• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cenozoic Ephedraceae adaptation to global cooling in northwestern China

    2011-12-09 09:36:32YunFaMiaoXiaoLiYanYaJunShaoBaoYang
    Sciences in Cold and Arid Regions 2011年5期

    YunFa Miao , XiaoLi Yan , YaJun Shao , Bao Yang

    1. Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China

    2. MOE Key Laboratory of Western China’s Environmental Systems & West Environment and Climate Changes Institute, Lanzhou University, Lanzhou 730000, China

    Cenozoic Ephedraceae adaptation to global cooling in northwestern China

    YunFa Miao1*, XiaoLi Yan2, YaJun Shao1, Bao Yang1

    1. Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China

    2. MOE Key Laboratory of Western China’s Environmental Systems & West Environment and Climate Changes Institute, Lanzhou University, Lanzhou 730000, China

    Ephedraceae has been applied largely as a drought indicator to reconstruct Cenozoic paleoenvironment and paleoclimate. However, temperature indication of Ephedraceae has been largely ignored. Here, we provide a record of Ephedraceae percentage spanning from the Early Eocene to Middle Miocene (52-17 Myr B.P.) in the Xining Basin, northeastern Tibetan Plateau. This record is comparable to a compiled Cenozoic Ephedraceae record from five other basins in northwestern China. Both records show Ephedraceae percentages were high during the Early Eocene, and decreased gradually from the Middle Eocene to Late Oligocene,then maintained a stable level since the Late Oligocene. By comparing these two Ephedraceae records with the marine oxygen isotope record, we discuss the variation of Ephedraceae percentage in Middle Cenozoic in response to global temperature change.Ephedraceae percentage was high in the Early Paleogene, associated with subtropical or tropical vegetation types in a global greenhouse climate, and decreased in Early Oligocene, associated with global cooling, suggesting that Ephedraceae is warm-tolerant during the Paleogene. The low Ephedraceae percentages in the Late Oligocene and Miocene were uncoupled with global warming, which may imply that Ephedraceae began to adapt to a eurythermic climate in the inland desert environment of western China. Such adaptation may be a response to the high topography of the Tibetan Plateau.

    Ephedraceae; adaptation; temperature; Tibetan Plateau; Cenozoic

    1. Introduction

    Globally, Cenozoic climate shows a cooling trend starting from approximately 55 Myr B.P. and a series of dramatic cooling events (Zachosetal., 2001), which is linked with the accelerated rate of atmospheric CO2consumption of fast silicate weathering triggered by the Indo-Asian collision and associated tectonic events (e.g., Raymoetal., 1988; Raymo and Ruddiman, 1992; Edmond and Huh, 1997; Wallmann,2001). Regionally, uplift of the Tibetan Plateau and the Himalaya Mountains caused dramatic aridification in Central Asia and the onset of monsoonal climate in East Asia(Kutzbachetal., 1989; Ruddimanetal., 1989; Harris, 2006).Both global and regional climate changes were recorded in sediments, which may be revealed by climatic proxies (e.g.,δ18O values of carbonate; pollen).

    Palynological analysis is a well-established method for reconstructing paleoclimate and paleoenvironment (e.g.,temperature, precipitation, and elevation), in which Ephedraceae percentage variation is very sensitive to dry climate and is usually attributed to dry conditions due to frequent association with other xerophillous shrubs (e.g.,Nitraria(Zygophyllaceae) and Chenopodiaceae) in arid and semiarid climates (e.g., Krutzsch, 1961; Gurevitchetal.,2002; Yang, 2002; Sun and Wang, 2005). This widely distributed type even became dominant in Cenozoic vegetation assemblages in northwestern China (e.g., Song, 1958; Songetal., 1999; Sun and Wang, 2005). For example, the highest percentages in the Qaidam Basin vary from 10% to 50% of pollen assemblages (Zhuetal., 1985). However, whether Ephedraceae percentage variation is also sensitive to temperature change, it has been ignored in many studies because of a lack of absolute age control (Wangetal., 1990) or low sampling density (Wangetal., 1990; Dupont-Nivetetal.,2008). In this paper, we address the temperature implication of Ephedraceae in the Cenozoic based on pollen records in northwestern China.

    2. Modern Ephedraceae distribution

    Ephedraceae is a desert perennial shrubby gymnosperm,which is mainly distributed in desert and grass zones of Asia,America, Southeastern Europe and Northern Africa (Figure 1a) (Gurevitchetal., 2002; Yang, 2002). Ephedraceae generally grows in arid climates, with very small leaves and low transpiration (Cutlar, 1939; Yang, 2002). In China,Ephedragrows where mean annual temperature (MAT) varies between -4 °C and 12 °C (Zhengetal., 2008), while in northern Africa (Sahara region), it grows where MAT is approximately 30 °C. Therefore, modern Ephedraceae belongs to eurythermic plants.

    Figure 1 Modern Ephedraceae distribution (a) in Eurasian and African regions (grey area) (after Caveney et al., 2001) and (b) Ephedraceae percentage variation in the Xining Basin (palaeomagnetic age control is from Dai etal., 2006)

    3. Geologic background, sampling method and results of the Xining Basin

    Located in the northeastern Tibetan Plateau, the Xining Basin holds over 800-m thick lacustrine saline playa and distal alluvial fan deposits (Daietal., 2006). Previous palynological studies about the deposits show that the climate in this basin is consistent with Cenozoic global cooling (Wangetal., 1990) or strongly influenced by the uplift of the Tibetan Plateau (Dupont-Nivetetal., 2008). However, climate implications of the dominant species of Ephedraceae with nearly the highest percentages in the aforementioned studies were not well discussed. A more detailed palynological record is required to constrain regional climate and reveal Ephedraceae climate implication based on improved palaeomagnostratigraphy. A total of 123 pollen samples were collected through approximately 819-m thick Xiejia section in the Xining Basin (Longetal., 2011).

    Our data provides a record of Ephedraceae percentage spanning the Early Eocene to Middle Miocene (52-17 Myr B.P.) (Daietal., 2006) in the Xining Basin (Figure 1b). During 52-33 Myr B.P., Ephedraceae percentage varied between 20% and 60%, with an average of 28%. Ephedraceae percentage dropped to approximately 20% at 33 Myr B.P. and maintained relatively constant after 33 Myr B.P.

    4. Combined Ephedraceae records from five other basins in northwestern China

    In Asia, climate transformation from a zonal pattern to a monsoon-dominated pattern occurred during the Miocene with the disappearance of typical subtropical aridity and the onset of inland deserts (Liuetal., 1998; Sun and Wang,2005; Guoetal., 2008). Before the Miocene, Ephedraceae was widely distributed in the subtropical arid zone throughout China and even reached to the northern South Yellow Sea Basin, and offshore western Korea (Yietal., 2003).Since the Miocene, the arid zone in Eastern China was replaced by monsoonal climate, and Ephedraceae percentage declined (with occasional occurrence of <1%) due to high precipitation brought by the Asian summer monsoon (Sun and Wang, 2005; Guoetal., 2008). Such precipitation change in the Cenozoic apparently affected Ephedraceae percentage in Eastern China. Therefore, to eliminate the humid response of Ephedraceae percentage, we compared our record of the Xining Basin with the combined Ephedraceae records from five other basins in northwestern China, all of which remained in a dry climate throughout the Cenozoic. These basins include the Tarim, Qaidam, Zhungaer, Jiuquan and Lunpolar basins (Figure 2), and age correlations are summarized in Sun and Wang (2005). Both the total and average percentages of Ephedraceae from the combined records were calculated from original data in the Tarim (Wang, 1990), Qaidam (Zhuetal., 1985), Jiuquan(Ma, 1993), Lunpolar (Song and Liu, 1982) and Zhungaer basins (Sun and Wang, 1990).

    Ephedraceae percentage of the combined records shows that Ephedraceae percentage was high during the Paleocene and Eocene, then decreased dramatically during the Oligocene and remained low through the Miocene,which is similar to Ephedraceae percentage record in the Xining Basin.

    Figure 2 Five basins always in the Cenozoic dry area (shallow grey) in northwestern China based on palynological and paleobotanical data (after Sun and Wang, 2005)

    5. Discussion

    The Ephedraceae record in the Xining Basin and the combined Ephedraceae records in northwestern China are generally comparable to the oxygen isotopic record of marine forams (Figure 3). The oxygen isotopic record of marine forams has been interpreted as a response to global temperature change, with higher δ18O values pointing to lower global temperatures (Zachosetal., 2001). The high Paleocene and Eocene Ephedraceae percentage is associated with low δ18O values, and the decrease of Ephedraceae percentage in Early Oligocene is coeval with an increase of δ18O values. Such co-variation suggests that variation of Ephedraceae percentage is coupled with global climate change in the Early Cenozoic, with high Ephedraceae percentage occurring in a greenhouse climate, and low Ephedraceae percentage in an icehouse climate during the Antarctic ice cap expansion. However,after the Late Oligocene, constant low Ephedraceae percentage was uncoupled with variation of the marine isotopic record, suggesting that Ephedraceae percentage was uncoupled with global warming in the Late Oligocene and cooling since the Middle Miocene (Figure 3). Therefore,Ephedraceae was warm-tolerant type vegetation during the Paleogene and adapted to a eurythermic environment since the Late Oligocene.

    Cenozoic variation of Ephedraceae percentage in northwestern China is also associated with variation of major pollen and spores assemblages. Fossil Ephedraceae of gnetophyte pollen grains dates back to the Triassic, and most of the modern groups diversified within their clade during the Middle Cretaceous (approximately 100 Myr B.P.) and became widely distributed with high abundance from the Middle Cretaceous to Eocene (Campbell, 2002;Judd, 2002). During the warm climate of the Paleocene and Eocene, high percentages of Ephedraceae were always accompanied by a number of tropical or subtropical types of vegetation in six basins (Song and Liu, 1982; Zhuet al.,1985; Wangetal., 1990; Ma, 1993; Songetal., 1999).These vegetation types includeEngelhardtioipollenties(Engelhardtia),Sapotaceoidaepollenites(Sapotaceae),Liquidambarpollenites(Liquidambar),Magnolipollis(Magnoliaceae),Nyssapollenties(Nyssa),Ilexpollenite(Aquifoliaceae),Sapindaceidites(Sapindaceae),Podocarpidites(Podocarpaceae),Meliaceoidites(Meliaceae),Euphorbiacites(Euphorbiaceae),Rhoipites(Anacardiaceae)andRutaceoipollenites(Rutaceae). The high percentage of Ephedraceae and diversity of pollen types associated with abundant tropical and subtropical plant species suggest a warm climate during the Paleocene and Eocene. During the Oligocene, a decrease of Ephedraceae percentage was associated with the occurrence of various conifers, such asPinus,Picea,Abies,Cedrus,TsugaandCupressaceae, and C4plants,e.g., Chenopodiaceae and Compositae. The low Ephedraceae percentage during the Oligocene is associated with the low percentage of subtropical or tropical elements.Miocene pollen assemblages in northwestern China were more diversified than those during the Oligocene, where most subtropical or tropical elements disappeared. However, Ephedraceae percentage maintained low throughout the Late Oligocene up to the present, suggesting that Ephedraceae was uncoupled with local vegetation change.Therefore, pollen and spore assemblages in northwestern China also show that Ephedraceae was warm-tolerant during the Paleogene, and adapted to a eurythermic environment after the Late Oligocene.

    Figure 3 Comparison between Cenozoic records of Ephedraceae percentages in the Xining Basin, combined records of Ephedraceae percentages in the five basins (Tarim, Qaidam, Jiuquan, Lunpolar and Zhungaer basins) in northwestern China with the δ18O record of marine forams (Zachos etal., 2001).

    Uplift of the Tibetan Plateau and retreat of the epicontinental sea, which are closely linked to the Indo-Asian collision since approximately 55 Myr B.P., have triggered dramatic aridification and cooling of the Asian interior and the onset of the Asian monsoonal climate (Harris, 2006;Zhangetal., 2007). Modern East Asian monsoon system is initiated and established during the Miocene based on pollen-vegetation as well as other climatic proxies (Liuetal.,1998; Sun and Wang, 2005; Fanetal., 2006, 2007; Guoet al., 2008). We argue that warm-tolerant Ephedraceae began to inhabit a eurythermic environment since the Late Oligocene which was mainly driven by the uplift of the Tibetan Plateau.

    The Tibetan Plateau progressively gained high elevation and expanded towards northwestern China since approximately 55 Myr B.P. (Tapponnieretal., 2001; Rowley and Currie, 2006; DeCellesetal., 2007; Wangetal., 2008; van der Beeketal., 2009). However, the uplift wasn’t significant enough to change the narrow climate arid belt stretching across China before the Oligocene (Sun and Wang, 2005;Guoetal., 2008). During global climate warming in the Late Oligocene and climatic optimum in Middle Miocene, high topography produced by the uplift of the Tibetan Plateau as well as enlargement of the land surface may have cooled down the interior of northwestern China, and initiated a topographic barrier for water vapor from the oceans. At the same time, Ephedraceae adapted to the cooling rather than migrating or extinction if its germ plasm can adapt itself to environmental change, and thus evolved to a eurythermal type which replaced the warm-tolerant vegetation type, but the exact timing is unclear.

    6. Conclusions

    The record of Ephedraceae percentage in the precisely dated Xining Basin and combined Ephedraceae records from five basins in northwestern China suggest that Ephedraceae was warm-tolerant during the Paleocene and Eocene, and adapted to a cooler climate since the Late Oligocene. The adaptation of Ephedraceae to a eurythermic environment since the Late Oligocene may be mainly driven by the uplift of the Tibetan Plateau.

    This work is supported by NSFC Grants (40802041,41002050) and the Foundation for Excellent Youth Scholars of CAREERI, CAS (51Y184991). We thank Fan MJ for help in English improvement and two anonymous reviewers for their valuable comments and suggestions.

    Campbell NA, Reece JB, 2002. Biology, 6thEdition. Benjamin Cummings,San Francisco.

    Caveney S, Charlet DA, Freitag H, Maier-Stolte M, Starratt AN, 2001. New observations on the secondary chemistry of worldEphedra(Ephedraceae). American Journal of Botany, 88: 1199-1208.

    Cutlar HC, 1939. Monograph of the North American species of the genusEphedra. Annals of the Missouri Botanical Garden, 26(4): 373-424, 426,428.

    Dai S, Fang XM, Dupont-Nivet G, Song CH, Gao JP, Krijgsman W,Langereis C, Zhang WL, 2006. Magnetostratigraphy of Cenozoic sediments from the Xining Basin: Tectonic implications for the northeastern Tibetan Plateau. Journal of Geophysical Research—Solid Earth, 111:B11102. DOI: 10.1029/2005JB004187.

    DeCelles PG, Quade J, Kapp P, Fan MJ, Dettman DL, Ding L, 2007. High and dry in central Tibet during the Late Oligocene. Earth and Planetary Science Letters, 253(3-4): 389-401.

    Dupont-Nivet G, Hoorn C, Konert M, 2008. Tibetan uplift prior to the Eocene-Oligocene climate transition: evidence from pollen analysis of the Xining Basin. Geological Science of America, 36: 987-990.

    Edmond JM, Huh Y, 1997. Chemical weathering yields from basement and orogenic terrains in hot and cold climates. In: Ruddiman WF (ed.). Tectonic Uplift and Climate Change. Plenum Press, New York. 330-350.

    Fan MJ, Dettman DL, Song CH, Fang XM, Garzione CN, 2007. Climatic variation in the Linxia basin, NE Tibetan Plateau, from 13.1 to 4.3 Ma:The stable isotope record. Palaeogeography, Palaeoclimatology, Palaeoecology, 247(3-4): 313-328.

    Fan MJ, Song CH, Dettman DL, Fang XM, Xu XH, 2006. Intensification of the Asian winter monsoon after 7.4 Ma: Grain-size evidence from the Linxia Basin, northeastern Tibetan Plateau, 13.1 Ma to 4.3 Ma. Earth and Planet Science Letters, 248(1-2): 186-197.

    Guo ZT, Sun B, Zhang ZS, Peng SZ, Xiao GQ, Ge JY, Hao QZ, Qiao YS,Liang MY, Liu JF, Yin QZ, Wei JJ, 2008. A major reorganization of Asian climate by the early Miocene. Climate of the Past, 4: 153-174.

    Gurevitch J, Schneider SM, Fox GA, 2002. The Ecology of Plants. Sinauer Associates, Inc., Sunderland MA.

    Harris NBW, 2006. The elevation history of the Tibetan Plateau and its implications for the Asian monsoon. Palaeogeography, Palaeoclimatology, Palaeoecology, 241: 4-15.

    Judd WS, 2002. Plant Systematics: A Phylogenetic Approach, 2ndEdition.Sinauer Associates, Inc., Sunderland MA.

    Krutzsch W, 1961. Uber Funde von ''ephedroidem'' Pollen im deutschen Terti?r. Geologie, Beih 32: 15-53.

    Kutzbach JE, Guetter PJ, Ruddiman WF, Prell WL, 1989. Sensitivity of climate to late Cenozoic uplift in southern Asia and the American West:numerical experiments. Journal of Geophysical Research, 94(D15):18393-18407.

    Liu TS, Zheng MP, Guo ZT, 1998. Initiation and evolution of the Asian monsoon system timely coupled with the ice-sheet growth and the tectonic movements in Asia. Quaternary Sciences, 3: 194-204.

    Long LQ, Fang XM, Miao YF, Bai Y, Wang YL, 2011. Northern Tibetan Plateau cooling and aridification linked to Cenozoic global cooling: Evidence from n-alkane distributions of Paleogene sedimentary sequences in the Xining Basin. Chinese Science Bulletin, 56(15): 1569-1578.

    Ma JQ, 1993. The Tertiary sporopollen assemblage in the Jiuquan Basin and the palaeoenvironment. Petroleum Geology & Experiment, 15(4):423-435.

    Raymo ME, Ruddiman WF, 1992. Tectonic forcing of late Cenozoic climate.Nature, 359: 117-122.

    Raymo ME, Ruddiman WF, Froelich PN, 1988. Influence of late Cenozoic mountain building on ocean geochemical cycles. Geology, 16: 649-653.

    Rowley DB, Currie BS, 2006. Palaeoaltimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature, 439: 677-681.

    Ruddiman W, Prell W, Raymo M, 1989. Late Cenozoic Uplift in Southern Asia and the American West: rationale for general circulation modeling experiments. Journal of Geophysical Research, 94(D15): 18379-18391.

    Song ZC, 1958. Tertiary spores and pollen complex from the red beds of Jiuquan, Kansu and their geological and botanical significance. Acta Palaeontol. Sin., 6(2): 159-167.

    Song ZC, Liu GW, 1982. Early Tertiary Palynoflora and its significance of Palaeogeography from Northern and Eastern Xizang. In: Team of Comprehensive Scientific Expedition to the Qinghai-Xizang Plateau, Academia Sinica (Eds.). Palaeontology of Xizang. Science Press, Beijing.165-190.

    Song ZC, Zheng YH, Li MN, 1999. Fossil spores and pollen of China (I):Late of Cretaceous-Tertiary spores and pollen. Science Press, Beijing.749-757.

    Sun MR, Wang XZ, 1990. Tertiary palynological assemblages from the Junggar Basin, Xinjiang. In: Institute of Geology, Chinese Academy of Geological Sciences, Research Institute of Petroleum Exploration and Development, Xinjiang Petroleum Administration (Eds.). Permian to Tertiary Strata and Palynological Assemblages in the North of Xinjiang.China Environmental Science Press, Beijing. 122-151.

    Sun XJ, Wang PX, 2005. How old is the Asian monsoon system? Palaeobotanical records from China. Palaeogeography, Palaeoclimatology,Palaeoecology, 222: 181-222.

    Tapponnier P, Xu Z, Palmer TN, Shukla J, Tomas RA, Yanai M, Yasunari T,2001. Oblique stepwise rise and growth of the Tibetan Plateau. Science,294: 1671-1677.

    van der Beek PA, Van Melle J, Guillot S, Pêcher A, Reiners PW, Nicolescu S, Latif M, 2009. Eocene Tibetan Plateau remnants preserved in the northwest Himalaya. Nature Geoscience, 2: 364-368.

    Wallmann K, 2001. Controls on the Cretaceous and Cenozoic evolution of seawater composition, atmospheric CO2, and climate. Geochimica et Cosmochimica Acta, 65: 3005-3025.

    Wang CS, Zhao XX, Liu ZF, Lippert PC, Graham SA, Coe RS, Yi HS, Zhu LD, Liu S, Li YL, 2008. Constraints on the early uplift history of the Tibetan Plateau. Proceedings of the National Academy Sciences of the United States of America, 105: 4987-4992.

    Wang DN, Sun XY, Zhao YN, 1990. Late Cretaceous to Tertiary palynofl oras in Xinjiang and Qinghai, China. Review of Palaeobotany Palynology,65: 95-104.

    Yang Y, 2002. Systematic and evolution ofEphedra L. (Ephedraceae) from China. PhD Thesis, Institute of Botany Chinese Academy of Sciences,Beijing. 1-231.

    Yi S, Yi S, Batten DJ, Yun H, Park SJ, 2003. Cretaceous and Cenozoic non-marine deposits of the Northern South Yellow Sea Basin, offshore western Korea: palynostratigraphy and palaeoenvironments. Palaeogeography, Palaeoclimatology, Palaeoecology, 191: 15-44.

    Zachos JC, Pagani M, Sloan L, Thomas E, Billups K, 2001. Trends, rhythms,and aberrations in global climate 65 Ma to present. Science, 292:686-693.

    Zhang ZS, Wang HJ, Guo ZT, Jiang DB, 2007. What triggers the transition of palaeoenvironmental patterns in China, the Tibetan Plateau uplift or the Paratethys Sea retreat? Palaeogeography, Palaeoclimatology, Palaeoecology, 245: 317-331.

    Zheng Z, Huang KY, Xu QH, Lu HY, Cheddadi R, Luo YL, Beaudouin C,Luo CX, Zheng YW, Li CH, Wei JH, Du CB, 2008. Comparison of climatic threshold of geographical distribution between dominant plants and surface pollen in China. Science in China (Series D: Earth Science),51(8): 1107-1120.

    Zhu ZH, Wu LY, Xi P, Song ZC, Zhang YY, 1985. A Research on Tertiary Palynology from the Qaidam Basin, Qinghai Province. Petroleum Industry Publishing House, Beijing. 1-41.

    10.3724/SP.J.1226.2011.00375

    *Correspondence to: Dr. YunFa Miao, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences. No. 320, West Donggang Road, Lanzhou, Gansu 730000, China. Tel: +86-931-4967544; Email: miaoyunfa@lzb.ac.cn

    24 March 2011 Accepted: 15 June 2011

    色综合站精品国产| 亚洲午夜理论影院| 日本黄色片子视频| 中亚洲国语对白在线视频| 噜噜噜噜噜久久久久久91| 久久天堂一区二区三区四区| 欧美在线黄色| 91av网一区二区| 久久欧美精品欧美久久欧美| 婷婷亚洲欧美| 久久人妻av系列| 中出人妻视频一区二区| 国产淫片久久久久久久久 | 两个人视频免费观看高清| 精品久久久久久久毛片微露脸| 久久久久久久午夜电影| 天堂√8在线中文| 日韩欧美三级三区| 亚洲国产精品sss在线观看| 999精品在线视频| 两个人的视频大全免费| 黄色成人免费大全| 欧美激情久久久久久爽电影| 一区二区三区国产精品乱码| 精品国内亚洲2022精品成人| 美女被艹到高潮喷水动态| 午夜日韩欧美国产| 亚洲中文日韩欧美视频| 麻豆一二三区av精品| 99久久精品一区二区三区| 中文字幕久久专区| 九色国产91popny在线| 人妻久久中文字幕网| 国产成人欧美在线观看| 亚洲成a人片在线一区二区| 国产97色在线日韩免费| 成人性生交大片免费视频hd| 中国美女看黄片| 亚洲九九香蕉| 男女之事视频高清在线观看| 狠狠狠狠99中文字幕| 久久久久久久精品吃奶| 日本一二三区视频观看| 亚洲黑人精品在线| 日韩av在线大香蕉| 日韩高清综合在线| 老鸭窝网址在线观看| 国产黄色小视频在线观看| 一夜夜www| 观看美女的网站| 欧美激情在线99| 真人一进一出gif抽搐免费| av在线天堂中文字幕| 综合色av麻豆| 偷拍熟女少妇极品色| 亚洲九九香蕉| 搡老妇女老女人老熟妇| 国产黄a三级三级三级人| 国产黄a三级三级三级人| 国产一区二区激情短视频| 99热只有精品国产| 亚洲熟妇中文字幕五十中出| 欧美一区二区国产精品久久精品| 亚洲无线在线观看| av在线天堂中文字幕| 51午夜福利影视在线观看| 成在线人永久免费视频| 嫩草影院精品99| 亚洲欧美一区二区三区黑人| 亚洲精品久久国产高清桃花| 亚洲欧美日韩高清专用| 一本一本综合久久| 亚洲成av人片免费观看| 国产真实乱freesex| 真人一进一出gif抽搐免费| 嫩草影院入口| 禁无遮挡网站| 真人一进一出gif抽搐免费| 在线观看日韩欧美| 亚洲成人久久爱视频| 亚洲精华国产精华精| 久久久久九九精品影院| a在线观看视频网站| 日韩高清综合在线| 欧美色视频一区免费| 国产欧美日韩一区二区精品| 精品无人区乱码1区二区| 日本撒尿小便嘘嘘汇集6| 91麻豆av在线| 亚洲第一电影网av| 亚洲在线自拍视频| 中文字幕久久专区| 真人做人爱边吃奶动态| 亚洲国产日韩欧美精品在线观看 | 高清在线国产一区| 中文字幕最新亚洲高清| 国产av麻豆久久久久久久| 波多野结衣巨乳人妻| 久久久久免费精品人妻一区二区| 日韩欧美在线乱码| 老司机深夜福利视频在线观看| 日本熟妇午夜| 黄色日韩在线| 99精品在免费线老司机午夜| 一级毛片女人18水好多| 国产日本99.免费观看| 国产精品亚洲一级av第二区| 国产综合懂色| 精品国产乱子伦一区二区三区| 天堂影院成人在线观看| 午夜成年电影在线免费观看| 欧美极品一区二区三区四区| 欧美日韩亚洲国产一区二区在线观看| 国产精品久久电影中文字幕| 欧美一级毛片孕妇| 日韩欧美国产在线观看| 久久午夜综合久久蜜桃| 在线播放国产精品三级| 99精品在免费线老司机午夜| 丁香六月欧美| 99国产精品99久久久久| 国产真实乱freesex| www.自偷自拍.com| 午夜视频精品福利| 久久欧美精品欧美久久欧美| 色在线成人网| 国产91精品成人一区二区三区| a级毛片a级免费在线| 色精品久久人妻99蜜桃| 99在线视频只有这里精品首页| 桃色一区二区三区在线观看| 欧美国产日韩亚洲一区| 99热精品在线国产| 搞女人的毛片| 身体一侧抽搐| 亚洲国产精品999在线| 国产欧美日韩一区二区三| 五月玫瑰六月丁香| 亚洲性夜色夜夜综合| 亚洲欧美日韩卡通动漫| 亚洲国产精品成人综合色| 欧美色视频一区免费| www国产在线视频色| 久久人妻av系列| 国产1区2区3区精品| 老司机深夜福利视频在线观看| 全区人妻精品视频| 国产爱豆传媒在线观看| av国产免费在线观看| 精品乱码久久久久久99久播| 国产精品九九99| 午夜亚洲福利在线播放| 成年人黄色毛片网站| 精品日产1卡2卡| 啦啦啦韩国在线观看视频| 欧美日韩国产亚洲二区| 小说图片视频综合网站| 男女午夜视频在线观看| 88av欧美| 亚洲七黄色美女视频| 熟女人妻精品中文字幕| 欧美大码av| 又黄又爽又免费观看的视频| 国产乱人视频| 国产精品香港三级国产av潘金莲| 床上黄色一级片| 欧美黑人巨大hd| 美女高潮的动态| 天堂av国产一区二区熟女人妻| 一二三四在线观看免费中文在| 999久久久国产精品视频| 国产成人系列免费观看| 变态另类丝袜制服| 亚洲欧美一区二区三区黑人| 精品欧美国产一区二区三| 欧美3d第一页| 色av中文字幕| 欧美日韩一级在线毛片| 亚洲欧美精品综合久久99| 欧美最黄视频在线播放免费| 亚洲午夜理论影院| 国产精品一区二区三区四区免费观看 | 99精品在免费线老司机午夜| 又黄又爽又免费观看的视频| 国内精品美女久久久久久| av天堂在线播放| 宅男免费午夜| 一夜夜www| 免费在线观看亚洲国产| 丰满人妻熟妇乱又伦精品不卡| 亚洲成av人片在线播放无| 久久精品91蜜桃| 男女下面进入的视频免费午夜| 亚洲av电影在线进入| 禁无遮挡网站| www.熟女人妻精品国产| 91在线观看av| 亚洲 欧美 日韩 在线 免费| 精华霜和精华液先用哪个| 噜噜噜噜噜久久久久久91| 午夜福利视频1000在线观看| 成熟少妇高潮喷水视频| 日日夜夜操网爽| 成年版毛片免费区| 神马国产精品三级电影在线观看| 黄片小视频在线播放| 黄频高清免费视频| 久久午夜亚洲精品久久| www.精华液| 国产伦在线观看视频一区| 亚洲 国产 在线| 亚洲av美国av| 男女之事视频高清在线观看| 一进一出抽搐动态| 伦理电影免费视频| 亚洲国产精品合色在线| 欧美+亚洲+日韩+国产| 97超视频在线观看视频| 91久久精品国产一区二区成人 | 中文字幕人妻丝袜一区二区| 日本 欧美在线| 午夜精品久久久久久毛片777| 成人鲁丝片一二三区免费| xxx96com| 国产精品国产高清国产av| 波多野结衣高清无吗| 久久精品国产清高在天天线| 日本免费a在线| 99久久国产精品久久久| 欧美一级a爱片免费观看看| 久久久久国产精品人妻aⅴ院| 人妻夜夜爽99麻豆av| 99久久精品热视频| 精品免费久久久久久久清纯| 熟女人妻精品中文字幕| 黄色丝袜av网址大全| 手机成人av网站| 国产三级在线视频| 国产精品爽爽va在线观看网站| 一本一本综合久久| svipshipincom国产片| 成人永久免费在线观看视频| 国内少妇人妻偷人精品xxx网站 | 97超级碰碰碰精品色视频在线观看| 脱女人内裤的视频| 老汉色∧v一级毛片| 黄片小视频在线播放| 亚洲精华国产精华精| 特大巨黑吊av在线直播| 好看av亚洲va欧美ⅴa在| 国产精品久久久久久亚洲av鲁大| 国产精品av视频在线免费观看| 国产精品精品国产色婷婷| 午夜激情福利司机影院| 99国产精品99久久久久| 我的老师免费观看完整版| 久久这里只有精品中国| 一个人免费在线观看电影 | 国产精品综合久久久久久久免费| 日韩欧美一区二区三区在线观看| 亚洲精品中文字幕一二三四区| 99热6这里只有精品| 中文字幕久久专区| 日本黄色视频三级网站网址| 香蕉av资源在线| 男女视频在线观看网站免费| 精品久久蜜臀av无| 国产精品99久久久久久久久| 国产av在哪里看| 亚洲无线在线观看| 麻豆成人午夜福利视频| 美女被艹到高潮喷水动态| 亚洲成人久久性| 国产av不卡久久| 久久性视频一级片| 国产又黄又爽又无遮挡在线| 在线a可以看的网站| 日韩欧美一区二区三区在线观看| 这个男人来自地球电影免费观看| 日韩欧美国产在线观看| 手机成人av网站| 午夜福利欧美成人| 夜夜爽天天搞| 免费看日本二区| 又黄又粗又硬又大视频| 91字幕亚洲| 欧美一区二区国产精品久久精品| 国产淫片久久久久久久久 | 最新在线观看一区二区三区| 高清在线国产一区| 精品福利观看| 久久久成人免费电影| 亚洲精品中文字幕一二三四区| 欧美丝袜亚洲另类 | 一级毛片女人18水好多| 曰老女人黄片| 亚洲国产精品999在线| 国产成人精品无人区| 欧美成人免费av一区二区三区| 国产精品亚洲美女久久久| 2021天堂中文幕一二区在线观| 色综合站精品国产| 国产真实乱freesex| 日韩欧美在线乱码| 国产av在哪里看| 我要搜黄色片| 国产视频内射| 久久精品国产综合久久久| 免费看a级黄色片| 搡老妇女老女人老熟妇| 亚洲精品456在线播放app | av天堂中文字幕网| 国产精品av视频在线免费观看| a级毛片在线看网站| 国产成人啪精品午夜网站| 国产精品99久久99久久久不卡| 久久99热这里只有精品18| 一本久久中文字幕| 国产高清videossex| 亚洲人成网站在线播放欧美日韩| 国产私拍福利视频在线观看| 欧美乱妇无乱码| 精品国产乱子伦一区二区三区| 欧美一区二区精品小视频在线| 亚洲无线在线观看| 无人区码免费观看不卡| 99热精品在线国产| 日本免费一区二区三区高清不卡| 天堂√8在线中文| 日韩有码中文字幕| 亚洲午夜理论影院| www日本黄色视频网| а√天堂www在线а√下载| 91麻豆av在线| 国产精品一区二区三区四区免费观看 | 天天添夜夜摸| 精品无人区乱码1区二区| 看片在线看免费视频| 美女免费视频网站| 狠狠狠狠99中文字幕| 亚洲男人的天堂狠狠| 少妇熟女aⅴ在线视频| 丁香欧美五月| 中亚洲国语对白在线视频| 亚洲在线自拍视频| www.自偷自拍.com| 午夜亚洲福利在线播放| 欧美成人免费av一区二区三区| 黄色日韩在线| 国产精品免费一区二区三区在线| 成年人黄色毛片网站| 一级毛片高清免费大全| 久久欧美精品欧美久久欧美| 俄罗斯特黄特色一大片| 亚洲avbb在线观看| 人妻夜夜爽99麻豆av| 国产精品自产拍在线观看55亚洲| 久久久国产成人精品二区| 九九在线视频观看精品| 国产精品一及| 三级毛片av免费| 国产精品99久久久久久久久| 免费av毛片视频| av女优亚洲男人天堂 | 99在线人妻在线中文字幕| xxxwww97欧美| 色老头精品视频在线观看| 18禁国产床啪视频网站| av女优亚洲男人天堂 | 国产精品女同一区二区软件 | 中文资源天堂在线| 一区福利在线观看| 嫁个100分男人电影在线观看| 国产在线精品亚洲第一网站| 波多野结衣高清无吗| 两个人视频免费观看高清| 高潮久久久久久久久久久不卡| 村上凉子中文字幕在线| 丝袜人妻中文字幕| 天堂av国产一区二区熟女人妻| 男人舔女人下体高潮全视频| 国产亚洲av嫩草精品影院| 国产午夜精品论理片| 亚洲片人在线观看| 99在线视频只有这里精品首页| 欧美日韩国产亚洲二区| 色综合亚洲欧美另类图片| 成人av在线播放网站| 99国产精品一区二区三区| 亚洲,欧美精品.| 亚洲欧美激情综合另类| 国产精品一区二区精品视频观看| 国产精品一及| 久久久久性生活片| h日本视频在线播放| 日韩三级视频一区二区三区| 亚洲第一欧美日韩一区二区三区| 国产极品精品免费视频能看的| 免费大片18禁| 久久人妻av系列| 亚洲成人精品中文字幕电影| 午夜福利视频1000在线观看| netflix在线观看网站| 日本 av在线| 午夜精品久久久久久毛片777| 久久久久国产精品人妻aⅴ院| 哪里可以看免费的av片| 国产精品亚洲av一区麻豆| 夜夜看夜夜爽夜夜摸| 嫩草影院精品99| 亚洲国产精品久久男人天堂| 18禁观看日本| 亚洲国产欧美一区二区综合| 久久伊人香网站| 曰老女人黄片| 亚洲无线在线观看| 国产视频内射| 黄色视频,在线免费观看| 久久久国产成人精品二区| 国产一区二区三区视频了| 亚洲国产欧美一区二区综合| 色综合婷婷激情| 99热只有精品国产| 精品久久蜜臀av无| 一区二区三区高清视频在线| 男女视频在线观看网站免费| 国产亚洲精品综合一区在线观看| 美女黄网站色视频| 99久久精品国产亚洲精品| 亚洲电影在线观看av| 狠狠狠狠99中文字幕| 窝窝影院91人妻| 丰满的人妻完整版| 亚洲人成伊人成综合网2020| 午夜两性在线视频| 性色av乱码一区二区三区2| 一级毛片精品| 岛国视频午夜一区免费看| 精品日产1卡2卡| 国产精品影院久久| 亚洲成av人片免费观看| 欧美不卡视频在线免费观看| 99国产综合亚洲精品| 午夜精品一区二区三区免费看| 在线观看一区二区三区| 国产美女午夜福利| 精品国产超薄肉色丝袜足j| 国产成人精品无人区| 色综合婷婷激情| 国产高清视频在线观看网站| 国产激情久久老熟女| av天堂在线播放| 欧美色视频一区免费| h日本视频在线播放| 叶爱在线成人免费视频播放| 免费一级毛片在线播放高清视频| 色综合亚洲欧美另类图片| 老司机午夜福利在线观看视频| 好男人电影高清在线观看| 欧美xxxx黑人xx丫x性爽| 黑人操中国人逼视频| 变态另类丝袜制服| 久久国产精品人妻蜜桃| 中亚洲国语对白在线视频| 国产 一区 欧美 日韩| 美女免费视频网站| 精品熟女少妇八av免费久了| 在线a可以看的网站| 欧美成人性av电影在线观看| 韩国av一区二区三区四区| www.999成人在线观看| 欧美国产日韩亚洲一区| 97人妻精品一区二区三区麻豆| 免费在线观看亚洲国产| 国内精品美女久久久久久| 18美女黄网站色大片免费观看| 日韩国内少妇激情av| 精品久久久久久久毛片微露脸| 看免费av毛片| av欧美777| 人妻久久中文字幕网| av中文乱码字幕在线| 一本一本综合久久| av福利片在线观看| 日本a在线网址| 国产成人精品久久二区二区免费| 五月玫瑰六月丁香| 中文在线观看免费www的网站| 丁香欧美五月| 成年免费大片在线观看| www.自偷自拍.com| 在线观看免费午夜福利视频| 欧美三级亚洲精品| 亚洲黑人精品在线| 一个人看视频在线观看www免费 | 国产亚洲欧美在线一区二区| 久久久久精品国产欧美久久久| 少妇人妻一区二区三区视频| 很黄的视频免费| 又粗又爽又猛毛片免费看| 毛片女人毛片| 变态另类成人亚洲欧美熟女| 91在线精品国自产拍蜜月 | 99国产精品一区二区三区| 午夜福利免费观看在线| 高潮久久久久久久久久久不卡| 亚洲av免费在线观看| 国产av一区在线观看免费| 亚洲片人在线观看| 精品午夜福利视频在线观看一区| 久久国产乱子伦精品免费另类| 午夜精品久久久久久毛片777| 亚洲精品在线美女| 亚洲精品久久国产高清桃花| 国产精品一区二区精品视频观看| 18禁美女被吸乳视频| 国产熟女xx| 久久久国产精品麻豆| 国产av麻豆久久久久久久| 国产精品一区二区三区四区久久| 久久午夜综合久久蜜桃| 香蕉av资源在线| 制服人妻中文乱码| 日本 av在线| 成熟少妇高潮喷水视频| 18禁黄网站禁片免费观看直播| 99久国产av精品| 亚洲国产精品999在线| 97超级碰碰碰精品色视频在线观看| 午夜视频精品福利| 国产欧美日韩一区二区精品| 日本黄色视频三级网站网址| 男插女下体视频免费在线播放| 欧美日韩精品网址| 国产成人精品久久二区二区91| 欧美日韩瑟瑟在线播放| 精品国产乱码久久久久久男人| 99精品在免费线老司机午夜| 波多野结衣高清作品| 欧美一级a爱片免费观看看| 天堂动漫精品| 亚洲欧洲精品一区二区精品久久久| 2021天堂中文幕一二区在线观| 国产亚洲欧美98| 免费看a级黄色片| 国产视频内射| 2021天堂中文幕一二区在线观| 性欧美人与动物交配| 丁香欧美五月| 欧美极品一区二区三区四区| 在线观看一区二区三区| 国产激情久久老熟女| 久久亚洲精品不卡| 黄色丝袜av网址大全| 国产精品,欧美在线| 真实男女啪啪啪动态图| 88av欧美| 精品国内亚洲2022精品成人| 亚洲国产欧美人成| 在线国产一区二区在线| 国产一区二区在线av高清观看| 小蜜桃在线观看免费完整版高清| 久久精品综合一区二区三区| 久久久久久久久中文| 精品久久久久久久毛片微露脸| 人人妻人人看人人澡| 久久中文字幕人妻熟女| 一个人看视频在线观看www免费 | 两个人视频免费观看高清| 少妇熟女aⅴ在线视频| 欧美激情在线99| 国产精品99久久99久久久不卡| 国产精品 国内视频| 亚洲中文字幕日韩| 日本一二三区视频观看| 免费在线观看影片大全网站| 午夜精品在线福利| 国产精品一区二区三区四区免费观看 | 桃色一区二区三区在线观看| 丁香欧美五月| 亚洲精品乱码久久久v下载方式 | 91麻豆精品激情在线观看国产| 久久午夜综合久久蜜桃| 欧美黄色片欧美黄色片| 一级毛片女人18水好多| 欧美日韩中文字幕国产精品一区二区三区| 99精品在免费线老司机午夜| 琪琪午夜伦伦电影理论片6080| 搡老熟女国产l中国老女人| 国产伦人伦偷精品视频| 亚洲av五月六月丁香网| 男插女下体视频免费在线播放| 人妻夜夜爽99麻豆av| 99热6这里只有精品| 久久国产乱子伦精品免费另类| 精品久久蜜臀av无| 在线观看一区二区三区| 日本在线视频免费播放| 日韩欧美三级三区| 99国产精品99久久久久| 舔av片在线| 国内精品一区二区在线观看| 久久亚洲真实| 亚洲电影在线观看av| 欧美日韩福利视频一区二区| 欧美又色又爽又黄视频| 狂野欧美激情性xxxx| 国产蜜桃级精品一区二区三区| 精品久久久久久久久久免费视频| 女生性感内裤真人,穿戴方法视频| 99久久99久久久精品蜜桃| 国产黄色小视频在线观看| 一级黄色大片毛片| 真人一进一出gif抽搐免费| 久久欧美精品欧美久久欧美|