频| 亚洲美女黄色视频免费看| 国产午夜精品久久久久久一区二区三区| 亚洲欧美成人精品一区二区| 九草在线视频观看| kizo精华| 最近中文字幕2019免费版| 日本wwww免费看| 91久久精品国产一区二区成人| 国产乱来视频区| 亚洲丝袜综合中文字幕| 国产亚洲5aaaaa淫片| 黑人猛操日本美女一级片| 99久国产av精品国产电影| 最近最新中文字幕大全电影3| 熟女电影av网| 国产精品欧美亚洲77777| 狂野欧美激情性bbbbbb| 青春草视频在线免费观看| 亚洲欧美一区二区三区黑人 | 王馨瑶露胸无遮挡在线观看| 精品99又大又爽又粗少妇毛片| 亚洲综合精品二区| 成人18禁高潮啪啪吃奶动态图 | 精品一区二区三卡| 日韩视频在线欧美| 又黄又爽又刺激的免费视频.| 大又大粗又爽又黄少妇毛片口| 在线亚洲精品国产二区图片欧美 | 波野结衣二区三区在线| 国产精品久久久久久av不卡| 欧美xxⅹ黑人| 国产熟女欧美一区二区| 日本av免费视频播放| 少妇的逼好多水| 亚洲精品日本国产第一区| 成人美女网站在线观看视频| 久久久亚洲精品成人影院| 免费av中文字幕在线| 狂野欧美激情性bbbbbb| 欧美+日韩+精品| 国产黄色免费在线视频| a级毛片免费高清观看在线播放| 最近2019中文字幕mv第一页| 小蜜桃在线观看免费完整版高清| 亚洲欧美日韩无卡精品| 久久6这里有精品| 免费看av在线观看网站| h日本视频在线播放| 一区在线观看完整版| 嫩草影院新地址| 欧美成人精品欧美一级黄| 伦精品一区二区三区| 精品久久久久久久久亚洲| 国产精品久久久久久av不卡| 国产淫语在线视频| 久久99精品国语久久久| 久久午夜福利片| 久久久久久久国产电影| 在线天堂最新版资源| 中文精品一卡2卡3卡4更新| 国产精品嫩草影院av在线观看| 国产色婷婷99| av网站免费在线观看视频| 国产精品免费大片| 超碰97精品在线观看| 少妇高潮的动态图| 黑人高潮一二区| 亚洲av免费高清在线观看| 最近最新中文字幕大全电影3| 在线看a的网站| 男女边吃奶边做爰视频| 狠狠精品人妻久久久久久综合| 欧美激情极品国产一区二区三区 | 嘟嘟电影网在线观看| 亚洲色图av天堂| 中国三级夫妇交换| 最近的中文字幕免费完整| kizo精华| 99久久中文字幕三级久久日本| 一本久久精品| 久久这里有精品视频免费| 亚洲av国产av综合av卡| 嫩草影院新地址| 亚洲国产精品国产精品| 在线观看av片永久免费下载| 哪个播放器可以免费观看大片| 欧美另类一区| 欧美xxxx性猛交bbbb| av播播在线观看一区| 免费高清在线观看视频在线观看| 精品一区二区免费观看| 国产黄频视频在线观看| 国产精品无大码| 日韩国内少妇激情av| 国产成人a区在线观看| 久久久欧美国产精品| 国产爽快片一区二区三区| 亚洲成人一二三区av| 欧美+日韩+精品| 制服丝袜香蕉在线| 欧美激情极品国产一区二区三区 | 亚洲av中文字字幕乱码综合| 国产高清三级在线| 国产成人精品福利久久| 成人亚洲欧美一区二区av| av天堂中文字幕网| 欧美精品人与动牲交sv欧美| 中文字幕av成人在线电影| av国产免费在线观看| freevideosex欧美| 色吧在线观看| 国产亚洲午夜精品一区二区久久| 亚洲欧美清纯卡通| 妹子高潮喷水视频| 香蕉精品网在线| 国产成人一区二区在线| 777米奇影视久久| 亚洲欧美日韩另类电影网站 | 亚洲欧洲日产国产| 亚洲精品456在线播放app| 成人亚洲精品一区在线观看 | 成人二区视频| 大话2 男鬼变身卡| 又粗又硬又长又爽又黄的视频| 一级黄片播放器| 少妇高潮的动态图| 久久久国产一区二区| 欧美xxxx性猛交bbbb| 大香蕉久久网| 亚洲欧洲日产国产| 在线亚洲精品国产二区图片欧美 | 国产精品.久久久| 亚洲av福利一区| 男人和女人高潮做爰伦理| 80岁老熟妇乱子伦牲交| 欧美bdsm另类| 国语对白做爰xxxⅹ性视频网站| 国产一区有黄有色的免费视频| 我的老师免费观看完整版| av一本久久久久| 超碰97精品在线观看| 全区人妻精品视频| 青青草视频在线视频观看| 久久久久久久国产电影| 国产精品国产三级专区第一集| 欧美日韩视频高清一区二区三区二| 精品熟女少妇av免费看| 91aial.com中文字幕在线观看| 日韩欧美精品免费久久| 久久毛片免费看一区二区三区| 欧美日韩综合久久久久久| 亚洲av男天堂| 下体分泌物呈黄色| 亚洲不卡免费看| 最近中文字幕高清免费大全6| 精品国产三级普通话版| 亚洲av男天堂| 国产成人aa在线观看| 亚洲精品乱码久久久v下载方式| 欧美高清性xxxxhd video| 日韩电影二区| 小蜜桃在线观看免费完整版高清| 只有这里有精品99| 夫妻午夜视频| 天堂俺去俺来也www色官网| 午夜免费观看性视频| 高清午夜精品一区二区三区| 又大又黄又爽视频免费| 91精品国产国语对白视频| 精品人妻熟女av久视频| 国产精品久久久久久精品古装| 亚洲av成人精品一区久久| 国产午夜精品一二区理论片| 黄色日韩在线| 欧美3d第一页| 免费人成在线观看视频色| 亚洲三级黄色毛片| 联通29元200g的流量卡| 一个人免费看片子| 国产精品久久久久久久久免| 欧美高清成人免费视频www| 免费观看av网站的网址| av免费观看日本| 日本av手机在线免费观看| 一区二区三区乱码不卡18| 国产老妇伦熟女老妇高清| 欧美3d第一页| 九九爱精品视频在线观看| 大陆偷拍与自拍| 亚洲激情五月婷婷啪啪| 精品久久久精品久久久| 在线观看一区二区三区激情| 美女脱内裤让男人舔精品视频| 国产亚洲5aaaaa淫片| 成人国产麻豆网| 18禁裸乳无遮挡免费网站照片| 国产在线一区二区三区精| 成人免费观看视频高清| 免费观看a级毛片全部| 黄片wwwwww| 亚洲av日韩在线播放| 女性被躁到高潮视频| 欧美成人一区二区免费高清观看| 国产精品伦人一区二区| 国产欧美亚洲国产| 日日撸夜夜添| 欧美另类一区| 国产精品蜜桃在线观看| 夫妻性生交免费视频一级片| 日本av免费视频播放| 欧美另类一区| 国产亚洲一区二区精品| 老师上课跳d突然被开到最大视频| 精品熟女少妇av免费看| xxx大片免费视频| 少妇人妻精品综合一区二区| 国产亚洲av片在线观看秒播厂| 久久人妻熟女aⅴ| 这个男人来自地球电影免费观看 | 在现免费观看毛片| 成人一区二区视频在线观看| 亚洲久久久国产精品| av在线观看视频网站免费| 在线观看国产h片| 国产精品蜜桃在线观看| 一个人看的www免费观看视频| 成人黄色视频免费在线看| 久久午夜福利片| 国产淫语在线视频| 日产精品乱码卡一卡2卡三| 久久国产精品男人的天堂亚洲 | 水蜜桃什么品种好| 尤物成人国产欧美一区二区三区| 亚洲最大成人中文| 99热网站在线观看| 亚洲欧美一区二区三区国产| 狠狠精品人妻久久久久久综合| 美女中出高潮动态图| 美女脱内裤让男人舔精品视频| xxx大片免费视频| 日韩亚洲欧美综合| 久久这里有精品视频免费| 中文字幕av成人在线电影| 亚洲精品国产成人久久av| 狂野欧美激情性bbbbbb| 日韩成人伦理影院| 国产精品偷伦视频观看了| 欧美zozozo另类| videos熟女内射| 欧美精品人与动牲交sv欧美| 观看美女的网站| 欧美 日韩 精品 国产| 99视频精品全部免费 在线| av又黄又爽大尺度在线免费看| 免费黄色在线免费观看| 国产精品一区二区在线观看99| 综合色丁香网| 中国美白少妇内射xxxbb| 久久人人爽人人爽人人片va| 成人综合一区亚洲| 一本色道久久久久久精品综合| 在线亚洲精品国产二区图片欧美 | 色网站视频免费| 国产亚洲5aaaaa淫片| 国产成人a∨麻豆精品| 亚洲无线观看免费| 深爱激情五月婷婷| 在线播放无遮挡| 久久久国产一区二区| 97在线人人人人妻| 七月丁香在线播放| 精品亚洲乱码少妇综合久久| 少妇人妻 视频| 晚上一个人看的免费电影| 亚洲av国产av综合av卡| 国产中年淑女户外野战色| 国产成人精品久久久久久| 18禁在线无遮挡免费观看视频| 成人高潮视频无遮挡免费网站| av免费观看日本| 最近手机中文字幕大全| 免费高清在线观看视频在线观看| 国产成人免费观看mmmm| 国产在视频线精品| 国产日韩欧美在线精品| 国产极品天堂在线| 国产免费一区二区三区四区乱码| 欧美97在线视频| 22中文网久久字幕| 18禁在线播放成人免费| videos熟女内射| 欧美精品一区二区免费开放| 黄色怎么调成土黄色| 国产久久久一区二区三区| av在线蜜桃| 久久人人爽av亚洲精品天堂 | 永久免费av网站大全| 一区二区三区四区激情视频| 日日啪夜夜爽| 男女啪啪激烈高潮av片| 亚洲高清免费不卡视频| 蜜桃在线观看..| 九九久久精品国产亚洲av麻豆| 51国产日韩欧美| 国产精品一区二区在线观看99| av一本久久久久| 九九爱精品视频在线观看| 在线观看av片永久免费下载| 各种免费的搞黄视频| 精品亚洲成a人片在线观看 | 精品一区二区三卡| 99久久精品热视频| 狂野欧美激情性bbbbbb| 成人免费观看视频高清| 麻豆国产97在线/欧美| 免费高清在线观看视频在线观看| 街头女战士在线观看网站| 免费大片18禁| 性色av一级| 99精国产麻豆久久婷婷| 久久人人爽人人爽人人片va| 国产一级毛片在线| 久久国产精品大桥未久av | 一级毛片 在线播放| 久久久久国产精品人妻一区二区| 欧美最新免费一区二区三区| 国国产精品蜜臀av免费| 久久久久久人妻| 午夜福利网站1000一区二区三区| 欧美zozozo另类| 日韩欧美一区视频在线观看 | 亚州av有码| 亚洲欧美日韩另类电影网站 | 国产精品欧美亚洲77777| 国产日韩欧美亚洲二区| 黄片wwwwww| 免费在线观看成人毛片| 欧美精品人与动牲交sv欧美| 国内精品宾馆在线| 大陆偷拍与自拍| 中国国产av一级| 黄色欧美视频在线观看| 久久精品人妻少妇| 日韩免费高清中文字幕av| 久久久精品免费免费高清| 亚洲精品日韩在线中文字幕| 午夜激情久久久久久久| av一本久久久久| 全区人妻精品视频| 七月丁香在线播放| 亚洲欧美清纯卡通| 在线精品无人区一区二区三 | 国产精品蜜桃在线观看| 亚洲激情五月婷婷啪啪| 97热精品久久久久久| 91精品一卡2卡3卡4卡| 久久精品久久久久久噜噜老黄| 久久人人爽人人片av| 欧美区成人在线视频| 中国国产av一级| 成人美女网站在线观看视频| 最新中文字幕久久久久| 国产中年淑女户外野战色| 成年美女黄网站色视频大全免费 | 亚洲第一区二区三区不卡| 久久久久久伊人网av| 一级av片app| 免费高清在线观看视频在线观看| 老司机影院成人| 久久久欧美国产精品| 亚洲不卡免费看| 寂寞人妻少妇视频99o| 亚洲av福利一区| 天堂俺去俺来也www色官网| 制服丝袜香蕉在线| 卡戴珊不雅视频在线播放| 91精品一卡2卡3卡4卡| 99久久中文字幕三级久久日本| 嘟嘟电影网在线观看| 亚洲av欧美aⅴ国产| 91精品国产国语对白视频| 国产伦精品一区二区三区四那| 国产精品av视频在线免费观看| 狂野欧美白嫩少妇大欣赏| 欧美xxⅹ黑人| 久久久久久久精品精品| 99久久精品一区二区三区| 亚洲国产欧美在线一区| av黄色大香蕉| 亚洲欧美成人精品一区二区| 久久久国产一区二区| videos熟女内射| 日韩不卡一区二区三区视频在线| 国产69精品久久久久777片| 久久久亚洲精品成人影院| 女性被躁到高潮视频| 熟女电影av网| 国产精品久久久久久av不卡| 亚洲在久久综合| 亚洲国产欧美人成| 国产高清三级在线| 久久久久精品久久久久真实原创| 水蜜桃什么品种好| 欧美老熟妇乱子伦牲交| 少妇熟女欧美另类| 99re6热这里在线精品视频| 国产精品人妻久久久影院| 久久精品国产鲁丝片午夜精品| 黄片wwwwww| 亚洲精品中文字幕在线视频 | 亚洲av成人精品一区久久| 少妇人妻久久综合中文| 亚洲av综合色区一区| 成人毛片a级毛片在线播放| 久久97久久精品| 又黄又爽又刺激的免费视频.| 国产亚洲5aaaaa淫片| av女优亚洲男人天堂| 熟女电影av网| 六月丁香七月| 一个人看视频在线观看www免费| 狂野欧美激情性xxxx在线观看| 日韩一区二区视频免费看| 精品午夜福利在线看| 涩涩av久久男人的天堂| 97在线视频观看| 色婷婷久久久亚洲欧美| 色网站视频免费| 91久久精品国产一区二区成人| 最近中文字幕2019免费版| 简卡轻食公司| 身体一侧抽搐| 美女cb高潮喷水在线观看| 插逼视频在线观看| 国产免费一区二区三区四区乱码| 少妇高潮的动态图| 我要看日韩黄色一级片| av专区在线播放| 国产一区亚洲一区在线观看| 涩涩av久久男人的天堂| 精品一区二区免费观看| 亚洲不卡免费看| 亚洲成人中文字幕在线播放| 欧美丝袜亚洲另类| 国产高潮美女av| 亚洲欧美中文字幕日韩二区| 久久国产精品大桥未久av | 亚洲精品456在线播放app| 日本av免费视频播放| 啦啦啦啦在线视频资源| 国产有黄有色有爽视频| 一区二区三区免费毛片| 免费看光身美女| 久久综合国产亚洲精品| 国产在线男女| 精品久久久久久久久av| 国产成人精品一,二区| 五月玫瑰六月丁香| 99热这里只有是精品50| 爱豆传媒免费全集在线观看| 免费黄频网站在线观看国产| 色吧在线观看| 免费少妇av软件| 国产精品人妻久久久影院| 日韩成人伦理影院| 插阴视频在线观看视频| 日韩欧美 国产精品| 国产精品99久久99久久久不卡 | 亚洲人成网站在线播| 久久99精品国语久久久| 秋霞在线观看毛片| 全区人妻精品视频| 天天躁日日操中文字幕| 国产伦理片在线播放av一区| 超碰av人人做人人爽久久| 久久精品国产亚洲av涩爱| 久久综合国产亚洲精品| 国产成人一区二区在线| 亚洲av电影在线观看一区二区三区| 人人妻人人爽人人添夜夜欢视频 | 亚洲av.av天堂| 特大巨黑吊av在线直播| 国产一区二区在线观看日韩| 特大巨黑吊av在线直播| 少妇丰满av| 亚洲美女搞黄在线观看| 日产精品乱码卡一卡2卡三| 亚洲欧美日韩另类电影网站 | 日韩强制内射视频| 国产午夜精品一二区理论片| 亚洲精品国产色婷婷电影| 国产欧美日韩精品一区二区| 国产视频首页在线观看| 人人妻人人爽人人添夜夜欢视频 | 99热网站在线观看| 国产成人a区在线观看| 亚洲av男天堂| 国产 一区 欧美 日韩| 欧美精品国产亚洲| 一级毛片aaaaaa免费看小| 日本猛色少妇xxxxx猛交久久| 99热这里只有是精品50| 日本vs欧美在线观看视频 | 少妇熟女欧美另类| 亚洲精品亚洲一区二区| 99久久精品国产国产毛片| 免费观看在线日韩| 性色avwww在线观看| 男女免费视频国产| 下体分泌物呈黄色| 亚洲精品视频女| a级毛色黄片| 26uuu在线亚洲综合色| 国产大屁股一区二区在线视频| 精品午夜福利在线看| 日韩欧美一区视频在线观看 | 91精品国产国语对白视频| 黄色日韩在线| 日韩欧美精品免费久久| 黄色日韩在线| 久久 成人 亚洲| 亚洲中文av在线| 久久99热这里只频精品6学生| 国产成人午夜福利电影在线观看| 久久人人爽av亚洲精品天堂 | 久久久精品94久久精品| 欧美激情国产日韩精品一区| 少妇猛男粗大的猛烈进出视频| 欧美日韩一区二区视频在线观看视频在线| 麻豆成人午夜福利视频| 汤姆久久久久久久影院中文字幕| 成年免费大片在线观看| 午夜福利网站1000一区二区三区| 99热6这里只有精品| 欧美日韩视频精品一区| 久久精品国产鲁丝片午夜精品| 丰满人妻一区二区三区视频av| 亚洲人成网站高清观看| 有码 亚洲区| kizo精华| 免费观看性生交大片5| 成人亚洲欧美一区二区av| av不卡在线播放| 日韩一本色道免费dvd| 国产精品伦人一区二区| 亚洲怡红院男人天堂| 在线观看一区二区三区激情| 国产视频首页在线观看| 国产欧美亚洲国产| 春色校园在线视频观看| 免费观看av网站的网址| 免费黄色在线免费观看| 欧美日韩视频精品一区| 精品亚洲成a人片在线观看 | 日韩一区二区视频免费看| 免费大片18禁| av天堂中文字幕网| 人妻少妇偷人精品九色| 免费高清在线观看视频在线观看| 男人狂女人下面高潮的视频| 久久久久久久久大av| 亚洲丝袜综合中文字幕| 成人影院久久| 精品酒店卫生间| 国产亚洲精品久久久com| 男男h啪啪无遮挡| 波野结衣二区三区在线| 欧美精品亚洲一区二区|