• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of coronary bifurcation angle on atherosclerosis

    2019-05-07 04:57:06ZhaomiaoLiuShengweiZhaoYunjieLiFengShenYipengQiQiWang
    Acta Mechanica Sinica 2019年6期

    Zhaomiao Liu · Shengwei Zhao · Yunjie Li · Feng Shen · Yipeng Qi · Qi Wang

    Abstract Hemodynamics plays a crucial role in the development and progression of coronary atherosclerosis, which is prone to occur in branch bifurcation. An individual aortic-coronary artery model and three changed bifurcation angle models are constructed by Mimics and Freeform based on computed tomography angiography. The influence of different coronary bifurcation angles between left main (LM), left anterior descending (LAD), and left circumflex (LCX) on the blood flow field and related hemodynamic parameters are studied. It is shown that a wider bifurcation angle between LAD and LCX can cause a wider low-wall shear stress area, leading to atherosclerosis. Similarly, a decreased angle between LM and LAD is predisposed to prevent atherosclerosis. The results help to better understand the hemodynamic causes of atherosclerosis with various bifurcation angles in coronary arteries and to provide guidance for clinical assessment and prevention.

    Keywords Atherosclerosis · Coronary artery · Bifurcation angle · Hemodynamics · Wall shear stress

    1 Introduction

    Coronary bifurcation lesions account for 15% —20% of percutaneous coronary interventions and are an important component of coronary artery disease [1]. In recent years, studies have increasingly focused on the effects of coronary anatomical features on the development and progression of atherosclerosis, and have shown that the coronary bifurcation angle has an important influence on the formation and distribution of coronary atherosclerotic plaques [2]. Accurate evaluation of the relationship between the coronary bifurcation angle and atherosclerosis is of great clinical significance for the prevention and treatment of coronary heart disease.

    The left main coronary artery bifurcation is the first bifurcation of the left coronary artery [3, 4], which is significantly more important than other bifurcations. A left main bifurcation lesion directly threatens a patient’s life and health [5]. The location of left main lesions can be divided into ostium, midshaft and distal bifurcations, or some combination of these, at least 50% of which are bifurcation disease [3]. The work of Pflederer et al. [5] analyzed the natural distribution of the bifurcation angles by multidetector computed tomography (MDCT) and found average values of 80° ± 27° (left anterior descending (LAD)/left circumflex (LCX)), 46° ± 19° (LAD/first diagonal branch (Diag1)), 48° ± 24° (LCX/first obtuse marginal branch (OM1)), and 53° ± 27° (posterior descending coronar y artery (PDA)/right posterolateral branch (Rpld)), respectively. Because of different measurement methods and samples collected, different sizes of coronary bifurcation angles have been reported, which also indicates the diversity of coronary bifurcation angles.

    At present, coronary heart disease is clinically diagnosed and treated by imaging methods. Computed tomography (CT) coronary angiography with high temporal and spatial resolution [6] can accurately provide coronary anatomical diagnostic information and is widely used. In studies by Konishi et al. [7], Cui et al. [8], Cademartiri et al. [9], and Ryotaro et al. [10], the authors investigated the relationship between coronary anatomy and atherosclerosis from a clinical perspective, which showed that the location of atherosclerotic plaques is not random. Anatomical morphology such as the bifurcation angle, left main length, diameter, and myocardial bridge of the coronary arteries could result in a special blood flow environment in specific areas, where it will increase the potential for atherosclerosis.

    Fig. 1 Processing of different bifurcation models. a Original model obtained by CT data in Mimics (LM: left main, LV: left ventricle, RCA: right ventricle). b Case of changed bifurcation angle model B in Freeform

    Table 1 Four groups of models with different bifurcation angles

    Fig. 2 Sketch of inlet and outlet boundary of aortic-coronary artery model. A: aortic inlet, B: aortic outlet, a: left anterior descending artery, b: septal branch, c: diagonal branch, d: left marginal branch, e: left circumflex branch, f: right coronary branch, g: posterior descending artery, h: right marginal branch

    In addition, Malcolm and Roach [11] conducted dye flow experiments to study glass model bifurcations with different angles and found that the boundary layer separated on lateral branches and increased with the decrease in branch flow, which may be a contributing factor to atherosclerosis. In another work, Chaichana et al. [12] found that there was a disturbance flow pattern in the left coronary artery model with a larger angle. Wall pressure decreased as the fluid flowed from the left main branch to the bifurcation region.

    Fig. 3 Sketch of aortic-coronary arteries models with different bifurcation angles. a Model A (angle A: 90°, angle B: 90°, angle C: 180°), b model B (angle A: 60°, angle B: 120°, angle C: 180°), c model C (angle A: 120°, angle B: 60°, angle C: 180°), d model D (angle A: 120°, angle B: 120°, angle C: 120°)

    Fig. 4 Coupling process of the multiscale model

    Fig. 5 Lumped parameter model. a Heart entrance, b aortic outlet and coronary trunk, c distal coronary artery branch

    A lower wall shear stress gradient existed at the left bifurcation with larger angles. Similarly, Chiastra et al. [13] studied the effect of bifurcation angle on atherosclerosis in normal and narrow cases and found that low time-averaged wall shear stress was located at the ostium of branches. A larger range of low-wall shear stress (WSS) distribution exists in the case of smaller bifurcation angles. High oscillatory shear index (OSI) exposure to different bifurcation angles can be negligible. There was a slight increase in the low WSS area and a significant expansion area of high OSI in narrow cases. The work by Doutel et al. [14] found that a major factor leading to atherosclerosis was the expansion ratio, the relationship between the cross-sectional area of the outflow branches and the cross-sectional area of the trunk. Large areas oflow WSS showed high expansion. In addition, the size of the low WSS region was independent of the ratio of branch diameters.

    Although imaging studies have yielded significant results, the anatomical information of the coronary arteries alone cannot fully reflect the coronary blood flow, and there are some limitations in the effects of hemodynamic parameters on atherosclerosis [15]. Computational fluid dynamics (CFD) [16—18] are used to analyze coronary artery bifurcations. Because of the complex relationship between coronary arteries and the aorta, investigations regarding the relationship between the bifurcation structure and coronary atherosclerosis are still insufficient.

    Therefore, a three-dimensional (3D) individual model of aortic-coronary arteries based on CT angiography is constructed, with three other changed bifurcation angle models. The boundary conditions of numerical simulation are provided by a lumped parameter model. In this paper, the effects of different bifurcation angles on coronary atherosclerosis are studied by hemodynamic parameters [19—21] including blood flow velocity and WSS.

    Fig. 6 a Mass flow rate of inlet and outlet of the aorta in a cardiac cycle. b Mass flow rate of coronary branches in a cardiac cycle

    2 Establishment of individual models

    A CT scan of the heart without coronary stenosis, with 285 images and a thickness of 0.5 mm, is selected as model A (angle A: 90°, angle B: 90°, angle C: 180°). An image of the aortic-coronary-left ventricular model is obtained by setting the segmentation threshold and region growth of the original DICOM file by Mimics 18.0 (Materialise, Belgium), as shown in Fig. 1a.

    Fig. 7 Pressure boundary conditions in a cardiac cycle. Inlet: aortic inlet, outlet: aortic outlet. a—h coronary branches

    Table 2 Mean flow rate of the inlet and different exits

    The data are then stored in a file format (STL) and imported into Geomagic Freeform 2015 and Geomagic Studio v. 12 (3D Systems, USA) for cutting and smoothing, as shown in Fig. 1b. Angle A is the angle between LM and LCX, angle B is the angle between LAD and LCX, and angle C is the angle between LM and LAD. Figure 2 shows each branch and exit in the aortic-coronary model, and LAD is a continuation of the LM trunk, which is at right angles to the LM, roughly in the same plane. Thereafter, according to the statistical study [22], the bifurcation angle of LM is modified to the control group in Table 1, which corresponds to the physiological range. Model B (angle A: 60°, angle B: 120°, angle C: 180°), model C (angle A: 120°, angle B: 60°, angle C: 180°), and model D (angle A: 120°, angle B: 120°, angle C: 120°) are constructed as shown in Fig. 3b—d. Other features of the geometry (e.g. arterial diameter, cross-sectional shape, 3D orientation) remain constant during this process, as shown in Fig. 1b.

    In order to ensure the accuracy of numerical simulation calculation, not only the three-dimensional structure of the left and right coronary vessels and their branches but also the 3D structure of the aortic vessel is preserved to ensure that the blood flow is in line with the real situation.

    Fig. 8 Sketch of high-quality mesh in model A

    Fig. 9 Global flow field at peak systole (0.35 s)

    3 Numerical simulation method

    3.1 Governing equations

    The blood is considered laminar, isothermal, Newtonian, and incompressible, with a constant density of 1060 kg/m3and a constant viscosity of 0.0035 Pa·s. The arterial wall is rigid and has no slip and ignores the effect of gravity. Using Cartesian coordinates where x, y, and z represent components in three directions respectively, the blood flow satisfies the Navier—Stokes (N—S) equation and the continuity equation

    Fig. 10 Global flow field at peak diastole (0.45 s)

    where ρ represents blood density, vx,vy,vzis the fluid velocity component, μ is the dynamic viscosity, and P is the pressure.

    3.2 Boundary conditions

    Since the coronary system is an integral part of the human blood circulation system, it is necessary to consider the overall interaction with the ascending aorta, the left ventricle, the capillary network downstream of the coronary arteries, and the like. An effective research method to solve this complex boundary condition is to introduce a lumped parameter model [23—25] and combine the 3D model with a zero-dimentional (0D) model to form a multi-scale calculation model [26], as shown in Fig. 4. P represents pressure and Q represents the flow rate.

    Fig. 11 Streamline diagram of different bifurcation angles models at 0.35 s

    Clinical experimental data show that the combination of the lumped parameter model and the CFD model can better simulate the cardiovascular hemodynamic parameters of patients, with the advantages of fewer parameters, and clear physical and computational significance [27]. It has been widely used to assist in the design and evaluation of surgical treatment of cardiovascular disease and to predict cardiovascular risk in potential patients [28, 29]. The centralized parameter model of the entry and exit boundary conditions introduced in this work is shown in Fig. 5. The component parameters refer to the results of Kim et al. [24], Zhen et al. [30], and Lan et al. [31].

    In the lumped parameter model, R, L, and C are the resistance, the inductance, and the capacitance, respectively, which represent the resistance of the blood vessel, the inertia of the blood flow, and the compliance of the vessel separately.

    Figure 5a shows the heart entrance model where the function of the heart valve is simulated by unilateral conductivity of diode. The reciprocal of time-varying capacitance represents the periodic change in ventricular volume contraction. Figure 5b display the aortic outlet model and coronary artery trunk model based on the circuit model of Kirchhoff’s law. Subscripts p and d represent vascular proximal and distal resistance, respectively. Figure 5c shows the distal coronary load model. The blood flow is restricted during systole in the coronary circulation due to the increased intramyocardial pressure caused by ventricular contraction. A pressure source called Pim is added in the distal coronary branch model, which represents the elastance function of different chambers.

    Because the blood flow in coronary artery branches is dominated by the resistance of the downstream capillary network, the change in bifurcation angles could cause a slight increase in local resistance, Rd, in the coronary trunk model, as shown in Fig. 5b, but it is a small fraction of the total resistance of the coronary network. The distributions of mass flow in four models have no significant change.

    Taking model A as an example, the entrance and exit boundary conditions obtained by the pumped parameter model are shown in Figs. 6 and 7. One cardiac cycle is 0.8 s. In this paper, five cycles are calculated, and the final one is selected as the result.

    The mean flow rate and volume rate of the entrance and different exits are shown in Table 2. The ratio represents the relative sizes of mass flow rate between inlet and outlet, LAD, LCX, and RCA. The inlet volume rate of 4.53 L/min meets a normal person’s cardiac output. The outflow rate of LAD and LCX is close to clinical data [17].

    Fig. 12 Streamline diagram of different bifurcation angle models at 0.40 s

    3.3 Grid independence verification

    Altair Hyper Mesh 12.0 is applied to generate a high-quality polyhedral mesh for the established aortic-coronary model, and the coronary branches are encrypted. Three different mesh numbers (110,865, 163,020, and 844,151) are used. The mean outlet pressures of the ascending aorta are 12,254 Pa, 12,596 Pa, and 12,685 Pa, respectively. The error in the middle mesh numbers is only 0.7% , which meets the accuracy requirement of calculation. An example of model A (angle A: 90°; angle B: 90°; angle C: 180°) is shown in Fig. 8.

    4 Results and discussion

    4.1 Influence of different bifurcation angles on flow field

    The coronary arteries are mostly buried between the myocardial tissues and compressed by ventricular contraction during systole, resulting in reduced coronary blood flow. When ventricular compression is relieved, the coronary blood flow is restored. Figures 9 and 10 show the global flow field in model A at the peak period of 0.35 s and 0.45 s.

    Figures 11, 12, and 13 are the local flow streamlines in different bifurcation angle models at a specific time in a cardiac cycle (0.35 s, 0.40 s, and 0.45 s). It can be seen from Fig. 11 that the flow velocity in LM, as the total flow ofleft coronary, is higher than that of LAD and LCX, and the streamlines in LAD are denser than that of LCX. The streamlines are basically parallel to the blood vessel. However, the blood flow in LCX is obviously more disordered, because angle A is not a straight angle in the four models. Combining the three angles corresponding to the four models in Fig. 11, the confusion order of streamlines in the circumflex branch is model B(C), D and A. Angle B is 120° in both models B and D. Angle C is 180° in both models B and A. This indicates that angle A plays an important role in the streamline of LCX. When angle A is equal to angle B, it is more advantageous for the steady blood flow in LCX.

    Fig. 13 Streamline diagram of different bifurcation angle models at 0.45 s

    Fig. 14 TAWSS contours in model A. Additional details for circle A and perspective B in four models are shown in Figs. 15, 16

    Fig. 15 TAWSS contours of different bifurcation angle models in circle A. The circles in models B and D show the enlarged area of low wall shear stress

    Fig. 16 TAWSS contours of different bifurcation angle models in circle B. The circle in model D shows the disappeared area of low-wall shear stress

    As shown in Fig. 12, the blood flow in the left coronary arteries decreases, especially in LAD at the period of 0.40 s. The streamlines in LAD become disordered, and a significant recirculation zone appears in the anterior descending branch. It is also interesting to note that when the blood becomes reflux, some in LCX flows into LAD.

    As given in Fig. 13, the blood flow in the left coronary arteries increases at the period of 0.45 s. Compared with the time at 0.35 s, the streamlines are denser and more uniform, and the disordered streamlines in LCX disappear.

    In addition, whether it is systolic or diastolic, there exists a particularly low-velocity zone at the location of the left coronary bifurcation, where platelet particles and blood cell particles are prone to be aggregated and solidified to form an embolus. Subsequently, they migrate and consolidate on a certain blood vessel wall near or downstream of the bifurcation, forming thrombosis, which is consistent with the research results of Chiastra et al. [13].

    4.2 Influence of different branch angles on wall shear stress

    One valid parameter used to characterize the impact of bifurcation angle on hemodynamic flow is calculated as timeaveraged wall shear stress (TAWSS), which is defined as

    where T is the period of the cardiac cycle and τwis instantaneous WSS. It means the total shear stress exerted on the wall throughout a cardiac cycle.

    The TAWSS contour in model A is shown in Fig. 14 as an example. It can be seen that the distribution of TAWSS is not uniform. In general, TAWSS in LM is higher than LAD and LCX. Since the four models have no narrow near the bifurcation, there is no high TAWSS area.

    Comparing the four models in Fig. 15, models B and D have an obvious larger low TAWSS region (TAWSS < 1 Pa) shown in the red circle at the bifurcation, respectively. The common point in models B and D is that angle B is 120°, while angle B in models A and C is 90° and 30°. This means that a wider angle between LAD and LCX is prone to atherosclerosis, which is consistent with clinical statistical studies [15].

    Comparing the four models in Fig. 16, model D has an obvious smaller low TAWSS region (TAWSS < 1 Pa) shown in the red circle on the outside of LAD. The difference between the four models is that angle C in model D is 120°, while that in the other three models is 180°. This indicates that the decrease in the angle between LM and LAD tends to prevent atherosclerosis.

    5 Conclusion

    The primary objective of this study is to investigate the effect of different bifurcation angles on the left coronary artery. The branch bifurcation is prone to low-wall shear stress areas, resulting in atherosclerosis. When the angle between the LAD and LCX is too large (above 90°), there is an obvious enlarged low-wall shear stress area at the bifurcation. When the angle between the LM and LAD decreases from a near line, the low-wall shear stress area decreases at the outside of LAD. One potential solution to prevent future atherosclerosis is to deploy a stent from LM to LCX that expands the angle between LM and LAD, while decreasing the angle between LM and LCX.

    The main limitations of this study are that the elastic change in the blood vessel wall was not taken into account, and the fluid structure interaction (FSI) was not considered due to the complexity of 3D models.

    The result regarding the distribution of wall shear stress influenced by different flow fields with different bifurcations is consistent with clinical statistics. This can help to gain a better understanding of the occurrence and development of atherosclerosis at the bifurcation angle of coronary arteries, as well as provide clinical evaluation and prevention of coronary artery disease.

    Acknowledgements The authors are grateful for the support of the Specialized Research Fund for the Doctoral Program of Higher Education (Grant 20131103110025), the Key Program of Science and Technology Plan of Beijing Municipal Education Commission (Grant KZ201710005006), and the National Natural Science Foundation of China (Grant 81601557).

    欧美精品一区二区大全| 色5月婷婷丁香| 日韩欧美一区视频在线观看 | 丝瓜视频免费看黄片| 欧美成人午夜免费资源| 九九爱精品视频在线观看| 国产 一区 欧美 日韩| 日韩视频在线欧美| 国产伦理片在线播放av一区| 大香蕉久久网| 国产av精品麻豆| 亚洲精品,欧美精品| 国产国拍精品亚洲av在线观看| av国产久精品久网站免费入址| 久久久久久久大尺度免费视频| 亚洲久久久国产精品| 午夜福利在线在线| 国产精品爽爽va在线观看网站| 亚洲va在线va天堂va国产| 91在线精品国自产拍蜜月| 性色av一级| 搡老乐熟女国产| 一级a做视频免费观看| 久久99热这里只频精品6学生| 少妇裸体淫交视频免费看高清| av国产免费在线观看| 免费av不卡在线播放| 色网站视频免费| 成人毛片a级毛片在线播放| 天天躁夜夜躁狠狠久久av| 欧美精品一区二区免费开放| 日韩不卡一区二区三区视频在线| 亚洲精品日韩在线中文字幕| 伦理电影大哥的女人| 大陆偷拍与自拍| 精品国产一区二区三区久久久樱花 | 一本—道久久a久久精品蜜桃钙片| 国内少妇人妻偷人精品xxx网站| 新久久久久国产一级毛片| 一个人免费看片子| 国产精品人妻久久久久久| 日韩国内少妇激情av| 免费观看在线日韩| 日产精品乱码卡一卡2卡三| 99久久精品热视频| 自拍欧美九色日韩亚洲蝌蚪91 | 国产亚洲欧美精品永久| 下体分泌物呈黄色| 秋霞伦理黄片| 亚洲美女黄色视频免费看| 天堂8中文在线网| 人妻系列 视频| 97超碰精品成人国产| 日韩人妻高清精品专区| 精品一区在线观看国产| 一级av片app| 99re6热这里在线精品视频| 黄片无遮挡物在线观看| 黄色怎么调成土黄色| 国产69精品久久久久777片| 尾随美女入室| 一区在线观看完整版| 视频中文字幕在线观看| 亚洲人成网站在线播| 国产成人精品福利久久| 亚洲av男天堂| 五月天丁香电影| 夜夜爽夜夜爽视频| 午夜福利高清视频| 青青草视频在线视频观看| 成年免费大片在线观看| 免费看光身美女| 26uuu在线亚洲综合色| 久久 成人 亚洲| 九九爱精品视频在线观看| av福利片在线观看| 又粗又硬又长又爽又黄的视频| 毛片女人毛片| 国产精品不卡视频一区二区| 看非洲黑人一级黄片| 一二三四中文在线观看免费高清| 国产深夜福利视频在线观看| 大话2 男鬼变身卡| 伦理电影免费视频| 欧美成人精品欧美一级黄| 亚洲国产日韩一区二区| 一本—道久久a久久精品蜜桃钙片| 亚洲高清免费不卡视频| 在线观看人妻少妇| 在线看a的网站| 一级a做视频免费观看| 久久人人爽人人片av| 亚洲精华国产精华液的使用体验| 免费观看a级毛片全部| 日韩成人av中文字幕在线观看| 中文字幕制服av| .国产精品久久| 99热网站在线观看| 久久国内精品自在自线图片| 亚洲无线观看免费| 精品一区二区免费观看| 精品人妻熟女av久视频| 亚洲性久久影院| 日韩一本色道免费dvd| 在线精品无人区一区二区三 | 晚上一个人看的免费电影| 涩涩av久久男人的天堂| 人妻一区二区av| 91久久精品电影网| 亚洲综合色惰| 最近中文字幕高清免费大全6| 大香蕉97超碰在线| 成年免费大片在线观看| tube8黄色片| www.av在线官网国产| av网站免费在线观看视频| www.色视频.com| 日本爱情动作片www.在线观看| 亚洲欧美一区二区三区国产| 国产日韩欧美在线精品| 99精国产麻豆久久婷婷| 亚洲精品国产成人久久av| 亚洲av免费高清在线观看| 国产黄色视频一区二区在线观看| 久久精品国产自在天天线| 男女边摸边吃奶| 亚洲美女黄色视频免费看| 欧美国产精品一级二级三级 | 亚洲国产欧美在线一区| 视频中文字幕在线观看| 亚洲欧美中文字幕日韩二区| 亚洲综合精品二区| 好男人视频免费观看在线| 国产精品久久久久久精品电影小说 | 最近最新中文字幕大全电影3| 免费av不卡在线播放| 亚洲天堂av无毛| 高清av免费在线| 丝袜脚勾引网站| 国产高清三级在线| 网址你懂的国产日韩在线| 免费播放大片免费观看视频在线观看| 日本av手机在线免费观看| 干丝袜人妻中文字幕| 午夜免费男女啪啪视频观看| 亚洲欧美一区二区三区黑人 | 国产一区二区在线观看日韩| 综合色丁香网| 国产精品久久久久久久久免| 亚洲国产日韩一区二区| 纵有疾风起免费观看全集完整版| 国产一区二区在线观看日韩| 国精品久久久久久国模美| 亚洲av不卡在线观看| 伊人久久精品亚洲午夜| 国产 一区精品| 亚洲精品乱码久久久v下载方式| 国产一区有黄有色的免费视频| 熟女电影av网| 日日撸夜夜添| 欧美性感艳星| 三级国产精品片| 在线观看免费视频网站a站| 亚洲av欧美aⅴ国产| 一本—道久久a久久精品蜜桃钙片| 精品久久久精品久久久| 国产精品麻豆人妻色哟哟久久| 欧美老熟妇乱子伦牲交| 亚洲av日韩在线播放| 91午夜精品亚洲一区二区三区| 91aial.com中文字幕在线观看| 亚洲精品色激情综合| 王馨瑶露胸无遮挡在线观看| 亚洲精品国产av蜜桃| 日日摸夜夜添夜夜添av毛片| 日韩av不卡免费在线播放| av又黄又爽大尺度在线免费看| 久久久久国产精品人妻一区二区| 国产有黄有色有爽视频| 超碰av人人做人人爽久久| 久久久久久久久久久丰满| 22中文网久久字幕| 日本爱情动作片www.在线观看| 国产色爽女视频免费观看| 亚洲精品乱码久久久久久按摩| 久久青草综合色| 丝袜喷水一区| 成人黄色视频免费在线看| 精品久久久精品久久久| 亚洲国产精品999| 亚洲美女视频黄频| 国产 精品1| 亚洲欧美日韩东京热| 亚洲精品乱久久久久久| 中文字幕制服av| 我的老师免费观看完整版| 久久人人爽av亚洲精品天堂 | 日韩三级伦理在线观看| 纯流量卡能插随身wifi吗| 免费观看在线日韩| 午夜福利视频精品| 中国美白少妇内射xxxbb| 精品久久久久久电影网| 日本黄色片子视频| 日韩欧美 国产精品| 少妇裸体淫交视频免费看高清| 精品亚洲成国产av| 久久精品久久久久久噜噜老黄| 国产老妇伦熟女老妇高清| 在线精品无人区一区二区三 | 欧美日本视频| av免费在线看不卡| 在线亚洲精品国产二区图片欧美 | 欧美日韩一区二区视频在线观看视频在线| 女人十人毛片免费观看3o分钟| 国产免费又黄又爽又色| 最新中文字幕久久久久| 在线免费观看不下载黄p国产| 精品酒店卫生间| 日本猛色少妇xxxxx猛交久久| 女的被弄到高潮叫床怎么办| 免费高清在线观看视频在线观看| 久久久色成人| 亚洲成人av在线免费| 青春草亚洲视频在线观看| 老女人水多毛片| freevideosex欧美| 天堂8中文在线网| 久久久久网色| 大片电影免费在线观看免费| av在线播放精品| 一区二区三区乱码不卡18| 国产精品蜜桃在线观看| 亚洲国产日韩一区二区| 26uuu在线亚洲综合色| 在线观看免费高清a一片| 久久久久久人妻| 亚洲av二区三区四区| 少妇人妻久久综合中文| 能在线免费看毛片的网站| 涩涩av久久男人的天堂| 欧美日韩一区二区视频在线观看视频在线| 亚洲av福利一区| 少妇人妻精品综合一区二区| 人人妻人人看人人澡| 国产午夜精品久久久久久一区二区三区| 99九九线精品视频在线观看视频| 久久这里有精品视频免费| 九九久久精品国产亚洲av麻豆| 久久人人爽人人片av| av.在线天堂| 观看美女的网站| 精品久久久噜噜| 最新中文字幕久久久久| 蜜桃亚洲精品一区二区三区| 亚洲精品自拍成人| 黄色视频在线播放观看不卡| 欧美xxⅹ黑人| 亚洲国产最新在线播放| 看免费成人av毛片| 午夜免费鲁丝| 国产精品不卡视频一区二区| av一本久久久久| 乱码一卡2卡4卡精品| 国产真实伦视频高清在线观看| 下体分泌物呈黄色| 大话2 男鬼变身卡| 美女cb高潮喷水在线观看| 黄色一级大片看看| 国产高清有码在线观看视频| 国产成人一区二区在线| 亚洲av电影在线观看一区二区三区| 久久国产精品男人的天堂亚洲 | 蜜桃亚洲精品一区二区三区| 91午夜精品亚洲一区二区三区| 亚洲欧美清纯卡通| 波野结衣二区三区在线| 在线观看美女被高潮喷水网站| 一个人免费看片子| 一级毛片 在线播放| 国产v大片淫在线免费观看| 久久久亚洲精品成人影院| 国产精品久久久久成人av| 色综合色国产| 欧美性感艳星| 亚洲无线观看免费| 成人特级av手机在线观看| 亚洲精品456在线播放app| 另类亚洲欧美激情| 成年人午夜在线观看视频| 直男gayav资源| 国产精品久久久久久久电影| 大片电影免费在线观看免费| 99热全是精品| 女人久久www免费人成看片| 色吧在线观看| 久久久久国产精品人妻一区二区| 久久久久久久久久成人| 久久久成人免费电影| 日本欧美国产在线视频| 成人午夜精彩视频在线观看| 1000部很黄的大片| 国产亚洲最大av| 中文字幕制服av| 国产av码专区亚洲av| 国产亚洲午夜精品一区二区久久| 国产黄色视频一区二区在线观看| 国产探花极品一区二区| 精品国产乱码久久久久久小说| 午夜福利视频精品| 免费少妇av软件| 免费人妻精品一区二区三区视频| 免费观看无遮挡的男女| 黄色欧美视频在线观看| 国产黄频视频在线观看| 亚洲国产最新在线播放| 国产午夜精品一二区理论片| 3wmmmm亚洲av在线观看| 99久国产av精品国产电影| 国产伦理片在线播放av一区| 成人国产麻豆网| 简卡轻食公司| 久久精品国产亚洲av涩爱| 日日撸夜夜添| 99热全是精品| av天堂中文字幕网| av一本久久久久| 尤物成人国产欧美一区二区三区| 亚洲av中文av极速乱| 美女内射精品一级片tv| 99久久精品一区二区三区| 男女下面进入的视频免费午夜| 亚洲国产精品成人久久小说| 精品酒店卫生间| 黑人猛操日本美女一级片| 亚洲精品国产av蜜桃| 国产永久视频网站| 亚洲婷婷狠狠爱综合网| 在线播放无遮挡| 丰满人妻一区二区三区视频av| 三级国产精品片| 高清午夜精品一区二区三区| 丰满迷人的少妇在线观看| tube8黄色片| 亚洲欧美日韩无卡精品| 男人和女人高潮做爰伦理| 人妻制服诱惑在线中文字幕| 久久人人爽人人爽人人片va| 99热这里只有精品一区| 天天躁夜夜躁狠狠久久av| 少妇猛男粗大的猛烈进出视频| 午夜视频国产福利| 久久久久久伊人网av| 久久久久性生活片| 亚洲av二区三区四区| 国产成人精品婷婷| 久热久热在线精品观看| 交换朋友夫妻互换小说| 最近中文字幕高清免费大全6| 国产日韩欧美在线精品| 日韩人妻高清精品专区| 有码 亚洲区| 国产精品久久久久成人av| 日韩欧美一区视频在线观看 | 亚洲久久久国产精品| 国产伦精品一区二区三区视频9| 麻豆精品久久久久久蜜桃| 三级国产精品欧美在线观看| 国产黄片视频在线免费观看| av专区在线播放| 又大又黄又爽视频免费| 国产精品久久久久久av不卡| 国产一区有黄有色的免费视频| 国产高潮美女av| 免费大片18禁| 少妇精品久久久久久久| 久久国产乱子免费精品| 美女福利国产在线 | 蜜桃久久精品国产亚洲av| 久久精品国产a三级三级三级| 午夜福利网站1000一区二区三区| av国产精品久久久久影院| 久久国产精品男人的天堂亚洲 | 天美传媒精品一区二区| 直男gayav资源| 久久精品人妻少妇| 亚洲精品国产av成人精品| 欧美老熟妇乱子伦牲交| 成人国产av品久久久| 国产精品.久久久| 亚洲,一卡二卡三卡| 国产一区二区三区综合在线观看 | 国产精品不卡视频一区二区| 亚洲精品乱码久久久久久按摩| 国产精品欧美亚洲77777| 狂野欧美激情性bbbbbb| 久久久久久久久久成人| 成人黄色视频免费在线看| 国产精品嫩草影院av在线观看| 成人一区二区视频在线观看| 亚洲熟女精品中文字幕| 中文字幕精品免费在线观看视频 | 久久av网站| 搡女人真爽免费视频火全软件| 国产精品一区www在线观看| 国产黄片美女视频| 久久影院123| 又黄又爽又刺激的免费视频.| 免费观看a级毛片全部| 狂野欧美激情性bbbbbb| 久久久久久久久久人人人人人人| 国产精品精品国产色婷婷| 乱码一卡2卡4卡精品| 国产黄频视频在线观看| 久久久久精品性色| 美女脱内裤让男人舔精品视频| 欧美日韩视频高清一区二区三区二| 日本欧美视频一区| 一区二区av电影网| 国产精品久久久久久精品古装| 精品人妻偷拍中文字幕| 国产在视频线精品| 亚洲成色77777| 一区二区三区四区激情视频| 人体艺术视频欧美日本| 中文乱码字字幕精品一区二区三区| 在线观看av片永久免费下载| 亚洲精品中文字幕在线视频 | 午夜激情久久久久久久| 国产精品国产av在线观看| 在线观看美女被高潮喷水网站| 大香蕉久久网| 18禁裸乳无遮挡免费网站照片| 三级国产精品欧美在线观看| 建设人人有责人人尽责人人享有的 | 少妇人妻 视频| 精品亚洲成国产av| 欧美少妇被猛烈插入视频| 在线播放无遮挡| 少妇裸体淫交视频免费看高清| 交换朋友夫妻互换小说| 韩国高清视频一区二区三区| 欧美bdsm另类| 亚洲av成人精品一区久久| 国产国拍精品亚洲av在线观看| 国产精品人妻久久久久久| 日本爱情动作片www.在线观看| 最新中文字幕久久久久| 高清毛片免费看| 成人国产av品久久久| 嘟嘟电影网在线观看| 99热国产这里只有精品6| 18禁动态无遮挡网站| 欧美日韩在线观看h| 一级黄片播放器| 国产美女午夜福利| 亚洲欧美精品自产自拍| 欧美日韩国产mv在线观看视频 | 搡女人真爽免费视频火全软件| 亚洲av综合色区一区| 男的添女的下面高潮视频| 亚洲综合精品二区| h日本视频在线播放| 人人妻人人添人人爽欧美一区卜 | 国产黄频视频在线观看| 国产精品99久久99久久久不卡 | 欧美性感艳星| 国产免费又黄又爽又色| 国产成人91sexporn| 欧美 日韩 精品 国产| 成人毛片a级毛片在线播放| 2021少妇久久久久久久久久久| 亚洲国产日韩一区二区| 超碰av人人做人人爽久久| 97超碰精品成人国产| 2018国产大陆天天弄谢| 老师上课跳d突然被开到最大视频| 日本vs欧美在线观看视频 | 欧美激情国产日韩精品一区| 精品少妇久久久久久888优播| 91狼人影院| 亚洲精品久久午夜乱码| 国产成人freesex在线| av在线播放精品| 一个人看的www免费观看视频| 一区二区三区免费毛片| 欧美日韩综合久久久久久| 一级毛片我不卡| 人体艺术视频欧美日本| 亚洲va在线va天堂va国产| 国产精品久久久久久久电影| 我要看黄色一级片免费的| 日本黄大片高清| 久久久色成人| 午夜福利高清视频| 国产精品久久久久久精品电影小说 | 欧美日韩一区二区视频在线观看视频在线| 国产成人a∨麻豆精品| 少妇高潮的动态图| 免费观看性生交大片5| 少妇的逼水好多| 噜噜噜噜噜久久久久久91| 秋霞伦理黄片| 国产亚洲最大av| 久久久久久久久久成人| 美女xxoo啪啪120秒动态图| 久久av网站| 91在线精品国自产拍蜜月| 国产成人freesex在线| 91精品国产国语对白视频| 人体艺术视频欧美日本| 最近手机中文字幕大全| 全区人妻精品视频| 国内精品宾馆在线| 欧美精品一区二区大全| 免费黄色在线免费观看| 一区二区三区精品91| 国产乱来视频区| 亚洲成人中文字幕在线播放| 成年免费大片在线观看| 国产真实伦视频高清在线观看| 婷婷色av中文字幕| 日韩中字成人| 国产久久久一区二区三区| 亚洲av.av天堂| 日韩视频在线欧美| 国产高清国产精品国产三级 | 国产亚洲欧美精品永久| 成人一区二区视频在线观看| 高清av免费在线| 国产成人精品一,二区| 国产精品国产三级国产av玫瑰| 亚洲国产精品国产精品| 丰满人妻一区二区三区视频av| 免费黄网站久久成人精品| 婷婷色综合大香蕉| 亚洲精品国产av蜜桃| 黄片wwwwww| 特大巨黑吊av在线直播| 91aial.com中文字幕在线观看| 亚洲精品日本国产第一区| 三级国产精品欧美在线观看| 春色校园在线视频观看| 亚洲电影在线观看av| 久久国产亚洲av麻豆专区| 内射极品少妇av片p| 成人特级av手机在线观看| 精品一品国产午夜福利视频| 中文精品一卡2卡3卡4更新| 99热这里只有是精品50| 亚洲av.av天堂| 国产高清三级在线| 国产精品人妻久久久影院| 久久国产精品男人的天堂亚洲 | 麻豆成人av视频| 最近手机中文字幕大全| 日本av免费视频播放| 乱码一卡2卡4卡精品| 欧美日韩视频高清一区二区三区二| 制服丝袜香蕉在线| 久久久久久久大尺度免费视频| 日本猛色少妇xxxxx猛交久久| 网址你懂的国产日韩在线| 国产中年淑女户外野战色| 国产精品一及| 十八禁网站网址无遮挡 | 久久婷婷青草| 美女福利国产在线 | av不卡在线播放| 3wmmmm亚洲av在线观看| 小蜜桃在线观看免费完整版高清| 最后的刺客免费高清国语| 国产精品无大码| 精品视频人人做人人爽| 亚洲高清免费不卡视频| 在线观看免费日韩欧美大片 | av在线app专区| 天堂8中文在线网| 纵有疾风起免费观看全集完整版| 丝瓜视频免费看黄片| 国产精品精品国产色婷婷| 国产成人精品久久久久久| 在线亚洲精品国产二区图片欧美 | 国产欧美另类精品又又久久亚洲欧美| 日本黄色日本黄色录像| a 毛片基地| 九九久久精品国产亚洲av麻豆| 国产毛片在线视频| 国产老妇伦熟女老妇高清| 精品国产乱码久久久久久小说| 人人妻人人看人人澡| 国产亚洲精品久久久com| 欧美bdsm另类| 欧美老熟妇乱子伦牲交| 在线 av 中文字幕| 日韩精品有码人妻一区| 中国美白少妇内射xxxbb| 久久国内精品自在自线图片| 3wmmmm亚洲av在线观看| 18+在线观看网站| 美女cb高潮喷水在线观看| 少妇丰满av| 91精品一卡2卡3卡4卡| 在线 av 中文字幕| www.色视频.com| 99re6热这里在线精品视频| 99久国产av精品国产电影| 美女主播在线视频| 久久久欧美国产精品| 欧美成人一区二区免费高清观看| 亚洲熟女精品中文字幕| 午夜免费观看性视频| 精品久久久久久久末码| 国产 一区精品| 黄色欧美视频在线观看|