• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Elastic property determination of nanostructured W/Cu multilayer films on a flexible substrate

    2019-05-07 04:57:30WeiHeMeidongHanShibinWangPhilippeGoudeauEricLeBourhisPierreOlivierRenault
    Acta Mechanica Sinica 2019年6期

    Wei He·Meidong Han·Shibin Wang·Philippe Goudeau·Eric Le Bourhis·Pierre Olivier Renault

    Abstract An experimental method for a single layer is extended to determine the elastic properties of nanostructured W/Cu multilayers on a flexible substrate. The strain difference between the W/Cu-polyimide-W/Cu composite and the uncoated substrate,measured by dual digital image correlation, allows us to extract the effective Young’s modulus of W/Cu multilayers (20 periods)equaling 216±13 GPa.Finite element method is then performed,which agrees well with the experiment and classical rule of mixture(ROM)theory demonstrating that the extension to multilayers is effective and reliable.The numerical analysis also interestingly shows that the strain difference is linearly related to the thickness ratio (W/Cu), periods and sublayer thickness, respectively. In contrast to ROM theory, this approach could potentially be used for the evaluation of properties and design of emerging/unknown functional multilayers,whether or not they are crystalline or amorphous.

    Keywords Nanostructured multilayers·Young’s modulus·Dual digital image correlation·Finite element method

    1 Introduction

    In the future micro-/nano-electro-mechanical systems(MEMS/NEMS) and flexible electronics, nanostructured metallic multilayers (NMMs) may play a leading role due to their desirable mechanical properties and performance,such as superior strength [1], relatively high deformability/adhesion [2], excellent electrical/thermal conductivity[3], great radiation/magnet tolerance [4], and dramatically improved fatigue life [5], making them unique multifunctional materials to satisfy special needs. Among these NMMs, W/Cu multilayer films have attracted much interest. One concern is to integrate Cu (high ductility, thermal conductivity)and W(high strength,low thermal expansion coefficient)in thermal management applications,such as the heat sink for high density integrated circuits[6].Moreover,introducing Cu as an immiscible interlayer for W thin films enables a controllable microstructure, which could be used to improve the mechanical properties of W films[7].

    Young’s modulus is one of the most important properties in the performance design and reliability evaluation of those functional multilayers. Because of the nanoscale film thickness and complex multilayered structure,accurate experimental characterization is a real challenge. Although there have already been many techniques for a single layer[8],such as X-ray tensile testing[9],rule of mixture(ROM)[10,11] and bulge test [12], there are much fewer applications to investigate multilayers. Noticeably, some of those techniques have been effectively extended to study the elastic moduli of multilayers, which include indentation [13],vibrational approach [14] and ROM. Especially, ROM is widely adopted due to its simplicity and non-requirement of crystallinity of materials.There are two ways to use ROM for multilayers. One is to theoretically predict the effective Young’s modulus using a governing equation based on the fact that the elastic moduli of each monolayer is known[15,16].The other is to extract the properties of nanocomposites by subtracting the properties of substrate from the overall experimental measurement of a film-substrate structure[17].To do this, one must assume a uniform one-dimensional stress distribution through the film thickness, and a complete strain transfer at the interface is extremely important,which has been proved in many cases [18–20]. However,the theoretical approach is limited in the case of emerging/unknown materials or when a size effect of a sublayer is present [21,22]. Furthermore, the corresponding experimental approach to study the periodic multilayers, such as many periods of W/Cu nanostructured bilayers,is still lacking although it is of utmost importance.

    Recently,we have proposed an original approach[23]for a single layer allowing higher precision and simpler process of experiments compared to ROM. In this study, we provide a brief overview of this approach including theory and experiment based on dual digital image correlation(DIC). Combined with finite element method (FEM), we extend this method to probe the effective elastic properties of W/Cu multilayers(20 periods)on a flexible substrate,and the relationships between the strain difference and important parameters of multilayers are analyzed.

    2 Theoretical and experimental background

    For a single continuous layer or film symmetrically coated on both sides over a half-surface of the substrate in tension,as shown in Fig.1(enlarged view of the dogbone specimen,film is highlighted in silver white),a simple formula can be acquired[23]

    Fig. 1 Experimental setup combining the dual DIC system with the Deben Microtest.Reproduced from our previous work[23]

    where E, t, ε, f and s represent the Young’s modulus,thickness, strain, film and substrate, respectively. The subscripts u,c and 11 correspond to the uncoated substrate,the film-substrate-film composite and the longitudinal (tensile)direction,respectively.It is not difficult to measure tf,Esand ts;therefore,to obtain the Young’s modulus of a thin film Ef,the key consideration is to simultaneously measure the tensile strain of the uncoated substrateand the compositeFurthermore, the experimental error analysis of the Young’s modulus determination can be found in Ref. [24].For better understanding of the rule of experimental design,herein,we give a brief overview of the error analysis.Defining a non-dimensional ratio,,

    the uncertainty of the Young’s modulus measurement can be calculated:

    After taking typical values of δR = ±0.01, Es= 4±0.2 GPa,ts=125± 0.5 μm,and t f =359± 3 nm,used in our experiments,we obtain

    Figure 1 schematically illustrates the dual DIC system that we used for the synchronous strain measurement during a tensile test of the dogbone specimen by Deben Microtest.The tensile speed was 0.2 mm/min corresponding to a strain rate of 4.1×10-5s-1.One two-dimensional (2D)DIC system mainly comprises a telecentric lens,a charge-coupled device(CCD)camera and illumination.The 0.5X gold series telecentric lens from Edmund is selected to measure the strain of the film-substrate-film composite due to its large depth of field and constant magnification, which allows focusing on the image side up to±2.1 mm at f/10.Meanwhile,the 1.0X gold series telecentric lens from Edmund is selected to measure the strain of the uncoated substrate with a depth of field being±0.6 mm at f/10.The camera for 0.5X lens is a digital 8-bit complementary metal-oxide semiconductor(CMOS)camera(2560×1920 pixels),and the one for 1.0X lens is 1392×1040 pixels with a real size of 9 mm×7 mm.The illumination for 0.5X lens is a flexible fiber optic light called model 21 dc from TechniQuip, and the one for the 1.0X lens is an AI standard working distance LED ring light from Edmund. It should be noted that two polarizers and a flexible fiber light with a low incidence angle is imperative to significantly reduce the mutual influence oflights on each DIC system considering the fact that the uncoated substrate is translucent.

    For the high precision strain measurement, DIC [25,26]is a widely adopted method owing to its simplicity,versatility and robustness.In principle,DIC is an optical technique based on digital image processing and numerical computing.It directly provides full-field displacements to sub-pixel accuracy and full-field strains by a comparison of digital images of a specimen surface before and after deformation.Notice that DIC can achieve different scales of deformation(from nano-scale to macro-scale),depending on the observation devices,such as the high-spatial-resolution microscopes and scanning electron microscope(SEM).Furthermore,with special considerations and speckle (a carrier or “sensor” of deformation information)fabrication methods[27],DIC can be even applied in extreme environments [28,29], such as 1600°C high temperature. Herein, we use the typical paint spraying technique to fabricate random speckle patterns on the specimen surface and to obtain the macroscopic strains by selecting the region of interest of uncoated substrate and composite, and then calculate using the software Deftak[30].

    3 Experiment with dual DIC

    Extending Eq. (1) to a multilayer structure and defining a dimensionless quantity,R =-1,the effective elastic modulus of the multilayer thin films could be obtained as:

    Fig. 2 Young’s modulus determination of W/Cu nanocomposites:longitudinal strain of the uncoated substrate as a function of that of W/Cu-polyimide-W/Cu composite. The continuous red line corresponds to the linear regression in the elastic domain, and the inset schematically illustrates the dual DIC tensile testing of the as-deposited specimen

    To verify its effectiveness and to study the elastic properties of substrate-supported W/Cu multilayers, a tensile test combined with dual DIC system is performed. The dogbone-shaped substrate is a flexible polyimide,Kapton HN 125 μm thick,with a nominal in-plane gauge section dimensions of 34 mm ×12 mm.This polymer substrate exhibits a large elastic region (about 4% ) and its elastic modulus is 4.0 ± 0.2 GPa. After cleaning the substrate ultrasonically with acetone and ethanol,and thanks to a homemade mask[23], W (6 nm) and Cu (18 nm) single layers are sputtered alternately on both sides over the half-surface of the substrate with an Ar flow rate of 19 and 3 standard cubic centimeters per minute(SCCM),respectively.This mask is designed so that the region of interest for deformation measurement is large with a constant film thickness and is far away from the film-substrate boundary. Thin films are deposited with 20 periods(n =20)that should result in a total thickness of 2×480 nm,as shown in the inset of Fig.2,while the measured thickness is smaller(2×359±3 nm)due to the overestimated deposition speed. The comprehensive crystallographic and residual stress analyses of similar W/Cu multilayers can be found in Refs.[7,31].Herein,we emphasize that it is strongly recommended to coat on both sides instead of one side,because with this symmetric configuration,regardless of the residual stress and the Poisson’s ratio mismatch between the composite and the uncoated substrate(surface curvature evolution appears with only one side coated[18]),the specimen remains flat during the tensile testing,which is an important assumption for this method[23].A dual DIC system is then applied to simultaneously measure the longitudinal strain of the uncoated substrate and the W/Cu-polyimide-W/Cu composite in tension.Figure 2 also shows the tensile strain of the uncoated substrate as a function of that of the film-substrate film composite, which clearly indicates a significant strain difference (R = 0.31). Notice that the curve deviates from linearity at a strain of about 0.9% showing that the dual DIC system is sufficiently precise to capture the yield point of a thin film[23].Moreover,the elastic limit of the multilayers is much larger than pure W films (about 0.3% in general),which may due to the introduction of a large amount of ductile Cu sublayers.From the recorded digital images,no cracks are observed.However,the cracks may exist considering the insufficient magnification of the telecentric lens. Since we focus on the elastic domain, even small cracks exist in the inelastic region,they have no influence on the Young’s modulus determination, and even appear in the elastic region,the effect of cracks is negligible based on the fact that the linearity of the entire elastic domain is excellent.

    Herein,Eq.(4)can be modified as:

    Fig. 3 Three-dimensional quarter-symmetric FEM model of the multilayer-substrate-multilayer structure and the calculated longitudinal strain field.The inset clearly indicates the strain difference between the composite and uncoated substrate

    where n is the period number,tWand tCudenote the thickness of W and Cu sublayers, respectively. Equation (5) is the ultimate governing equation that we used to determine the effective Young’s modulus of W/Cu multilayers to be 216± 13 GPa.

    On the other hand,the theoretical effective elastic modulus of W/Cu multilayers can be obtained from a classical isostrain model of ROM as expressed by[16]:

    where EW, ECuare the Young’s moduli of W and Cu sublayers,respectively,and ρ is the thickness ratio of W to Cu monolayers,i.e.ρ = tW/tCu= 1/3.Since the exact values of the elastic moduli of W and Cu sublayers are unknown,EW= 411 GPa and ECu= 130 GPa from Ref. [32] are used. The effective Young’s modulus of W/Cu multilayer thin films is then obtained as 200 GPa, which agrees well with the experimental result showing a good reliability of extending Eq.(1)to multilayers.

    4 Finite element method

    To further demonstrate the feasibility of extending Eq. (1)to experimentally study the Young’s modulus of W/Cu nanocomposite thin films, a numerical simulation (FEM)is performed using ABAQUS v6.14 (Dassault systems).Considering the structural symmetry and to improve the calculation efficiency, one quarter of the specimen is modeled(X Z and X Y planes of symmetry)as shown in Fig.3,where the X-axis denotes the loading or longitudinal direction,Y-axis the transverse direction,and Z-axis the out-of-plane direction.The total film thickness is 2×359=718 nm,i.e.the measured deposition thickness(ρ =1/3,n =20).

    Based on the structural characteristics, the polyimide substrate (the grey part in Fig. 3) is modeled with a threedimensional(3D)solid part meshed in C3D8 elements,while the W/Cu nanocomposites (the yellow part in Fig. 3) are modeled with a 2D shell part meshed in S4 elements, i.e.a 4-node doubly curved general-purpose shell, and its section is defined using the “composite type” in the software,by which we can define the 20 W/Cu nanocomposites on both sides of the substrate. Furthermore, the nanocomposites and the substrate are bonded together at their coincident nodes using a tie constraint to simulate the perfect strain transfer at the interface.The force is applied directly on the right end of the substrate with the left end constrained in the X-direction,and the central planes of the substrate have been exerted the symmetric boundary conditions (X Z and X Y planes of symmetry)to avoid rigid body motions. Both the films and substrate are assumed as isotropic elastic materials while taking account of geometric non-linearity effects in all steps.The Young’s modulus and Poisson’s ratio of W and Cu monolayers are set to be 411 GPa,0.28 and 130 GPa,0.34,respectively[32],and the polyimide substrate are 4 GPa and 0.34,respectively.Notice that there is a Poisson’s ratio mismatch between W monolayers(0.28)and Cu monolayers(0.34)and polyimide substrate(0.34).

    Fig.4 Effective Young’s modulus of W/Cu multilayers as a function of a thickness ratio ρ,c periods n,d thickness of Cu sublayer.b The effective elastic modulus by FEM versus that by ROM with the change of thickness ratio ρ.The continuous red line corresponds to the linear regression

    After calculation,the full-field longitudinal strain contour of the uncoated substrate and the film-substrate-film composite is obtained,and the strain along the centerline(X Z plane of symmetry) is extracted in the inset as shown in Fig. 3.As can be clearly seen,there is a sharp strain jump(0.46% –0.60% ) from the composite to the uncoated substrate at a given load equaling 24 N, and the strain difference (R =0.30) is close to the one in the experiment (R = 0.31). It is worth mentioning that the strain of the film and the underling substrate is the same except for several singularities near the uncoated substrate-composite boundaries(not shown here),which indicates a full strain transfer at the multiple interfaces of the multilayered structure.Referring to Eq.(5),the effective elastic modulus is determined to be 211 GPa,which agrees well with the experimental result(216±13 GPa)and the theoretical ROM prediction(200 GPa).

    As stated above,the feasibility and reliability of FEM to characterize the effective Young’s modulus of multilayer thin films have been verified by its good agreement with experimental and theoretical results.In order to further understand the underlying influence factors, we numerically study the relationship between the Emultilayer/strain difference(R)and the thickness ratio (ρ), period number (n), thickness of Cu sublayer (tCu), which can significantly reduce the cost of experiment and time. Figure 4a shows the effective elastic modulus of W/Cu multilayersas a function of thickness ratio ρ,while n and tCuremain constant, i.e. n = 20, tCu= 18 nm. When ρ is smaller than 1,increases dramatically,and then experiences a steady and slight growth (ρ >1). This is reasonable if we refer to Eq.(6),andalso shows an identical trend and similar values, which further proves the reliability of extending the method[23]for multilayers.It is particularly interesting to note thatpresents a linear relationship withwhen ρ is changed from 1:18 to 10:3,as shown in Fig.4b.Moreover,an acceptable discrepancy(about 10% ) betweenwhich arises from the Poisson’s ratio mismatch (W, Cu films and polyimide)and the intrinsic theoretical error,is evidenced.Figure 4c,d show the evolution of effective Young’s modulus as n and tCuvary,respectively,while ρ and tCu(ρ =1:3,tCu=18 nm),ρ and n(ρ =1:3,n =20)keep unvarying,respectively.As can be seen,andagree well with each other and keep almost constant.Therefore,the effective elastic modulus of multilayers is strongly related to ρ rather than n and tCu(only one variable in each case).Figure 5 shows the strain difference(R)as a function of ρ, n, tCu, respectively. It is also interesting to see that all have exhibited a nearly perfect linear relationship. In order to explain this behavior,we define a dimensionless quantity,φ =Combining Eqs.(5)and(6),we obtain

    Fig.5 Strain difference(R)as a function of a thickness ratio ρ,b periods n,c thickness of Cu sublayer.The continuous red lines correspond to the linear regression

    From Fig.4,it is obvious and imperative that φ remains constant whenρ,n,tCuare varying,respectively,although the values of φ in these three cases are different.Consequently,according to Eq. (7), the unvarying φ, EW, ECu, Esand tsin each case leads to a linear relationship between R and ρ,n,tCu,respectively,and the values of slopes from FEM data are reasonably compatible with Eq. (7). It should be noted that in all the analyses above (ROM and FEM), the elastic properties of single layers are assumed to be known,which are not applicable to multilayers comprising unknown materials.However,our experimental testing is promising,since it is based on the strain difference between the coated and uncoated parts so that the materials can be unknown.Furthermore, for the studied multilayers, the bulk Young’s moduli of W and Cu sublayers[32]could be considered acceptable due to the good agreement in above cases,which also indicates that little or no lengthscale size effect appears in the monolayers.It is worth mentioning that this method has the potential to be employed for multilayers working in extreme environment,such as high-temperature condition,based on some special considerations for DIC measurements[33,34].

    5 Concluding remarks

    In summary,we have studied the elastic properties of flexible substrate-supported W/Cu nanocomposites by a combination of theory, experiment and numerical simulation. The good agreement between the effective elastic moduli determined by the experiment and FEM/ROM(216±13 GPa and 211/200 GPa,respectively)shows the reliability of extending our previous method [23] from a single layer to multilayers(20 periods).In contrast to the typical ROM theory,the multilayer consisting of periodic sublayers with unknown properties can be characterized, especially when the ultrathin films present a size effect. Interestingly,is linearly related toalthough both show a nonlinear behavior as the thickness ratio (ρ) varies. Moreover, to the best of our knowledge, the linear relationship between the strain difference(R)and the separate ρ,n and tCuis reported for the first time.

    AcknowledgementsThis research is financially supported by the National Natural Science Foundation of China(Grant 11802156),China Postdoctoral Science Foundation (Grant 2018M641331), and French Government Program “Investissements d’Avenir” (Labex Interactifs,Grant ANR-11-LABX-0017-01).

    www日本在线高清视频| 国产欧美日韩一区二区三区在线| 一进一出好大好爽视频| 久久精品91无色码中文字幕| 久久久久久亚洲精品国产蜜桃av| 成人精品一区二区免费| 波多野结衣高清无吗| 99re在线观看精品视频| 黄片小视频在线播放| 国产精品久久久人人做人人爽| 一级a爱视频在线免费观看| 精品一区二区三区视频在线观看免费| 欧美一区二区精品小视频在线| 午夜影院日韩av| 日本五十路高清| 国产精品亚洲一级av第二区| 国产免费男女视频| 久久青草综合色| 看免费av毛片| 日韩大尺度精品在线看网址 | 一级黄色大片毛片| 亚洲天堂国产精品一区在线| 久久人人爽av亚洲精品天堂| 国内久久婷婷六月综合欲色啪| 国产成人啪精品午夜网站| 淫妇啪啪啪对白视频| 在线观看66精品国产| 国产又色又爽无遮挡免费看| 一个人观看的视频www高清免费观看 | 亚洲欧美激情综合另类| 久久精品亚洲精品国产色婷小说| 国产男靠女视频免费网站| 女生性感内裤真人,穿戴方法视频| 这个男人来自地球电影免费观看| 欧美一级a爱片免费观看看 | 国产精品98久久久久久宅男小说| 国产不卡一卡二| 18禁美女被吸乳视频| 午夜老司机福利片| 国产熟女xx| 99国产极品粉嫩在线观看| 50天的宝宝边吃奶边哭怎么回事| 亚洲自偷自拍图片 自拍| 亚洲少妇的诱惑av| а√天堂www在线а√下载| 在线av久久热| 欧美激情久久久久久爽电影 | 法律面前人人平等表现在哪些方面| 在线观看舔阴道视频| 神马国产精品三级电影在线观看 | 国产一区二区三区综合在线观看| 欧美日韩福利视频一区二区| 黑人操中国人逼视频| 久久人人97超碰香蕉20202| 久久久国产欧美日韩av| 欧美老熟妇乱子伦牲交| 久久国产精品男人的天堂亚洲| 亚洲熟女毛片儿| 天天躁夜夜躁狠狠躁躁| 中文字幕人成人乱码亚洲影| 女人高潮潮喷娇喘18禁视频| 久久欧美精品欧美久久欧美| 天天躁狠狠躁夜夜躁狠狠躁| 日本欧美视频一区| 亚洲自拍偷在线| 男女下面进入的视频免费午夜 | 变态另类成人亚洲欧美熟女 | 一个人观看的视频www高清免费观看 | 免费高清视频大片| 中亚洲国语对白在线视频| 国产麻豆69| 久久精品国产综合久久久| 最好的美女福利视频网| 香蕉丝袜av| 久久久久久亚洲精品国产蜜桃av| 精品福利观看| 99精品欧美一区二区三区四区| 给我免费播放毛片高清在线观看| 久久人人爽av亚洲精品天堂| 乱人伦中国视频| 久久久精品欧美日韩精品| 免费不卡黄色视频| 亚洲色图av天堂| 男女做爰动态图高潮gif福利片 | 亚洲午夜精品一区,二区,三区| 午夜a级毛片| 久久亚洲真实| 精品国产乱子伦一区二区三区| 老司机靠b影院| 久久香蕉国产精品| 色综合欧美亚洲国产小说| 欧美日韩瑟瑟在线播放| 欧美激情 高清一区二区三区| 大香蕉久久成人网| 亚洲av成人一区二区三| 中文字幕人成人乱码亚洲影| 制服诱惑二区| 午夜福利影视在线免费观看| 国产不卡一卡二| 视频在线观看一区二区三区| 波多野结衣巨乳人妻| 午夜影院日韩av| 国产成人精品久久二区二区91| 亚洲av电影不卡..在线观看| 一区二区三区激情视频| 90打野战视频偷拍视频| 欧美一级毛片孕妇| 国产99白浆流出| 国产三级黄色录像| 中出人妻视频一区二区| 亚洲中文字幕一区二区三区有码在线看 | 熟女少妇亚洲综合色aaa.| 欧美激情久久久久久爽电影 | 在线国产一区二区在线| 巨乳人妻的诱惑在线观看| 亚洲av成人不卡在线观看播放网| 亚洲精品中文字幕一二三四区| 亚洲人成电影观看| 亚洲国产精品久久男人天堂| 露出奶头的视频| 久久 成人 亚洲| 亚洲五月婷婷丁香| 久久人人97超碰香蕉20202| 亚洲国产精品成人综合色| 久久人妻av系列| www国产在线视频色| 99国产精品一区二区蜜桃av| 日本 欧美在线| aaaaa片日本免费| 国产在线精品亚洲第一网站| 亚洲精品中文字幕在线视频| 99国产精品免费福利视频| 亚洲五月婷婷丁香| 黄色毛片三级朝国网站| 国产99久久九九免费精品| av超薄肉色丝袜交足视频| 亚洲精品国产色婷婷电影| 亚洲成a人片在线一区二区| 久久九九热精品免费| 免费看美女性在线毛片视频| 村上凉子中文字幕在线| 国产激情欧美一区二区| 成人三级做爰电影| 日韩av在线大香蕉| 在线免费观看的www视频| 亚洲少妇的诱惑av| 国产精品日韩av在线免费观看 | 亚洲一区高清亚洲精品| 变态另类成人亚洲欧美熟女 | 欧美中文综合在线视频| 变态另类成人亚洲欧美熟女 | 国产精品一区二区在线不卡| 婷婷丁香在线五月| 久久久久久久久中文| 精品久久久久久久毛片微露脸| 国产蜜桃级精品一区二区三区| 国产又色又爽无遮挡免费看| 国产成人系列免费观看| 动漫黄色视频在线观看| 中文字幕精品免费在线观看视频| 制服人妻中文乱码| 精品日产1卡2卡| 黄色片一级片一级黄色片| 成年人黄色毛片网站| 长腿黑丝高跟| 国产精品免费一区二区三区在线| 精品卡一卡二卡四卡免费| 一进一出抽搐动态| 精品福利观看| 久久久久久久久中文| 在线观看午夜福利视频| 国产精品九九99| 啪啪无遮挡十八禁网站| 久久天堂一区二区三区四区| 精品人妻1区二区| 欧美黑人精品巨大| 久久欧美精品欧美久久欧美| 久久香蕉精品热| 好看av亚洲va欧美ⅴa在| 国产区一区二久久| 在线观看免费午夜福利视频| 亚洲午夜理论影院| 男女之事视频高清在线观看| 老熟妇仑乱视频hdxx| 精品福利观看| 怎么达到女性高潮| 国产精品美女特级片免费视频播放器 | 国产三级黄色录像| 精品无人区乱码1区二区| 成人欧美大片| 午夜影院日韩av| 中文字幕另类日韩欧美亚洲嫩草| 欧美人与性动交α欧美精品济南到| 一级毛片精品| 一级a爱片免费观看的视频| 麻豆av在线久日| 国内久久婷婷六月综合欲色啪| 老汉色∧v一级毛片| 免费高清在线观看日韩| 两人在一起打扑克的视频| 国产精品野战在线观看| 91九色精品人成在线观看| 两性夫妻黄色片| 别揉我奶头~嗯~啊~动态视频| 99久久精品国产亚洲精品| 性少妇av在线| 亚洲一区高清亚洲精品| 精品欧美一区二区三区在线| 级片在线观看| 久久人妻av系列| 不卡av一区二区三区| 97人妻天天添夜夜摸| 久久精品国产清高在天天线| 夜夜夜夜夜久久久久| 国产成+人综合+亚洲专区| 午夜a级毛片| 男女下面插进去视频免费观看| 午夜久久久在线观看| 少妇粗大呻吟视频| 免费人成视频x8x8入口观看| 窝窝影院91人妻| 日本五十路高清| 久久久久久国产a免费观看| 性欧美人与动物交配| 一二三四在线观看免费中文在| av有码第一页| 亚洲午夜理论影院| 宅男免费午夜| 亚洲精品国产一区二区精华液| 亚洲中文字幕日韩| 久久香蕉国产精品| 国产精品一区二区在线不卡| 在线视频色国产色| 欧美色视频一区免费| 一级毛片高清免费大全| 午夜a级毛片| 一本久久中文字幕| 亚洲中文日韩欧美视频| 在线永久观看黄色视频| 精品午夜福利视频在线观看一区| 一区二区三区高清视频在线| 黄片大片在线免费观看| 精品久久久精品久久久| 美女高潮喷水抽搐中文字幕| 中出人妻视频一区二区| 国语自产精品视频在线第100页| 91精品三级在线观看| 香蕉国产在线看| 国产成人免费无遮挡视频| 女人高潮潮喷娇喘18禁视频| 桃红色精品国产亚洲av| 在线十欧美十亚洲十日本专区| 国产黄a三级三级三级人| 人人妻人人澡人人看| 一级毛片精品| 十八禁网站免费在线| 亚洲成国产人片在线观看| 久久久久久免费高清国产稀缺| 久久久国产精品麻豆| 国产aⅴ精品一区二区三区波| 午夜福利高清视频| 视频在线观看一区二区三区| 岛国在线观看网站| 久久久久久国产a免费观看| 国产人伦9x9x在线观看| av天堂在线播放| 国产色视频综合| 久久久久久久久中文| 精品国产一区二区三区四区第35| 老司机午夜十八禁免费视频| 精品一区二区三区视频在线观看免费| 日本a在线网址| 伦理电影免费视频| 女人高潮潮喷娇喘18禁视频| 精品国产一区二区久久| 欧美精品亚洲一区二区| 狠狠狠狠99中文字幕| 在线播放国产精品三级| 天天躁狠狠躁夜夜躁狠狠躁| 国产伦人伦偷精品视频| 免费一级毛片在线播放高清视频 | 99久久国产精品久久久| 在线观看66精品国产| 亚洲激情在线av| 大香蕉久久成人网| 日韩精品中文字幕看吧| 久久人妻福利社区极品人妻图片| 精品久久久久久久久久免费视频| 18禁观看日本| 午夜免费激情av| 欧美精品啪啪一区二区三区| 中文字幕人妻丝袜一区二区| 成人18禁高潮啪啪吃奶动态图| 黑人巨大精品欧美一区二区蜜桃| 十八禁人妻一区二区| 在线观看舔阴道视频| 国产午夜精品久久久久久| 色综合欧美亚洲国产小说| 欧美+亚洲+日韩+国产| 中亚洲国语对白在线视频| 99国产精品99久久久久| 国产精品日韩av在线免费观看 | 国产精品一区二区三区四区久久 | 老司机午夜十八禁免费视频| 欧美+亚洲+日韩+国产| 午夜福利在线观看吧| 岛国在线观看网站| 俄罗斯特黄特色一大片| 中文字幕高清在线视频| 中文字幕人妻丝袜一区二区| 国产精品一区二区在线不卡| 亚洲片人在线观看| 欧美一级毛片孕妇| 97碰自拍视频| 黄频高清免费视频| 可以在线观看的亚洲视频| 久久久国产精品麻豆| 长腿黑丝高跟| 丰满的人妻完整版| 色精品久久人妻99蜜桃| 一进一出抽搐gif免费好疼| 黄片小视频在线播放| 国产精华一区二区三区| 人人澡人人妻人| 丝袜在线中文字幕| 欧美日本中文国产一区发布| 黄色片一级片一级黄色片| 久久人妻av系列| 午夜精品国产一区二区电影| 久久久水蜜桃国产精品网| 99久久国产精品久久久| 精品久久久久久成人av| 欧美不卡视频在线免费观看 | 免费看美女性在线毛片视频| 国产av一区在线观看免费| 国产三级在线视频| 欧美成人一区二区免费高清观看 | 久久国产精品人妻蜜桃| 人人妻人人澡欧美一区二区 | 一夜夜www| 久9热在线精品视频| 国内精品久久久久精免费| 日本五十路高清| 久久精品成人免费网站| 夜夜看夜夜爽夜夜摸| 欧美激情 高清一区二区三区| 99久久精品国产亚洲精品| 久热爱精品视频在线9| 在线天堂中文资源库| 精品无人区乱码1区二区| 九色亚洲精品在线播放| 亚洲第一青青草原| 99久久国产精品久久久| 老熟妇乱子伦视频在线观看| 免费高清视频大片| 首页视频小说图片口味搜索| 身体一侧抽搐| 日日干狠狠操夜夜爽| 一级毛片女人18水好多| 嫩草影视91久久| cao死你这个sao货| 国产精品永久免费网站| 神马国产精品三级电影在线观看 | 欧美精品亚洲一区二区| 色综合亚洲欧美另类图片| 男女下面插进去视频免费观看| 可以免费在线观看a视频的电影网站| 日韩精品中文字幕看吧| 免费av毛片视频| 大香蕉久久成人网| 在线播放国产精品三级| 老熟妇仑乱视频hdxx| 露出奶头的视频| 性少妇av在线| 成人国产综合亚洲| 十八禁网站免费在线| 午夜免费成人在线视频| 亚洲成人精品中文字幕电影| videosex国产| 午夜精品久久久久久毛片777| 免费观看精品视频网站| 曰老女人黄片| 在线免费观看的www视频| 亚洲人成伊人成综合网2020| 黄色毛片三级朝国网站| 人人妻人人澡欧美一区二区 | 午夜福利成人在线免费观看| 国产精品国产高清国产av| 久久久久亚洲av毛片大全| а√天堂www在线а√下载| 国产成人av激情在线播放| 久久人人97超碰香蕉20202| 亚洲av日韩精品久久久久久密| 99久久精品国产亚洲精品| 国产精品99久久99久久久不卡| АⅤ资源中文在线天堂| 国产精品秋霞免费鲁丝片| 一本大道久久a久久精品| 色综合站精品国产| 国产成人av激情在线播放| 亚洲第一青青草原| 国产片内射在线| 一a级毛片在线观看| 精品久久久久久成人av| 国产高清激情床上av| 亚洲欧洲精品一区二区精品久久久| 国产不卡一卡二| 亚洲第一电影网av| 一级a爱片免费观看的视频| 国产精品秋霞免费鲁丝片| 在线观看66精品国产| 亚洲电影在线观看av| 精品国产美女av久久久久小说| 99久久国产精品久久久| 午夜激情av网站| 国产主播在线观看一区二区| 亚洲人成电影免费在线| 91九色精品人成在线观看| av有码第一页| 亚洲免费av在线视频| 欧美乱码精品一区二区三区| 午夜福利一区二区在线看| 久久草成人影院| 熟女少妇亚洲综合色aaa.| 99久久久亚洲精品蜜臀av| 色播亚洲综合网| www日本在线高清视频| 久久久久久国产a免费观看| 成人亚洲精品av一区二区| 老熟妇乱子伦视频在线观看| 久久久久久大精品| 欧美成人免费av一区二区三区| 成人三级黄色视频| 69av精品久久久久久| 欧美久久黑人一区二区| 久久天堂一区二区三区四区| 亚洲avbb在线观看| 免费久久久久久久精品成人欧美视频| 久久久久亚洲av毛片大全| 精品免费久久久久久久清纯| √禁漫天堂资源中文www| 一级a爱片免费观看的视频| 亚洲国产欧美一区二区综合| 欧美大码av| 乱人伦中国视频| 91国产中文字幕| 亚洲天堂国产精品一区在线| 午夜免费成人在线视频| 亚洲av熟女| 热re99久久国产66热| 变态另类丝袜制服| 天堂影院成人在线观看| 国产成人欧美| 18禁裸乳无遮挡免费网站照片 | 电影成人av| 亚洲精品国产色婷婷电影| 国产又色又爽无遮挡免费看| 国产麻豆成人av免费视频| 日韩精品中文字幕看吧| 制服丝袜大香蕉在线| 国内精品久久久久精免费| 亚洲成人精品中文字幕电影| 国产精品秋霞免费鲁丝片| 激情在线观看视频在线高清| 久久人妻福利社区极品人妻图片| 中文字幕久久专区| 亚洲,欧美精品.| 精品第一国产精品| 国产又爽黄色视频| 精品一区二区三区四区五区乱码| 欧美一区二区精品小视频在线| 老鸭窝网址在线观看| 精品久久久精品久久久| 亚洲九九香蕉| 脱女人内裤的视频| 欧美午夜高清在线| 久久精品国产99精品国产亚洲性色 | 最近最新中文字幕大全免费视频| 欧美色视频一区免费| 国产精品免费视频内射| 日韩精品免费视频一区二区三区| 成年人黄色毛片网站| www日本在线高清视频| 999久久久精品免费观看国产| 后天国语完整版免费观看| 久久久久久人人人人人| 久久天躁狠狠躁夜夜2o2o| 国内精品久久久久精免费| 91成人精品电影| 亚洲免费av在线视频| 国产午夜福利久久久久久| 黄色视频,在线免费观看| 国产区一区二久久| 国产精品免费视频内射| 亚洲av成人av| 久久伊人香网站| 久久精品国产亚洲av香蕉五月| 99久久综合精品五月天人人| 人人妻人人澡欧美一区二区 | 最近最新中文字幕大全电影3 | 制服人妻中文乱码| 婷婷精品国产亚洲av在线| 午夜精品在线福利| 国产精品1区2区在线观看.| 69av精品久久久久久| 日日摸夜夜添夜夜添小说| 亚洲成av片中文字幕在线观看| 可以在线观看的亚洲视频| 欧美成人午夜精品| 51午夜福利影视在线观看| 亚洲自偷自拍图片 自拍| 日韩欧美一区二区三区在线观看| 国产单亲对白刺激| 国产真人三级小视频在线观看| 亚洲人成伊人成综合网2020| 777久久人妻少妇嫩草av网站| 久久久久久久精品吃奶| 超碰成人久久| 99国产综合亚洲精品| 色播在线永久视频| 十八禁网站免费在线| 国产成人av激情在线播放| 欧美黑人欧美精品刺激| 国产精品永久免费网站| 午夜福利高清视频| 国产极品粉嫩免费观看在线| 一区二区三区激情视频| 男女下面插进去视频免费观看| 色婷婷久久久亚洲欧美| 成在线人永久免费视频| 欧美久久黑人一区二区| 黄片小视频在线播放| 午夜成年电影在线免费观看| 男人舔女人的私密视频| 在线观看午夜福利视频| 侵犯人妻中文字幕一二三四区| 精品免费久久久久久久清纯| 国产成人av激情在线播放| 亚洲熟妇中文字幕五十中出| 正在播放国产对白刺激| 99国产精品免费福利视频| 熟女少妇亚洲综合色aaa.| 亚洲第一av免费看| 婷婷丁香在线五月| 日韩成人在线观看一区二区三区| 国产高清有码在线观看视频 | 九色国产91popny在线| 在线视频色国产色| 69精品国产乱码久久久| www日本在线高清视频| 久久精品人人爽人人爽视色| xxx96com| 人人妻人人爽人人添夜夜欢视频| 午夜久久久在线观看| 亚洲片人在线观看| 两个人看的免费小视频| 国产av一区二区精品久久| 亚洲男人的天堂狠狠| 男女下面进入的视频免费午夜 | 1024香蕉在线观看| 久久人妻av系列| 91成人精品电影| 亚洲一区高清亚洲精品| 自线自在国产av| 亚洲色图 男人天堂 中文字幕| 国产亚洲精品一区二区www| 日韩三级视频一区二区三区| 欧美国产日韩亚洲一区| 婷婷六月久久综合丁香| 久久精品国产99精品国产亚洲性色 | 激情在线观看视频在线高清| cao死你这个sao货| 成人国产综合亚洲| 亚洲精品中文字幕一二三四区| 99精品在免费线老司机午夜| 少妇被粗大的猛进出69影院| 午夜福利成人在线免费观看| 亚洲美女黄片视频| 非洲黑人性xxxx精品又粗又长| 嫩草影视91久久| 国产极品粉嫩免费观看在线| 女同久久另类99精品国产91| 亚洲中文av在线| 色综合婷婷激情| 亚洲av日韩精品久久久久久密| 夜夜躁狠狠躁天天躁| 国产黄a三级三级三级人| 一级毛片女人18水好多| 国产精品香港三级国产av潘金莲| 国产97色在线日韩免费| 久久国产精品男人的天堂亚洲| 免费在线观看亚洲国产| 12—13女人毛片做爰片一| 麻豆国产av国片精品| 久久香蕉精品热| 天天添夜夜摸| 99久久精品国产亚洲精品| 亚洲精品国产区一区二| 午夜福利,免费看| 久久久久久久久中文| 国产主播在线观看一区二区| 久久人人爽av亚洲精品天堂| 国产一卡二卡三卡精品| 一卡2卡三卡四卡精品乱码亚洲| 亚洲无线在线观看| 无限看片的www在线观看| 国产av精品麻豆| 法律面前人人平等表现在哪些方面| 午夜福利欧美成人| 成人亚洲精品av一区二区| 欧美在线黄色| 国产精品美女特级片免费视频播放器 | 美女免费视频网站| 久久精品国产99精品国产亚洲性色 | 亚洲国产欧美日韩在线播放|