• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Characterization and quantification of within-year variation of snow-cover elevation in mountainous regions, eastern Tibet

    2011-12-09 09:36:40JieGaoXuDongFuTongLiangGongGuangQianWangHaoWang
    Sciences in Cold and Arid Regions 2011年5期

    Jie Gao , XuDong Fu , TongLiang Gong ,2, GuangQian Wang , Hao Wang

    1. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China 2. Tibet Bureau of Water Resources, Lhasa 850000, China

    3. Hydropower and Water Resources Planning & Design General Institute, Beijing 100120, China

    Characterization and quantification of within-year variation of snow-cover elevation in mountainous regions, eastern Tibet

    Jie Gao1,3*, XuDong Fu1, TongLiang Gong1,2, GuangQian Wang1, Hao Wang1

    1.State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China 2.Tibet Bureau of Water Resources, Lhasa 850000, China

    3.Hydropower and Water Resources Planning & Design General Institute, Beijing 100120, China

    Fluctuating snow-covered elevation (FSCE) was conceptualized and proposed to characterize within-year variation of the border between snow-covered and snow-free area in mountainous regions. Two parameters, namely median of snow free period (Tm) and snow free duration (ΔT), were defined to quantify FSCE. A regression model of FSCE was developed for the Lhasa River Basin,Niyang River Basin, and Changdu region in eastern Tibet. Statistical analysis of the snow-products data with a spatial resolution of 25km×25km shows that: (1)Tmcorrelates weakly with geographical and topographic factors, having the yearly mean value of July 31; (2) ΔTcorrelates significantly with the average elevation of the snow-products cell, having the yearly mean value of nearly five months (i.e., 151 days); (3) the region begins snow disappearance in late April and finishes snow coverage in mid November, being snow-free from late June to mid September and snow-covered from December to March in the next year. In addition, snow-products with higher spatial resolution will be helpful to characterize FSCE in smaller spatial scales.

    fluctuating snow-covered elevation (FSCE); eastern Tibet; median of snow-free period; duration of snow-free period

    1. Introduction

    Dynamics of snow cover potentially influences snowmelt runoff generation. Quantification of spatiotemporal distribution of seasonal snow would contribute to improve the understanding of snow accumulation and ablation processes, and provide boundary conditions for snowmelt modeling.

    In order to characterize spatial distribution of snow, three primary mechanisms at different spatial scales are presented(Liston, 2004). At scales of one to hundreds of meters,snow-canopy interaction affects the distribution of snow.Canopies reduce snow accumulated on the ground and energy budget available for melting. Compared with forest-free regions, a smaller annual variability of snow is observed in forested areas (Fariaet al., 2002; Marchand and Killingtveit, 2005; Winkleret al., 2005). At scales of tens to hundreds of meters, snow is redistributed by wind. Because of the stochastic process of wind, it is difficult to explain wind redistribution mechanism (Andertonet al., 2002).Andertonet al. (2004) examined the spatial variability of snow water equivalent (SWE) for the Izas catchment,Spanish Pyrenees, with an area of 0.32 km2. Effect of wind is found as a snow redistributor by multiple regressions in 1997 and 1998. At scales of one to a few kilometers, orographic factors control snow accumulation and ablation(Mckay and Gray, 1981). Experiments conducted in a snow-dominated watershed, Cotton Creek of Kootenay Mountains, Canada, during 2005 and 2006 suggested that the combination of elevation, aspect and forest cover could explain about 80%-90% of the variability in snow accumulation. Elevation had the greatest influence on SWE(Jostet al., 2007). Elevation-related variables, in a grid with a spatial resolution of 1 km, are significantly correlated to snow depth when considering slope, aspect, curvature and elevation. However, Bloschl and Kirnbauer (1991) found spatial distribution of snow cover can be explained but only partly by topographical features. Research conducted in the Loetschental valley, Swiss Alps found that the temporary snow-line does not run parallel to contour lines and especially modified by gravitational processes where slope angle is greater than 37°. Besides, vegetation cover, glacier and permafrost are also the reasons for snow cover patterns(Schmidtet al., 2009).

    Snow line is frequently used to characterize the distribution of snow cover, which sometimes indicates the boundary between perpetual and seasonal snow. Jiang (1982, 1984)quantified the variation of snow line with latitude. Jianget al.(2002) obtained the spatial distribution of snow line in China based on data of 106 snow stations. Zhanget al. (2005)modeled the response of snow line to climate change in Qilian Mountain by NOAA-AVHRR and EOS-MODIS remote sensing data and meteorological data.

    Recent research found that elevation-related topographic factors mainly influence the spatial distribution of snow at a large scale, and ones focused on the annual elevation of snow line between perpetual and seasonal snow. However,for hydrological modeling in snowmelt-dominated regions,the boundary between seasonal snow-covered and snow-free area is more useful. It varies within a year, which implies a change of runoff generation contributing area. In this paper,at the scale of 25 km, factors at micro- or meso-scales, such as vegetation, wind redistribution becomes insignificant.And elevation, the factor dominated at a macro-scale, comes to control snow distribution in such a scale. Therefore, combined remote sensing data and DEM data, elevation is abstracted to characterize the variation of snow covered area within a year for mountainous regions in eastern Tibet.

    2. Conceptualization for Fluctuating Snow Covered Elevation (FSCE)

    If observed at a macro-scale in mountainous regions,patchy or mosaic snow is not identified. There exists a boundary between snow-covered and snow-free area. The lower edge of snow-covered area fluctuates following seasonal pattern. It "climbs up" the mountain from winter to spring, arrives maximum in mid-summer, and then declines from summer to winter. The concept of Fluctuating Snow Covered Elevation (FSCE) is proposed to describe as that process (shown in Figure 1).

    Figure 1 Variation of snow-covered area in a year cycle

    2.1. What does FSCE tell us?

    At a certain elevation, there exists two timing points:t1andt2, which are the onset/end dates of snow-free period at that elevation respectively (Figure 1). The period beforet1and aftert2are covered by snow (perpetual, seasonal or transient snow), but the time betweent1andt2is snow-free. However,at the peak of FSCE,t1andt2overlap which means snow-free period is zero. Therefore, the area above maximum FSCE has perpetual snow cover. At the minimum of FSCE, numeroust1andt2produce a horizontal line, which implies snow-free period lasts for a year, where transient snow dominated. In the area between the maximum and minimum of FSCE, seasonal snow dominated, fromT1toT2(Figure 2).

    2.2. How to quantify FSCE?

    If snow accumulation and ablation are considered inverse processes. The period betweenT1andT2in FSCE simplifies to be symmetrical.

    Median of snow-free period (Tm) and duration of snow-free period (ΔT) are calculated to characterize

    snow-free period.

    In Function(1):

    Figure 2 Schematic view of Tm and ΔT in FSCE

    3. Study area and data source

    3.1. An overview of study area

    The study area, located in Tibet of China from 90°3'E to 99°4'E, 28°24'N to 32°34'N, covers an area of 1.53×105km2, is divided by the Yarlung zangbo Grand Canyon into three areas, including Lhasa River Basin,and Niyang River Basin on the left of the canyon and Changdu region on the right side (shown in Figure 3).Yarlung zangbo Grand Canyon is out of the study area due to frequent gravitational processes caused by steep slopes (Schmidtet al., 2009). The influences of slope,aspect on spatial distribution of snow become significant and considering elevation only is not sufficient in such regions.

    Figure 3 An overview of study area

    The Lhasa River Basin drains an area of 3.23×104km2,with an elevation ranging from 3,535 m to 7,093 m. The basin is covered by shrub, alpine meadow, coniferous forest and rock, with annual precipitation of approximately 443 mm. Niyang River Basin, adjacent to Lhasa River Basin,covers an area of 1.81×104km2. Elevation ranges from 2,905 m to 6,588 m, with annual precipitation of 635 mm(Zhenget al., 1979). Glaciers develop, vegetation grows better, and the habitat is coniferous forest and shrubland. The Changdu region, part of the Hengduan Mountains, covers an area of 10.30×104km2, with an elevation ranging from 2,073 m to 6,644 m. Annual precipitation ranges from 500 mm to 1,000 mm. It features a rugged terrain of shrub, rock and coniferous forest. Glaciers develop, and thick seasonal snow accumulates in the northwestern region of Changdu.

    3.2. An introduction to data source

    The Digital Elevation Data (DEM) is based on Shuttle Radar Topography Mission (SRTM) with a spatial resolution about 90 m released by USGS (https://wist.echo.nasa.gov/).

    The snow product is "Long-term snow depth dataset of China (1978-2005)" (Cheet al., 2003; Che and Li, 2005)provided by the "Environmental & Ecological Science Data Center for West China, National Natural Science Foundation of China" (http://westdc.westgis.ac.cn).

    Microwave remote sensing data from 1978 to 1987 was from SMMR instrument on NIMBUS-7 platform, before SSM/I was launched (Clifford, 2010). The algorithms for snow depth (SD) proposed by Chang (Clifford, 2010) and applied by Che are as follows:

    in which,Tb,nis brightness temperature and frequency.

    Validations with ground stations indicate that, the standard deviation of snow depth retrieval from SMMR was 6.2 cm,while for SSM/I retrieval that was 6.0 cm. This product covers China with a spatial resolution of 25 km and temporal resolution of 1 day from late 1978 to 2005.

    4. Parameters for FSCE

    There are 80 grids of 25km×25km for Lhasa and Niyang River basins, and 166 grids cover the Changdu region, totaling 246 grids.

    4.1. Parameter extraction

    (1) There exists a pair oft1andt2each year. Thus, a pair ofTmand ΔTcould be deduced every year. The interannual averageTmand ΔTduring 1979 and 2005 for each grid are calculated as follows:

    where, subscriptiindicates grid (i= 1, 2, … , 246) andjdenotes year (j= 1, 2, … , 27).

    (2) Matching between snow product and DEM data.Every snow grid with a resolution of 25km×25km involves numerous DEM pixels of 90m×90m. The average and variance (σ) of elevation and aspect in each grid are calculated to represent the topography in such snow grid. Finally, 246 groups ofTmi, ΔTi,Hi,σi,Aspiare obtained, which present both snow parameters and topographic properties. The average elevation is aggregated into a range of 3,854 to 5,488 m a.s.l. in a coarse resolution of 25km×25km.

    4.2. Statistics of Tm and ΔT

    The temporal distributions ofTmand ΔTreveal that,Tmhas a narrow distribution while ΔTvaries with topographic factors (shown in Figures 4 and 5).

    Using "Day of Year" (DOY) to evaluateTm, January 1 is 1 and December 31 is 365 (common year) or 366 (leap year).Average ofTmis 212.3 which corresponds to July 31, with a standard deviation of 4.0 (Table 1). About 65.45% ofTm(located in the range of 212.3±4.0) occurs between July 28 and August 4. Nearly 97.56% ofTmoccurs from July 24 to August 8 (212.3±8.0). Based on regressive analysis,Tmin an area of 1.53×105km2is not significantly related to latitude,longitude, elevation, curvature and aspect (He and Liu,2007).

    ΔTvaries from 90 to 224 days in a year with the average equals 151.6 days and standard deviation 31.6 days.About 63.82% of the study area has ΔTwithin 4 to 6 months (151.6±31.6 days), and ΔTin 97.15% of the study area lasts for 3 to 8 months (151.6±63.2 days). Correlation analysis between ΔTand several geographic or topographic factors indicates that (Table 2), ΔTis negatively related to elevation and positively related to longitude.Temperature lapse rate and rising air over topographic barrier (Liston, 2004) posed by higher elevation reinforce snowfall and snow accumulation. However, local geomorphologic feature of "higher in the west while lower in the east" results in snow pattern affected by longitude indirectly. Among them, elevation is the dominating factor to reflect snow distribution.

    5. Results

    5.1. Regressive analysis

    Based on correlation analysis in section 3.2, ΔTdecreases as elevation increases. Regressive equation is established between ΔTand elevation for the 246 grids.

    in which,b0=395.355, andb1=-0.053. Coefficient of correlationr=0.607, adjusted coefficient of determinationr2=0.366. This confirms that, the variability of snow distribution in the whole region can be explained partly by ele-vation, approximately 36.6%.

    Calculate the standardized residualZRE. Sort out all the data with errors between original and fitted data greater than ±2σ. These data are considered to be abnormal points for the regressive relation. There are 50 grids with absolute value ofZRE>2, accounting for 20.3% of the total samples. Figure 6 shows spatial distribution of those abnormal points.

    Figure 4 Temporal distribution of Tm

    Figure 5 Temporal distribution of ΔT

    Figure 6 Spatial distribution of abnormal points. Red dot denotes abnormal grid, blue triangle indicates the grid having glaciers with ice volume more than 0.01 km3 and coverage larger than 0.35 km2 according to Glacier inventory of China (Mi et al., 2002).

    Table 1 Statistics of Tm and ΔT

    Table 2 Correlation analysis between ΔT and geographic/topographic factors

    The regions within the dashed lines denote the regressive ΔTlonger than observation, while regions within the solid lines indicate regressive ΔTis shorter than observation.

    In dash-line zones, abnormal points are adjacent to glaciers and located in lower elevation sites. Snow remains for a longer time due to the cold effect of glaciers although situated in lower elevations. Therefore, ΔTcalculated by regressive equation based on elevation laws seems longer than actual ΔT.

    In solid-line zones, actual ΔTis longer than calculated ones from the FSCE equation. Those abnormal points are distributed in three parts. In Figure 6, region "I" located in the dry-hot valley of Lhasa River is snow seldom accumulates. Blowing snow plays an important role in region "II"which is on the dividing crest in northern Lhasa River Basin.Region "III" is on the leeward side of Hengduan Mountain,dominated by dry, hot and cloudless climate and higher radiation (Shen, 1987).

    After eliminating 50 abnormal data,b0=471.8 andb1=-0.070 in the final regressive equation wherer=0.836,r2=0.699. About 70% of the variability of snow distribution could be explained by elevation in the left 196 grids. The confidence limits of 95% shown in Figure 7 demonstrate that the error between upper and lower limits is less than 12 days.

    Figure 7 Regression line of ΔT against H after removal and confidence interval of 95%

    5.2. Establishment of FSCE

    After removing abnormal data from the original samples,average elevation of the left grids range from 3,883 to 5,488 m, the statistics of newlyTmand ΔTare as follows, there is no significant difference between Table 1 and Table 3.

    Based on the regression Equation(5)in ΔT(H), calculate the inverse function of ΔT-1(H) and submit it into Equation(6). This relation is derived from the sample within the average elevation ranging from 3,883 to 5,488 m. However,the variation of FSCE betweenTm-44<t<Tm+44,t<Tm-100 andt>Tm-100 are still unknown.

    Using the average value of 212.6 to replaceTmin Equation(7), we arrive at the following.

    Table 3 Statistical characteristics of Tm and ΔT after removal

    Snow covered elevation (FSCE) changes 100 m ifTmvaries within ±σ(±3.5 days).

    FSCE reveals the different onset and end dates of snow-free period for different elevations in mountainous regions. In this region, based on the microwave data with a spatial resolution of 25 km, FSCE indicates that snow start to melt in late April at the lower elevation sites, and there is a snow-free period from late June to mid September. Snow starts to accumulate in mid November and there is a solid cover of snow from December to March of the next year in the study area. During late June to mid September, snow covered elevation (FSCE) is above the whole region, with rainfall and floods dominating the study area which is snow-free.

    Limited by the coarse resolution (25km×25km) of snow product, smaller regions (scales from m2to km2) with perpetual snow and transient snow cannot be identified. In the future, snow product of higher resolution will help obtain a more accurate equation of FSCE.

    6. Conclusions

    (1) Focusing on the seasonal variation of snow cycle, a concept of Fluctuating Snow Covered Elevation (FSCE) is proposed to provide an intuitive description of spatiotemporal distribution of snow within a year. Two parameters ofTmand ΔTare used to characterize FSCE. The modeling of FSCE is conducted in an area of 1.53×105km2, consisting of Lhasa River Basin, Niyang River Basin and Changdu region,located in southeastern Tibet.

    (2) Based on analysis of FSCE derived from microwave remote sensing data of 25km×25km, mid time of snow-free periodTmcorrelates insignificantly with geographical or topographic factors, having the yearly mean value of July 31.Duration of snow-free period ΔTshows a significant positive correlation with elevation, having the yearly mean value of nearly five months (151days).

    (3) Generally speaking, 80% of the total regions undergo snow-free seasons from late June to mid September, snowmelt occurs in late April and there is a solid cover of snow from December to March of the next year based on FSCE analysis.

    (4) All the work was carried out based on the dataset with a spatial resolution of 25 km. In the future, data source with a higher resolution such as EOS/MODIS will help to establish an improved equation of FSCE.

    This work was supported by the National Natural Science Foundation of China under Grant No. 50221903 and by the Ministry of Science and Technology of China under Grant No.2007BAC06B06. The "Long-term snow depth dataset of China (1978-2005)" is provided by "Environment & Eco-logical Science Data Center for West China, National Natural Science Foundation of China" (http://westdc.westgis.ac.cn).We would like to specially thank Dr. Che T from Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, for his great help.

    Anderton SP, White SM, Alvera B, 2002. Micro-scale spatial variability and the timing of snow melt runoff in a high mountain catchment. Journal of Hydrology, 268: 158-176.

    Anderton SP, White SM, Alvera B, 2004. Evaluation of spatial variability in snow water equivalent for a high mountain catchment. Hydrological Processes, 18: 435-453.

    Bloschl G, Kirnbauer R, 1991. Point snowmelt models with different degrees of complexity—internal process. Journal of Hydrology, 129: 127-147.

    Che T, Li X, 2005. Spatial distribution and temporal variation of snow water resources in China during 1993-2002. Journal of Glaciology and Geocryology, 27(1): 64-67.

    Che T, Li X, Armstrong RL, 2003. Estimation of snow water equivalent from passive microwave remote sensing data (SSM/I) in Tibetan Plateau.In: Kummerow CD, Jiang FS, Uratura S (eds.). Microwave Remote Sensing of the Atmosphere and Environment III, 4894: 405-412.

    Clifford D, 2010. Global estimates of snow water equivalent from passive microwave instruments: history, challenges and future developments. International Journal of Remote Sensing, 31(14): 3707-3726.

    Faria DA, Pomeroy JW, Essery RLH, 2002. Effect of covariance between ablation and snow water equivalent on depletion of snow-covered area in a forest. Hydrological Processes, 14(15): 2683-2695.

    He XQ, Liu WQ, 2007. Applied Regression Analysis. China Renmin University Press, Beijing.

    Jiang FC, Wu XH, Wang SB, Fu JL, 2002. Characteristics of space distribution of the climate snowline in China. Journal of Geomechanics, 8(4):289-296.

    Jiang ZX, 1982. Discussion on the mathematical model for natural geographical zone in China. Acta Geographica Sinica, 37(1): 98-103.

    Jiang ZX, 1984. Quantitative analysis of snowline zonality. Journal of Glaciology and Geocryology, 6(2): 27-35.

    Jost G, Weiler M, Gluns DR, Alila Y, 2007. The influence of forest and topography on snow accumulation and melt at the watershed-scale. Journal of Hydrology, 347: 101-115.

    Liston GE, 2004. Representing subgrid snow cover heterogeneities in regional and global models. Journal of Climate, 17(6): 1381-1397.

    Marchand MD, Killingtveit A, 2005. Statistical probability distribution of snow depth at the model sub-grid cell spatial scale. Hydrological Processes, 19: 355-369.

    Mckay GA, Gray DM, 1981. The distribution of snowcover. In: Gray DM,Male DH (eds.). Handbook of Snow Principles, Processes, Management& Use. Blackburn Press, Caldwell. 153-190.

    Mi DS, Xie ZC, Luo XR, 2002. Glacier Inventory of China. Xi’an Cartographic Publishing House, Xi’an.

    Schmidt S, Weber B, Winiger M, 2009. Analyses of seasonal snow disappearance in an alpine valley from micro- to meso-scale (Loetschental,Switzerland). Hydrological Processes, 23: 1041-1051.

    Shen ZB, 1987. The geographic distribution of the global radiation and the characteristics of its seasonal variation over the Qinghai-Xizang Plateau.Plateau Meteorology, 6(4): 326-334.

    Winkler RD, Spittlehouse DL, Golding DL, 2005. Measured differences in snow accumulation and melt among clearcut, juvenile, and mature forest in southern British Columbia. Hydrological Processes, 19(1): 51-62.

    Zhang J, Han T, Wang J, 2005. Changes of snow-cover area and snowline altitude in the Qilian Mountains, 1997-2004. Journal of Glaciology and Geocryology, 27(5): 649-654.

    Zheng D, Zhang RZ, Yang QY, 1979. On the natural zonation in the Qinghai Xizang Plateau. Acta Geographic Sinica, 34(1): 1-11.

    10.3724/SP.J.1226.2011.00400

    *Correspondence to: Dr. Jie Gao, State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084,China. Email: s.kao2009@gmail.com

    13 April 2011 Accepted: 14 July 2011

    男女啪啪激烈高潮av片| 欧美另类一区| 亚洲综合精品二区| 亚洲精品国产av蜜桃| 91精品一卡2卡3卡4卡| 国内精品美女久久久久久| 精品国产三级普通话版| av在线播放精品| 国产美女午夜福利| 国产欧美日韩精品一区二区| 天天躁夜夜躁狠狠久久av| 美女国产视频在线观看| av国产久精品久网站免费入址| 91精品国产九色| 色5月婷婷丁香| 成人毛片a级毛片在线播放| 99久久精品热视频| 精品久久久精品久久久| 国产91av在线免费观看| 国产探花在线观看一区二区| 日本黄色片子视频| 亚洲国产最新在线播放| videossex国产| 人妻少妇偷人精品九色| 亚洲精品成人av观看孕妇| 久久草成人影院| 又黄又爽又刺激的免费视频.| 精品人妻一区二区三区麻豆| 精品一区二区三卡| 看黄色毛片网站| 99久国产av精品| 国产成人aa在线观看| 国产精品国产三级国产专区5o| 一级黄片播放器| 国产亚洲精品久久久com| 最近手机中文字幕大全| 亚洲欧美清纯卡通| 丰满乱子伦码专区| 18禁在线无遮挡免费观看视频| 欧美3d第一页| 蜜桃久久精品国产亚洲av| 麻豆久久精品国产亚洲av| 黄色日韩在线| 国产白丝娇喘喷水9色精品| 免费看不卡的av| 麻豆av噜噜一区二区三区| 欧美日韩国产mv在线观看视频 | 51国产日韩欧美| 毛片一级片免费看久久久久| 亚洲四区av| 能在线免费观看的黄片| 亚洲国产成人一精品久久久| 国产高清三级在线| 亚洲性久久影院| 三级男女做爰猛烈吃奶摸视频| 男女边摸边吃奶| 又大又黄又爽视频免费| 天堂√8在线中文| 亚洲精品久久午夜乱码| 午夜精品在线福利| 干丝袜人妻中文字幕| 精品亚洲乱码少妇综合久久| 成年女人在线观看亚洲视频 | 午夜福利视频精品| 亚洲成人中文字幕在线播放| 国产极品天堂在线| 日本黄大片高清| 国产爱豆传媒在线观看| 18禁动态无遮挡网站| 国产探花极品一区二区| 黄片wwwwww| 成人特级av手机在线观看| 国产亚洲最大av| 国产精品久久视频播放| 欧美3d第一页| 亚洲丝袜综合中文字幕| 在线天堂最新版资源| 日韩欧美精品v在线| 免费不卡的大黄色大毛片视频在线观看 | 亚洲av福利一区| 久久久精品欧美日韩精品| 欧美成人一区二区免费高清观看| 日韩一区二区三区影片| 亚洲不卡免费看| 欧美高清成人免费视频www| 亚洲,欧美,日韩| av.在线天堂| 亚洲精品aⅴ在线观看| 欧美日韩在线观看h| 美女黄网站色视频| 五月玫瑰六月丁香| 国产精品爽爽va在线观看网站| 亚洲精品久久午夜乱码| 久久午夜福利片| 久99久视频精品免费| 成人性生交大片免费视频hd| 久久精品久久久久久久性| 免费少妇av软件| 国产探花极品一区二区| 亚洲精品日韩在线中文字幕| 日韩三级伦理在线观看| 观看美女的网站| 五月天丁香电影| 精品久久久久久成人av| 免费看不卡的av| 免费观看av网站的网址| 黄片wwwwww| 最近视频中文字幕2019在线8| 久久国内精品自在自线图片| 一级av片app| 国产乱人偷精品视频| av黄色大香蕉| 国产午夜精品一二区理论片| 国产av码专区亚洲av| 亚洲电影在线观看av| 亚洲精品日韩在线中文字幕| 久久精品夜夜夜夜夜久久蜜豆| 少妇的逼好多水| 91精品伊人久久大香线蕉| 午夜爱爱视频在线播放| 亚洲精品中文字幕在线视频 | 亚洲成人久久爱视频| 午夜激情福利司机影院| 日日啪夜夜爽| 国产成人午夜福利电影在线观看| 三级经典国产精品| 黄片无遮挡物在线观看| 国产国拍精品亚洲av在线观看| 最近中文字幕高清免费大全6| 精品人妻熟女av久视频| 亚洲精品一区蜜桃| 蜜桃久久精品国产亚洲av| 尤物成人国产欧美一区二区三区| 国产精品不卡视频一区二区| www.av在线官网国产| 欧美xxⅹ黑人| 日韩一本色道免费dvd| 国产黄色免费在线视频| 日本wwww免费看| 夫妻午夜视频| 天天躁日日操中文字幕| 老司机影院成人| 久久精品久久久久久久性| 亚洲av在线观看美女高潮| 午夜精品一区二区三区免费看| 精品少妇黑人巨大在线播放| 亚洲精品一二三| 免费看不卡的av| 岛国毛片在线播放| 十八禁网站网址无遮挡 | 亚洲av免费高清在线观看| 国产 亚洲一区二区三区 | 亚洲av日韩在线播放| 日本wwww免费看| 高清av免费在线| 搡老乐熟女国产| 视频中文字幕在线观看| 天美传媒精品一区二区| 亚洲综合精品二区| 欧美极品一区二区三区四区| 午夜免费男女啪啪视频观看| 日本黄大片高清| av免费在线看不卡| 精品久久久久久久末码| 成人亚洲精品av一区二区| 天堂av国产一区二区熟女人妻| 熟女电影av网| 成人国产麻豆网| 国产精品精品国产色婷婷| 亚洲成人久久爱视频| 成人美女网站在线观看视频| 亚洲成人av在线免费| 久久精品久久久久久噜噜老黄| 亚洲av成人av| 久久人人爽人人片av| 尤物成人国产欧美一区二区三区| 亚洲精品国产av蜜桃| 午夜免费观看性视频| 欧美日韩亚洲高清精品| 性色avwww在线观看| 午夜免费激情av| 蜜桃亚洲精品一区二区三区| av在线老鸭窝| 日韩欧美一区视频在线观看 | 黄色一级大片看看| 亚洲欧美日韩无卡精品| 偷拍熟女少妇极品色| 韩国高清视频一区二区三区| 波多野结衣巨乳人妻| 老司机影院毛片| 精品人妻视频免费看| 亚洲综合色惰| 国产精品久久久久久精品电影| 日韩大片免费观看网站| 亚洲18禁久久av| 午夜精品在线福利| 日日啪夜夜爽| 欧美最新免费一区二区三区| 亚洲精品成人久久久久久| 国产极品天堂在线| 久久99蜜桃精品久久| 欧美bdsm另类| 国产高清国产精品国产三级 | 亚洲在久久综合| 街头女战士在线观看网站| 一级二级三级毛片免费看| 亚洲精品成人av观看孕妇| 国产伦理片在线播放av一区| 美女大奶头视频| 嫩草影院精品99| 午夜激情欧美在线| 国产在线男女| 国产爱豆传媒在线观看| 久久人人爽人人爽人人片va| 一本一本综合久久| 国产色婷婷99| 永久免费av网站大全| 2018国产大陆天天弄谢| 好男人在线观看高清免费视频| 中文字幕久久专区| 国产高清不卡午夜福利| 美女大奶头视频| 综合色丁香网| 99久国产av精品国产电影| 极品少妇高潮喷水抽搐| 人体艺术视频欧美日本| 丰满人妻一区二区三区视频av| 国语对白做爰xxxⅹ性视频网站| 中文字幕人妻熟人妻熟丝袜美| 成人亚洲欧美一区二区av| 成人特级av手机在线观看| 亚洲精品一区蜜桃| 美女主播在线视频| 最近2019中文字幕mv第一页| 天堂中文最新版在线下载 | 在线观看免费高清a一片| 国产淫语在线视频| 美女国产视频在线观看| 午夜精品国产一区二区电影 | 久久精品久久久久久噜噜老黄| 人妻少妇偷人精品九色| 国产午夜福利久久久久久| 日本av手机在线免费观看| 啦啦啦韩国在线观看视频| 国产 一区精品| 综合色丁香网| 久久97久久精品| 狂野欧美激情性xxxx在线观看| 欧美 日韩 精品 国产| 三级男女做爰猛烈吃奶摸视频| 婷婷六月久久综合丁香| 青青草视频在线视频观看| 久久久久性生活片| 精品久久久久久久久久久久久| 欧美激情国产日韩精品一区| 男女边摸边吃奶| 国产亚洲91精品色在线| 亚洲国产精品成人久久小说| 国产在线男女| 久久99蜜桃精品久久| 免费观看性生交大片5| 亚洲av电影不卡..在线观看| 国产精品一区二区三区四区免费观看| 久久精品夜夜夜夜夜久久蜜豆| 午夜福利在线观看吧| 观看免费一级毛片| 人妻夜夜爽99麻豆av| 丰满乱子伦码专区| 韩国高清视频一区二区三区| 久久久久国产网址| 97超视频在线观看视频| 午夜福利在线在线| 久久久久久九九精品二区国产| 久久久精品欧美日韩精品| 欧美丝袜亚洲另类| 91精品一卡2卡3卡4卡| 热99在线观看视频| 男人和女人高潮做爰伦理| 国产日韩欧美在线精品| 欧美最新免费一区二区三区| 一级毛片电影观看| 直男gayav资源| 日本-黄色视频高清免费观看| 五月玫瑰六月丁香| 少妇人妻精品综合一区二区| 久久久久国产网址| 国产亚洲91精品色在线| 午夜激情欧美在线| 十八禁网站网址无遮挡 | 我要看日韩黄色一级片| 九九爱精品视频在线观看| 中文天堂在线官网| 日韩av免费高清视频| 国产精品国产三级国产专区5o| 国产一区二区三区综合在线观看 | 国产免费视频播放在线视频 | 日韩一本色道免费dvd| 狂野欧美激情性xxxx在线观看| 99热全是精品| 亚洲在久久综合| 亚洲怡红院男人天堂| 三级国产精品片| 国产免费一级a男人的天堂| 一个人观看的视频www高清免费观看| 国产又色又爽无遮挡免| 我的女老师完整版在线观看| 丝瓜视频免费看黄片| 91av网一区二区| 三级国产精品片| ponron亚洲| 最近手机中文字幕大全| 三级男女做爰猛烈吃奶摸视频| 国精品久久久久久国模美| 中文资源天堂在线| or卡值多少钱| kizo精华| 亚洲av电影在线观看一区二区三区 | 日韩欧美国产在线观看| 国内揄拍国产精品人妻在线| 国产精品一二三区在线看| 1000部很黄的大片| 国产精品嫩草影院av在线观看| 精品不卡国产一区二区三区| 一级毛片我不卡| 一个人看的www免费观看视频| 69人妻影院| 亚洲欧美成人精品一区二区| 我要看日韩黄色一级片| 日日摸夜夜添夜夜添av毛片| 久久久精品欧美日韩精品| 午夜免费观看性视频| 精品午夜福利在线看| 亚洲天堂国产精品一区在线| 久久久久久久久大av| 亚洲久久久久久中文字幕| 亚洲成人中文字幕在线播放| 女的被弄到高潮叫床怎么办| 日韩伦理黄色片| 免费看av在线观看网站| 日本色播在线视频| 欧美成人精品欧美一级黄| 亚洲精品,欧美精品| 亚洲精品成人av观看孕妇| 天天躁夜夜躁狠狠久久av| 久久久久网色| 天天躁夜夜躁狠狠久久av| 在线免费十八禁| 永久网站在线| 精品欧美国产一区二区三| 日本免费在线观看一区| 男人和女人高潮做爰伦理| 免费观看在线日韩| 在现免费观看毛片| 一区二区三区高清视频在线| 亚洲人与动物交配视频| 婷婷色麻豆天堂久久| 能在线免费观看的黄片| 亚洲av中文av极速乱| 国产美女午夜福利| 久久久午夜欧美精品| 日韩 亚洲 欧美在线| 纵有疾风起免费观看全集完整版 | 国产精品1区2区在线观看.| 免费观看无遮挡的男女| 看十八女毛片水多多多| 午夜福利视频精品| 在线a可以看的网站| 97热精品久久久久久| 黄色日韩在线| 国产在视频线精品| 亚洲第一区二区三区不卡| 一区二区三区乱码不卡18| 国产精品1区2区在线观看.| 大片免费播放器 马上看| 网址你懂的国产日韩在线| 免费观看无遮挡的男女| 三级男女做爰猛烈吃奶摸视频| 一区二区三区免费毛片| 欧美日韩综合久久久久久| 日韩欧美精品免费久久| 肉色欧美久久久久久久蜜桃 | 国产免费又黄又爽又色| 亚洲国产欧美人成| 亚洲精华国产精华液的使用体验| 欧美日韩视频高清一区二区三区二| 麻豆成人av视频| 国产黄色小视频在线观看| 一个人看视频在线观看www免费| 搡老妇女老女人老熟妇| www.av在线官网国产| 综合色av麻豆| 久久久a久久爽久久v久久| 99re6热这里在线精品视频| av专区在线播放| 国产午夜精品久久久久久一区二区三区| 国产黄a三级三级三级人| 欧美日韩亚洲高清精品| 在线观看av片永久免费下载| 一级毛片我不卡| 伦精品一区二区三区| 国产亚洲午夜精品一区二区久久 | 又爽又黄无遮挡网站| 国产精品综合久久久久久久免费| 18禁在线无遮挡免费观看视频| 色5月婷婷丁香| 高清av免费在线| 乱码一卡2卡4卡精品| 美女大奶头视频| 免费黄色在线免费观看| 插逼视频在线观看| 亚洲精品久久午夜乱码| 国产伦精品一区二区三区四那| 99久久中文字幕三级久久日本| 女的被弄到高潮叫床怎么办| 中文字幕av成人在线电影| 日本一二三区视频观看| 成人毛片60女人毛片免费| 久99久视频精品免费| freevideosex欧美| 国产精品蜜桃在线观看| 国产成人免费观看mmmm| 美女被艹到高潮喷水动态| 淫秽高清视频在线观看| 国产一区二区三区综合在线观看 | 18禁在线播放成人免费| 色综合色国产| 亚洲精品影视一区二区三区av| 高清视频免费观看一区二区 | 亚洲一级一片aⅴ在线观看| 国产精品久久视频播放| 国产麻豆成人av免费视频| 熟女电影av网| 欧美日韩国产mv在线观看视频 | 亚洲18禁久久av| 国产 一区 欧美 日韩| 久久这里只有精品中国| 久久久久性生活片| 三级国产精品欧美在线观看| 欧美激情在线99| 亚洲在久久综合| 国产黄a三级三级三级人| 久久精品国产亚洲av天美| 国产黄频视频在线观看| 精品一区二区三区视频在线| 天天一区二区日本电影三级| 少妇的逼好多水| 最近最新中文字幕大全电影3| 日韩精品有码人妻一区| 婷婷色av中文字幕| 日韩av不卡免费在线播放| 日本欧美国产在线视频| 欧美日韩综合久久久久久| 一二三四中文在线观看免费高清| 99re6热这里在线精品视频| 日韩强制内射视频| 日韩电影二区| 爱豆传媒免费全集在线观看| 国产乱人偷精品视频| 最新中文字幕久久久久| 亚洲精品中文字幕在线视频 | 人妻夜夜爽99麻豆av| 欧美成人一区二区免费高清观看| kizo精华| a级毛片免费高清观看在线播放| 一级av片app| 男女边摸边吃奶| 国产精品久久视频播放| 国产精品.久久久| 超碰av人人做人人爽久久| 天堂av国产一区二区熟女人妻| 丰满人妻一区二区三区视频av| 亚洲一区高清亚洲精品| 亚洲丝袜综合中文字幕| 色吧在线观看| 如何舔出高潮| av在线观看视频网站免费| 国产精品美女特级片免费视频播放器| 色综合色国产| 日本爱情动作片www.在线观看| 亚洲欧美成人精品一区二区| 日本猛色少妇xxxxx猛交久久| av在线老鸭窝| 亚洲国产精品专区欧美| 别揉我奶头 嗯啊视频| 3wmmmm亚洲av在线观看| 成人鲁丝片一二三区免费| 久久久久久九九精品二区国产| 男人爽女人下面视频在线观看| 在线天堂最新版资源| 国语对白做爰xxxⅹ性视频网站| 一区二区三区高清视频在线| 国产一级毛片在线| 97超视频在线观看视频| 亚洲国产日韩欧美精品在线观看| 亚洲高清免费不卡视频| 日韩人妻高清精品专区| 亚洲精品国产av蜜桃| 国产精品一区二区三区四区久久| 国产午夜精品论理片| 最近中文字幕高清免费大全6| 亚洲最大成人中文| 2018国产大陆天天弄谢| 日日摸夜夜添夜夜爱| 亚洲精华国产精华液的使用体验| 国国产精品蜜臀av免费| 免费观看精品视频网站| 国产一区二区亚洲精品在线观看| 天堂av国产一区二区熟女人妻| 久久久久久久午夜电影| 久久久久久久久中文| 国产一区二区亚洲精品在线观看| 国产免费又黄又爽又色| 又粗又硬又长又爽又黄的视频| av在线老鸭窝| 日韩大片免费观看网站| 尤物成人国产欧美一区二区三区| 色吧在线观看| 精品久久久噜噜| 国产一区二区亚洲精品在线观看| 欧美潮喷喷水| 爱豆传媒免费全集在线观看| 国产 一区 欧美 日韩| 免费电影在线观看免费观看| 亚洲人成网站高清观看| 日本猛色少妇xxxxx猛交久久| 小蜜桃在线观看免费完整版高清| 爱豆传媒免费全集在线观看| 日日啪夜夜爽| 久久久久久伊人网av| 丝瓜视频免费看黄片| 草草在线视频免费看| 熟妇人妻不卡中文字幕| 精品国产三级普通话版| 亚洲图色成人| 婷婷六月久久综合丁香| 亚洲美女搞黄在线观看| 久久精品夜夜夜夜夜久久蜜豆| 丝瓜视频免费看黄片| www.色视频.com| 精品人妻一区二区三区麻豆| 免费电影在线观看免费观看| 久久精品国产亚洲av天美| 精品久久久久久电影网| 国产在线一区二区三区精| 日日撸夜夜添| av在线老鸭窝| 亚洲精品色激情综合| 又黄又爽又刺激的免费视频.| 国产精品人妻久久久影院| 久久精品熟女亚洲av麻豆精品 | 一个人免费在线观看电影| 看免费成人av毛片| 久久久久精品性色| 亚洲欧洲国产日韩| 久久久久久久久中文| 97热精品久久久久久| 亚洲真实伦在线观看| 老女人水多毛片| 少妇裸体淫交视频免费看高清| 欧美xxⅹ黑人| 欧美极品一区二区三区四区| 97在线视频观看| 三级男女做爰猛烈吃奶摸视频| 国产乱来视频区| 亚洲精品乱久久久久久| 日本熟妇午夜| 精品人妻熟女av久视频| 亚洲伊人久久精品综合| 中国美白少妇内射xxxbb| 高清欧美精品videossex| 91av网一区二区| 一级毛片aaaaaa免费看小| av卡一久久| av在线观看视频网站免费| 亚洲人成网站高清观看| 一区二区三区四区激情视频| 国内少妇人妻偷人精品xxx网站| 久久精品国产亚洲av天美| 久久久精品欧美日韩精品| 亚洲电影在线观看av| 欧美 日韩 精品 国产| 国产一区二区亚洲精品在线观看| 成人亚洲欧美一区二区av| 国产亚洲一区二区精品| 黑人高潮一二区| 天天一区二区日本电影三级| 精品人妻熟女av久视频| 久久久久久伊人网av| 内射极品少妇av片p| 国产人妻一区二区三区在| 亚洲欧美成人综合另类久久久| 人人妻人人看人人澡| 国产亚洲av嫩草精品影院| 黄片wwwwww| 国产精品人妻久久久久久| 婷婷色综合www| 日本午夜av视频| 波多野结衣巨乳人妻| 最近手机中文字幕大全| 欧美日韩精品成人综合77777| 可以在线观看毛片的网站| 91久久精品国产一区二区成人| 成人毛片60女人毛片免费| 18禁动态无遮挡网站| 国产黄a三级三级三级人| 国产精品一区二区三区四区免费观看| 久久久久精品性色| 欧美bdsm另类| 中文字幕av在线有码专区| 午夜福利在线观看吧| 亚洲精品久久久久久婷婷小说| 日韩欧美国产在线观看| 一级二级三级毛片免费看| 你懂的网址亚洲精品在线观看| 干丝袜人妻中文字幕|