• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A note on the Galilean invariance of aerodynamic force theories in unsteady incompressible flows

    2019-05-07 04:57:56AnKangGaoJiezhiWu
    Acta Mechanica Sinica 2019年6期

    An-Kang Gao·Jiezhi Wu

    Abstract As a basic principle in classical mechanics, the Galilean invariance states that the force is the same in all inertial frames of reference.But this principle has not been properly addressed by most unsteady aerodynamic force theories,if the partial force contributed by a local flow structure is to be evaluated.In this note,we discuss the Galilean-invariance conditions of the partial force for several typical theories and numerically test what would happen if these conditions do not hold.

    Keywords Galilean invariance·Aerodynamic force theory·Unsteady flow·Flow diagnoses

    1 Introduction

    Flapping is a common manner in animal locomotion at low Reynolds numbers.By flapping their wings,insects can produce much larger force than steady wings[1–3].This enables species such as bumblebee,which is proclaimed to be unfit to fly by steady aerodynamics,to stay aloft[4].

    The high-lift mechanisms in unsteady flows have been explored extensively[3,5–8].It has been widely recognized that vortices shed from the wing are vital for the high lift.Li and Lu [9] further found that vortical structures close to the body dominate force generation. However, due to the high unsteadiness of the flow and complexity of vortex motions[10,11],a quantitative evaluation of the partial force contributed by a specific flow structure is not an easy task,and many theories have been developed for this aim [12].One common feature of these aerodynamic force theories is that the wall-stress integral in calculating the total force is replaced by field integrals, because the flow field contains much richer information than the wall surface does. In so doing, a direct link can be established between flow structures and aerodynamic force.

    In classical mechanics,the Galilean invariance is a basic principle that states the force is independent of the choice of inertial frame of reference. The total force is certainly Galilean invariant. Unfortunately, the partial force may not be, since most of the integrands of the field-integral force theories are not Galilean invariant. This means that, when judging the partial force contributed by a local flow structure,the result may be nonunique if different frames of reference are used, which weakens the objectivity of the result and has become a pressing problem that hinders the applications of the theories. This situation motivates us to explore the sufficient and necessary conditions for ensuring the Galilean invariance of the partial force, and to examine what would happen if these conditions do not hold.

    Since each theory has its own view in analyses,the comparisons of different theories are not our concern.In addition,our discussion is limited to unsteady flows,because in steady flows there exists a special frame of reference where the flow is steady and the force theories can be greatly simplified.

    2 Definition for the Galilean invariance of partial force

    Consider a body B submerged in an incompressible flow with constant density.The flow velocity is u,the vorticity is ω = ?×u, and the viscous coefficient is μ. The material derivative D/D t will be denoted by D. Let ?n be the unit normal vector pointing out of the body,the force exerted on the body can be calculated by wall-stress integral as

    This formula is convenient in computational fluid dynamics,but it does not reveal which flow structure is important to the force.Therefore,to link the aerodynamic force with flow structures,the control-volume integral is introduced.

    As shown in Fig. 1, the control volume Vfis bounded internally by ?B and externally by,with n being the unit normal vector pointing out of the Vf.On the body surface?B,there is n =If the V f contains the whole fluid region,i.e.,is infinitely far from the body,the V f is also denoted by V∞.For simplicity,we assume the Vfis a material fluid volume,so Vfis Galilean invariant itself.

    In general, a field-integral force theory is constituted by a body-surface integral, an outer-boundary integral, and a volume integral

    The integrand Ivol= Ivol(x,u,ρ,p,μ, D u,?u) represents the force contributed by local flow structures. Let Ω be a material subregion in Vfand ?Ω its boundary,then,the partial force contributed by flow structures in Ω is

    In unsteady flows,there is no optimal frame of reference.To describe the fluid motion,assume we choose two inertial frames of reference with coordinates x and ~x respectively.The Galilean transformation between them is

    and the velocities are transformed by

    Note that ρ, p, μ, D u, and ?u are all Galilean invariant.For simplicity, the dependence of Ivolon these Galileaninvariant variables is omitted, so the simplified notation Ivol= Ivol(x,u)is used henceforth.

    The Galilean relativity asserts that the force is the same viewed in all inertial frames of reference.Hence,there should be

    for any constants x0and U0.Equation(6)does not unconditionally hold for most force theories,and the sufficient and necessary conditions to ensure Eq. (6) will be given in the next section.There,the following two lemmas will be useful.

    Lemma 1Suppose f(u)is a linear function of u and that S is a line segment,surface,or volume.Then,f(u)d S holds for any constant U0if and only if

    where ?udenotes the gradient with respect to u.

    Lemma 2Suppose f(u) is a linear function of u and that S is a line segment,surface,or volume.Let°represent the dot product,cross product,or tensor product of two vectors.Then,f(u+U0)°(x+x0)d S =f(u)°x d S holds for any constants x0and U0if and only if the following three conditions are satisfied simultaneously

    Here,?udenotes the gradient with respect to u.

    These two lemmas can be proved using f(u + U0) =f(u)+U0·?uf(u)and f(u+U0)°(x+x0)= f(u)°x+ f(u)°x0+U0·?uf(u)°x+U0·?uf(u)°x0,and then let the integrals of these coefficients vanish.

    Strictly speaking, the surface integral over ?B andin Eq.(2)should also be Galilean invariant[13],but this property does not unconditionally hold for most theories either.To derive the Galilean-invariance conditions for the surface integrals, the same method used in dealing with the volume integral can be adopted. For clarity, we only discuss the volume-integral term in this note.

    3 Galilean-invariance conditions for several typical aerodynamic force theories

    The sufficient and necessary conditions to ensure the Galilean invariance of FΩare specified in this section for several typical aerodynamic force theories.For convenience,we number the theories(Ts)by n(n =1,2,...)in logical order,and add a subscript n to FΩand Ivolfor the n-th theory.

    3.1 Force-element theory

    In the force-element theory[14–16],the V f is V∞.A singlevalued auxiliary function φ j is introduced. The φ j satisfies

    in the flow field.On the body surface,n·?φj=-ej·n;at infinitely far field,φ j goes to zero.Here,(e1,e2,e3)are the unit basis vectors of the coordinate system.The force in the j-th direction is

    with l =ω×u being the Lamb vector and

    It can be proved that

    Hence using Lemma 1,the sufficient and necessary condition for the Galilean invariance of FΩ,1·e j is

    3.2 Weighted pressure-source theory

    In the weighted pressure-source theory[17],the force in the j-th direction is

    with I?B,2=ρφ j D u·n-μφjn·?2u+μ(n×ω)·e j and Q =-0.5?u:?u.Note that Q >0 is also used to identify vortical structures,known as the Q-criterion.Although Q is less compact than vorticity, the integrand Ivol,2is Galilean invariant unconditionally,so is FΩ,2.

    3.3 Unsteady vortex-force theory

    In the unsteady vortex-force theory[18],the force is

    with k+1 being the space dimension. FBand Fare

    and

    respectively.

    Using the derivative momentum transformations [18], it can be proved that

    with L =ρl+μ?×ω.Since ?u(n×L)=ρ(nω-eiein·ω), the sufficient and necessary condition for the Galilean invariance of FΩ,3can be derived using Lemma 2 as

    3.4 Kinetic force theory

    In the kinetic force theory[18],the force is

    It can be proved that

    Using Lemma 2, the sufficient and necessary condition for the Galilean invariance of FΩ,4is

    3.5 Impulse theory

    The impulse theory is developed independently by Burgers[19],Wu[20],and Lighthill[21],and it has been widely used in unsteady aerodynamics[3,9,22].In the impulse theory,the force is

    The sufficient and necessary condition for the Galilean invariance of FΩ,5is

    i.e.,the total vorticity in Ω is zero.

    In Ref.[23],a minimum-domain impulse theory is developed to minimize the integral domain by excluding all the discrete vortical structures from V∞.The force is

    In two-dimensional (2-D) flows, F,6= F,4. Generally,it can be proved that

    Since ?u(n× L -ρωn·u) = -ρeiein·ω,the sufficient and necessary condition for the Galilean invariance of F,6is

    which reduced to Eq.(21)in 2-D flows due to n·ω=0.

    4 Numerical results

    The abruptly accelerated flow past a 1/8 ellipse at 45°angle of attack is simulated using the spectral/hp element method[24],with Reynolds number R e=ρU0c/μ=1500,see Fig. 1. ρ = 1, the incoming flow velocity is U0= 1,and the chord length is c = 1. For details and validations of the numerical method see Refs. [17,24]. The lift coefficient and vorticity field at t = 0.3 are shown in Fig. 2a, b,respectively.

    Fig. 2 a Lift coefficient of the ellipse. C L p is the pressure force.b Vorticity field at t =0.3.Dashed line is negative

    Fig.3 Partial forces contributed by regions G and H, viewed in two frames of reference

    Two frames of reference are used.As shown in Fig.1, x is the coordinate in the frame moving with the body,and ~x is that in the frame moving with the incoming flow.There are x =and u=.At time t =0.3,a circle G ={(x,y)|x2+y2≤1 and 65x2+65 y2+126x y ≥0.5}(see Fig.1)and a half circle H ={(x,y)|(x,y)∈G and xy ≤0}(see Fig.2b)are used as the material control volumes.

    The circle G contains all the vorticity with zero circulation and more than 99.5% of Ivol,2.Numerical results show that G satisfies all the Galilean-invariance conditions at an accuracy of 10-4, which equals zero approximately. Therefore,FG,n(n = 1,2,...,6) are all Galilean invariant, which is confirmed by numerical results of the lift coefficient(scaled bysee circle symbols in Fig. 3. The relatively large gap between FG,1(or FG,2)and CLis caused by the viscous term in the wall-surface integral,which in this case is of O(R e-0.5)~0.03.

    The half circle H contains the leading-edge vortex, but its total vorticity is nonzero and varies with time.So, FH,n(n /= 2) are not Galilean invariant and hence not uniquely defined, see left-triangle symbols in Fig. 3. This situation should be avoided in applications.

    5 Conclusion

    The Galilean invariance of the aerodynamic force theories in unsteady incompressible flow is discussed.Although the total force is Galilean invariant,it is proved that the partial force contributed by a local flow structure may not be Galilean invariant for most theories. The Galilean-invariance conditions for several typical theories are found and numerically checked.

    AcknowledgementsThis work was supported by the National Natural Science Foundation of China(Grant 11472016).

    日日啪夜夜撸| 亚洲欧美中文字幕日韩二区| 精品午夜福利在线看| 久久久午夜欧美精品| 午夜福利高清视频| 色网站视频免费| 欧美激情久久久久久爽电影| 精品久久久久久久久久久久久| 欧美xxxx性猛交bbbb| 一区二区三区乱码不卡18| 国产精品三级大全| 26uuu在线亚洲综合色| 日韩欧美 国产精品| 日韩,欧美,国产一区二区三区 | 亚洲国产高清在线一区二区三| 熟妇人妻久久中文字幕3abv| 久久精品国产鲁丝片午夜精品| 麻豆乱淫一区二区| 建设人人有责人人尽责人人享有的 | 久久精品夜夜夜夜夜久久蜜豆| 亚洲欧美精品自产自拍| 国产极品精品免费视频能看的| 高清午夜精品一区二区三区| 看免费成人av毛片| 亚洲成色77777| 国产老妇女一区| 嫩草影院精品99| 国产白丝娇喘喷水9色精品| 亚洲色图av天堂| 伊人久久精品亚洲午夜| 伦理电影大哥的女人| 国产精品.久久久| 黄色一级大片看看| 熟妇人妻久久中文字幕3abv| 日韩在线高清观看一区二区三区| 成人欧美大片| 久久久久久久久中文| 日韩在线高清观看一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品不卡视频一区二区| 亚洲色图av天堂| 人妻夜夜爽99麻豆av| 永久免费av网站大全| 一区二区三区高清视频在线| 麻豆久久精品国产亚洲av| 国产乱人视频| 男的添女的下面高潮视频| 日韩av不卡免费在线播放| 91av网一区二区| eeuss影院久久| 99热网站在线观看| 国产精品一及| 又粗又硬又长又爽又黄的视频| 国产一区二区亚洲精品在线观看| 超碰av人人做人人爽久久| 日韩强制内射视频| 国产精品一区二区三区四区久久| 日本猛色少妇xxxxx猛交久久| 亚洲国产精品专区欧美| 最近最新中文字幕免费大全7| 最近最新中文字幕免费大全7| 听说在线观看完整版免费高清| 在线观看美女被高潮喷水网站| 亚洲精品影视一区二区三区av| 99久久精品国产国产毛片| 精品一区二区三区视频在线| 最后的刺客免费高清国语| 久久久色成人| 99热6这里只有精品| 日韩一区二区三区影片| 如何舔出高潮| 国产在视频线在精品| 久久久久久久久久久丰满| 亚洲国产精品久久男人天堂| 大又大粗又爽又黄少妇毛片口| 免费av观看视频| 少妇高潮的动态图| av在线蜜桃| 97人妻精品一区二区三区麻豆| 日本午夜av视频| 美女黄网站色视频| 男女边吃奶边做爰视频| 久久精品久久精品一区二区三区| 精品久久久久久久末码| 99久久精品国产国产毛片| 日韩 亚洲 欧美在线| 日本一二三区视频观看| 午夜免费激情av| 国产精华一区二区三区| 欧美zozozo另类| 精品免费久久久久久久清纯| 国产高清国产精品国产三级 | 国产成人91sexporn| 久久人人爽人人爽人人片va| 亚洲自偷自拍三级| 国产精品一及| 男女下面进入的视频免费午夜| 美女国产视频在线观看| 99九九线精品视频在线观看视频| 一本久久精品| 免费看日本二区| 青春草视频在线免费观看| 网址你懂的国产日韩在线| 91久久精品电影网| 亚洲欧美成人综合另类久久久 | 可以在线观看毛片的网站| 大香蕉久久网| 国产午夜福利久久久久久| 国产午夜精品久久久久久一区二区三区| 少妇丰满av| 久久久久久久午夜电影| 欧美xxxx黑人xx丫x性爽| 久久久久性生活片| 国产亚洲一区二区精品| 热99re8久久精品国产| 免费看日本二区| 国产伦精品一区二区三区四那| 欧美成人精品欧美一级黄| 久久久久久久国产电影| 国产淫片久久久久久久久| 蜜桃亚洲精品一区二区三区| 国产av一区在线观看免费| 国产激情偷乱视频一区二区| 久久鲁丝午夜福利片| 亚洲欧美精品自产自拍| 91aial.com中文字幕在线观看| 亚洲伊人久久精品综合 | 99久久成人亚洲精品观看| 男女那种视频在线观看| 人人妻人人看人人澡| 白带黄色成豆腐渣| 三级国产精品欧美在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 99久国产av精品国产电影| 国产精品一二三区在线看| videos熟女内射| 亚洲成av人片在线播放无| 精品少妇黑人巨大在线播放 | 一区二区三区四区激情视频| 国产精品熟女久久久久浪| 麻豆av噜噜一区二区三区| 在线播放国产精品三级| 岛国毛片在线播放| 男的添女的下面高潮视频| 97人妻精品一区二区三区麻豆| 国产亚洲午夜精品一区二区久久 | 亚洲av中文av极速乱| 亚洲成人中文字幕在线播放| 久久99热这里只有精品18| 麻豆国产97在线/欧美| 精品久久久久久久末码| 麻豆精品久久久久久蜜桃| 蜜桃久久精品国产亚洲av| 国产成人午夜福利电影在线观看| 国产精品99久久久久久久久| 身体一侧抽搐| 成人国产麻豆网| 国产精品日韩av在线免费观看| 丰满少妇做爰视频| 最近的中文字幕免费完整| 老女人水多毛片| 国产伦在线观看视频一区| 亚洲国产高清在线一区二区三| 国产午夜精品久久久久久一区二区三区| 少妇的逼好多水| 一区二区三区免费毛片| 韩国高清视频一区二区三区| 国产在视频线在精品| 精品少妇黑人巨大在线播放 | 两个人视频免费观看高清| 欧美色视频一区免费| 亚洲av电影不卡..在线观看| 亚洲丝袜综合中文字幕| 波野结衣二区三区在线| 国产午夜精品久久久久久一区二区三区| 国产黄a三级三级三级人| 亚洲国产最新在线播放| 久99久视频精品免费| 国产单亲对白刺激| 欧美高清性xxxxhd video| 一级爰片在线观看| 伊人久久精品亚洲午夜| 网址你懂的国产日韩在线| 精品一区二区三区人妻视频| 中文字幕av成人在线电影| 久久精品久久久久久噜噜老黄 | 国产亚洲av片在线观看秒播厂 | 欧美xxxx性猛交bbbb| 国产黄色视频一区二区在线观看 | 国产精品无大码| 日韩大片免费观看网站 | 久久久国产成人精品二区| 午夜视频国产福利| 国产精品99久久久久久久久| 久久精品人妻少妇| 亚洲18禁久久av| 男人的好看免费观看在线视频| 一卡2卡三卡四卡精品乱码亚洲| 国产精品不卡视频一区二区| 久久精品91蜜桃| 国产不卡一卡二| 综合色av麻豆| 中文乱码字字幕精品一区二区三区 | 欧美区成人在线视频| 亚洲经典国产精华液单| 国产一区二区在线观看日韩| 一级毛片电影观看 | 国产久久久一区二区三区| 日韩欧美在线乱码| 人人妻人人澡人人爽人人夜夜 | 国产精品国产高清国产av| 黄片无遮挡物在线观看| 久久综合国产亚洲精品| 国产精品一区www在线观看| 午夜久久久久精精品| 国语自产精品视频在线第100页| 男女下面进入的视频免费午夜| 国产黄色小视频在线观看| 久99久视频精品免费| 美女被艹到高潮喷水动态| 黄色一级大片看看| av国产免费在线观看| 国产一区二区在线av高清观看| av女优亚洲男人天堂| 久热久热在线精品观看| 久久久欧美国产精品| 在线观看av片永久免费下载| 久久这里只有精品中国| 亚洲av熟女| 内地一区二区视频在线| 三级男女做爰猛烈吃奶摸视频| 菩萨蛮人人尽说江南好唐韦庄 | 少妇熟女欧美另类| 亚洲在线观看片| 高清午夜精品一区二区三区| 色综合亚洲欧美另类图片| 卡戴珊不雅视频在线播放| 91精品国产九色| 亚洲最大成人中文| 日韩精品有码人妻一区| 久久精品久久精品一区二区三区| 久久草成人影院| 国产免费男女视频| 五月伊人婷婷丁香| 男女边吃奶边做爰视频| 好男人在线观看高清免费视频| 99热这里只有是精品50| .国产精品久久| 久久久久久伊人网av| 亚洲av免费高清在线观看| 精品人妻一区二区三区麻豆| 网址你懂的国产日韩在线| 亚洲av成人精品一二三区| 欧美激情在线99| 亚洲久久久久久中文字幕| 内射极品少妇av片p| 亚洲精品日韩在线中文字幕| 国产一区二区在线av高清观看| 亚洲欧美日韩高清专用| 国产一区有黄有色的免费视频 | 国产色爽女视频免费观看| 免费av不卡在线播放| 国产精品久久久久久精品电影| videossex国产| 乱码一卡2卡4卡精品| 搞女人的毛片| 哪个播放器可以免费观看大片| 国产精品女同一区二区软件| 人妻系列 视频| 亚洲,欧美,日韩| 色噜噜av男人的天堂激情| 久久久精品94久久精品| 成人性生交大片免费视频hd| 激情 狠狠 欧美| 亚洲高清免费不卡视频| 国产麻豆成人av免费视频| 国产成人午夜福利电影在线观看| 99视频精品全部免费 在线| 中文欧美无线码| 一区二区三区四区激情视频| 国产一级毛片在线| 欧美不卡视频在线免费观看| 91久久精品电影网| 免费av毛片视频| 亚洲欧美清纯卡通| 99久久成人亚洲精品观看| 免费无遮挡裸体视频| 少妇丰满av| 综合色丁香网| 九九爱精品视频在线观看| 亚洲中文字幕日韩| a级毛片免费高清观看在线播放| 日本黄色片子视频| 国产精品不卡视频一区二区| 91午夜精品亚洲一区二区三区| 亚洲国产欧美在线一区| 一二三四中文在线观看免费高清| 亚洲图色成人| 边亲边吃奶的免费视频| 在线a可以看的网站| 少妇人妻一区二区三区视频| 亚洲国产欧美在线一区| 国产麻豆成人av免费视频| 熟妇人妻久久中文字幕3abv| 日韩中字成人| 2021少妇久久久久久久久久久| 亚洲性久久影院| 一区二区三区高清视频在线| 美女黄网站色视频| 69人妻影院| 少妇熟女欧美另类| 久久精品国产亚洲av涩爱| 亚洲怡红院男人天堂| 水蜜桃什么品种好| 亚洲最大成人中文| 国产精品一及| 精品人妻熟女av久视频| 国产成人一区二区在线| 91午夜精品亚洲一区二区三区| 国产精品精品国产色婷婷| 美女高潮的动态| 九九在线视频观看精品| 亚洲最大成人av| 国产精品蜜桃在线观看| av天堂中文字幕网| 日韩大片免费观看网站 | 午夜老司机福利剧场| 国产中年淑女户外野战色| 国产伦精品一区二区三区四那| 99视频精品全部免费 在线| 久久国产乱子免费精品| 国国产精品蜜臀av免费| 男插女下体视频免费在线播放| 韩国高清视频一区二区三区| a级一级毛片免费在线观看| 欧美日韩一区二区视频在线观看视频在线 | 国产精品不卡视频一区二区| 亚洲av日韩在线播放| 色综合亚洲欧美另类图片| 欧美性感艳星| 国产亚洲av嫩草精品影院| 国产av一区在线观看免费| 波野结衣二区三区在线| 亚洲乱码一区二区免费版| 精品午夜福利在线看| 免费观看性生交大片5| 一二三四中文在线观看免费高清| 一区二区三区四区激情视频| 亚洲高清免费不卡视频| 日日摸夜夜添夜夜爱| 六月丁香七月| 丰满少妇做爰视频| 最近手机中文字幕大全| 久热久热在线精品观看| 亚洲av免费高清在线观看| 亚洲av熟女| 免费搜索国产男女视频| 久久综合国产亚洲精品| 亚洲最大成人av| 麻豆国产97在线/欧美| 亚洲av福利一区| 国国产精品蜜臀av免费| 成人特级av手机在线观看| 淫秽高清视频在线观看| 中文精品一卡2卡3卡4更新| 国产男人的电影天堂91| 噜噜噜噜噜久久久久久91| 少妇裸体淫交视频免费看高清| 精品免费久久久久久久清纯| 精品久久久久久成人av| 国产老妇女一区| 精品久久久久久久久av| 国产精品永久免费网站| 国产成人freesex在线| 久久久午夜欧美精品| 舔av片在线| 午夜激情欧美在线| 日韩国内少妇激情av| 亚洲av成人av| 色视频www国产| 亚洲丝袜综合中文字幕| 国产午夜福利久久久久久| 美女国产视频在线观看| 成人无遮挡网站| 又爽又黄a免费视频| 永久网站在线| 亚洲av福利一区| 成人性生交大片免费视频hd| 国产日韩欧美在线精品| 边亲边吃奶的免费视频| 国产精品日韩av在线免费观看| 最近的中文字幕免费完整| 在线播放无遮挡| 国产极品天堂在线| 亚洲最大成人av| 亚洲国产精品国产精品| 永久网站在线| 亚洲怡红院男人天堂| 日本av手机在线免费观看| 久久久色成人| 久久草成人影院| 午夜精品国产一区二区电影 | 国产成人一区二区在线| 一个人看的www免费观看视频| 久久99精品国语久久久| 淫秽高清视频在线观看| 国产亚洲精品久久久com| 久久精品国产鲁丝片午夜精品| 欧美+日韩+精品| 欧美日韩在线观看h| 欧美一区二区亚洲| 久久99热6这里只有精品| 欧美变态另类bdsm刘玥| 精品熟女少妇av免费看| 七月丁香在线播放| 日本一二三区视频观看| 成人美女网站在线观看视频| 国产av码专区亚洲av| 麻豆国产97在线/欧美| 麻豆av噜噜一区二区三区| 黄色配什么色好看| 97超视频在线观看视频| 99热6这里只有精品| 少妇高潮的动态图| 美女国产视频在线观看| 男插女下体视频免费在线播放| 赤兔流量卡办理| 26uuu在线亚洲综合色| 日韩欧美精品免费久久| 国产成人a区在线观看| 日本黄大片高清| www.色视频.com| 最近手机中文字幕大全| 久久久久久久久中文| 久久精品国产自在天天线| 亚洲最大成人手机在线| 欧美日本视频| 99久久精品热视频| 亚洲国产色片| 国产精品乱码一区二三区的特点| 亚洲综合色惰| 久久人人爽人人片av| 国产毛片a区久久久久| 国产一区亚洲一区在线观看| 99在线视频只有这里精品首页| 久久久精品大字幕| 久久精品91蜜桃| or卡值多少钱| 又爽又黄a免费视频| av在线蜜桃| 亚洲av电影在线观看一区二区三区 | 少妇的逼水好多| 看非洲黑人一级黄片| 在线观看66精品国产| 一区二区三区高清视频在线| 欧美性猛交╳xxx乱大交人| 久久精品国产鲁丝片午夜精品| 两个人的视频大全免费| 国产黄片视频在线免费观看| 观看免费一级毛片| 婷婷色麻豆天堂久久 | 青青草视频在线视频观看| 欧美高清性xxxxhd video| 三级国产精品欧美在线观看| 一级二级三级毛片免费看| 亚洲av电影不卡..在线观看| 亚洲电影在线观看av| 国产精品三级大全| 中文字幕制服av| 日本黄大片高清| 久久韩国三级中文字幕| 内射极品少妇av片p| or卡值多少钱| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品乱码久久久久久按摩| 超碰av人人做人人爽久久| 久久精品国产亚洲av天美| 永久网站在线| 久久精品久久精品一区二区三区| 久久精品久久久久久久性| 大香蕉久久网| 中文精品一卡2卡3卡4更新| 国产视频内射| 一级黄色大片毛片| 日日干狠狠操夜夜爽| 久久久久久久久久成人| 日韩欧美三级三区| 国产精品久久电影中文字幕| 永久网站在线| 国产高清有码在线观看视频| 夜夜爽夜夜爽视频| 亚洲精品成人久久久久久| 久久久色成人| 国产毛片a区久久久久| 国产国拍精品亚洲av在线观看| 亚洲av不卡在线观看| 精品一区二区三区人妻视频| 一夜夜www| 成人综合一区亚洲| 黄片wwwwww| 乱系列少妇在线播放| 黄色日韩在线| 综合色av麻豆| 国产亚洲av片在线观看秒播厂 | 中文字幕免费在线视频6| 久久久久久九九精品二区国产| 丝袜美腿在线中文| 亚洲丝袜综合中文字幕| 婷婷六月久久综合丁香| 国产中年淑女户外野战色| 亚洲成人av在线免费| 我要看日韩黄色一级片| 最近最新中文字幕大全电影3| 欧美日韩在线观看h| 99在线视频只有这里精品首页| 九草在线视频观看| 国产成人免费观看mmmm| 18禁裸乳无遮挡免费网站照片| 国产久久久一区二区三区| 黄色一级大片看看| 久久精品夜夜夜夜夜久久蜜豆| 91久久精品国产一区二区成人| 午夜精品国产一区二区电影 | 老司机影院成人| 亚洲在线观看片| 国产高潮美女av| 日本猛色少妇xxxxx猛交久久| 国产成人aa在线观看| 午夜视频国产福利| 国产精品国产三级专区第一集| 淫秽高清视频在线观看| 久久人人爽人人片av| 中国美白少妇内射xxxbb| 成人国产麻豆网| 国产亚洲av嫩草精品影院| 人人妻人人看人人澡| 久久欧美精品欧美久久欧美| 成人特级av手机在线观看| 男人狂女人下面高潮的视频| 黄色配什么色好看| 丰满乱子伦码专区| 丝袜喷水一区| 午夜a级毛片| 色视频www国产| 日韩一本色道免费dvd| 禁无遮挡网站| 一个人看的www免费观看视频| 超碰av人人做人人爽久久| 精品久久久久久久人妻蜜臀av| 日韩大片免费观看网站 | 中文字幕制服av| 国产三级在线视频| 日韩亚洲欧美综合| 人人妻人人澡人人爽人人夜夜 | 国产免费福利视频在线观看| 69av精品久久久久久| 亚洲,欧美,日韩| 久久精品综合一区二区三区| 亚洲在线观看片| 亚洲av.av天堂| 亚洲久久久久久中文字幕| 精品人妻视频免费看| 久久久久性生活片| 天天躁夜夜躁狠狠久久av| 插阴视频在线观看视频| 看十八女毛片水多多多| 国产黄片视频在线免费观看| 91精品一卡2卡3卡4卡| 久久精品综合一区二区三区| 国产日韩欧美在线精品| 七月丁香在线播放| 99热精品在线国产| or卡值多少钱| 亚洲国产日韩欧美精品在线观看| 国产黄色小视频在线观看| 亚洲无线观看免费| 搡老妇女老女人老熟妇| 日本熟妇午夜| 丝袜美腿在线中文| 国产白丝娇喘喷水9色精品| 深爱激情五月婷婷| 欧美高清成人免费视频www| 久久久久久久午夜电影| 国产淫语在线视频| 中文精品一卡2卡3卡4更新| 亚洲在线自拍视频| 色综合亚洲欧美另类图片| 免费黄网站久久成人精品| 精品人妻视频免费看| 欧美丝袜亚洲另类| 大香蕉久久网| 日日干狠狠操夜夜爽| 亚洲欧美日韩东京热| 久久99热这里只频精品6学生 | 麻豆久久精品国产亚洲av| 男人和女人高潮做爰伦理| 久久精品91蜜桃| 国产亚洲精品久久久com| 亚洲国产高清在线一区二区三| 亚洲va在线va天堂va国产| 成人亚洲欧美一区二区av| 欧美xxxx黑人xx丫x性爽| 国产高清不卡午夜福利| 一区二区三区免费毛片| 最近中文字幕2019免费版| 午夜老司机福利剧场| h日本视频在线播放| 亚洲五月天丁香| 精品不卡国产一区二区三区| 超碰av人人做人人爽久久| 亚洲在线自拍视频| 日本午夜av视频| 狂野欧美白嫩少妇大欣赏| 在线a可以看的网站| 一级二级三级毛片免费看|