• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cenozoic Ephedraceae adaptation to global cooling in northwestern China

    2011-12-09 09:36:32YunFaMiaoXiaoLiYanYaJunShaoBaoYang
    Sciences in Cold and Arid Regions 2011年5期

    YunFa Miao , XiaoLi Yan , YaJun Shao , Bao Yang

    1. Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China

    2. MOE Key Laboratory of Western China’s Environmental Systems & West Environment and Climate Changes Institute, Lanzhou University, Lanzhou 730000, China

    Cenozoic Ephedraceae adaptation to global cooling in northwestern China

    YunFa Miao1*, XiaoLi Yan2, YaJun Shao1, Bao Yang1

    1. Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China

    2. MOE Key Laboratory of Western China’s Environmental Systems & West Environment and Climate Changes Institute, Lanzhou University, Lanzhou 730000, China

    Ephedraceae has been applied largely as a drought indicator to reconstruct Cenozoic paleoenvironment and paleoclimate. However, temperature indication of Ephedraceae has been largely ignored. Here, we provide a record of Ephedraceae percentage spanning from the Early Eocene to Middle Miocene (52-17 Myr B.P.) in the Xining Basin, northeastern Tibetan Plateau. This record is comparable to a compiled Cenozoic Ephedraceae record from five other basins in northwestern China. Both records show Ephedraceae percentages were high during the Early Eocene, and decreased gradually from the Middle Eocene to Late Oligocene,then maintained a stable level since the Late Oligocene. By comparing these two Ephedraceae records with the marine oxygen isotope record, we discuss the variation of Ephedraceae percentage in Middle Cenozoic in response to global temperature change.Ephedraceae percentage was high in the Early Paleogene, associated with subtropical or tropical vegetation types in a global greenhouse climate, and decreased in Early Oligocene, associated with global cooling, suggesting that Ephedraceae is warm-tolerant during the Paleogene. The low Ephedraceae percentages in the Late Oligocene and Miocene were uncoupled with global warming, which may imply that Ephedraceae began to adapt to a eurythermic climate in the inland desert environment of western China. Such adaptation may be a response to the high topography of the Tibetan Plateau.

    Ephedraceae; adaptation; temperature; Tibetan Plateau; Cenozoic

    1. Introduction

    Globally, Cenozoic climate shows a cooling trend starting from approximately 55 Myr B.P. and a series of dramatic cooling events (Zachosetal., 2001), which is linked with the accelerated rate of atmospheric CO2consumption of fast silicate weathering triggered by the Indo-Asian collision and associated tectonic events (e.g., Raymoetal., 1988; Raymo and Ruddiman, 1992; Edmond and Huh, 1997; Wallmann,2001). Regionally, uplift of the Tibetan Plateau and the Himalaya Mountains caused dramatic aridification in Central Asia and the onset of monsoonal climate in East Asia(Kutzbachetal., 1989; Ruddimanetal., 1989; Harris, 2006).Both global and regional climate changes were recorded in sediments, which may be revealed by climatic proxies (e.g.,δ18O values of carbonate; pollen).

    Palynological analysis is a well-established method for reconstructing paleoclimate and paleoenvironment (e.g.,temperature, precipitation, and elevation), in which Ephedraceae percentage variation is very sensitive to dry climate and is usually attributed to dry conditions due to frequent association with other xerophillous shrubs (e.g.,Nitraria(Zygophyllaceae) and Chenopodiaceae) in arid and semiarid climates (e.g., Krutzsch, 1961; Gurevitchetal.,2002; Yang, 2002; Sun and Wang, 2005). This widely distributed type even became dominant in Cenozoic vegetation assemblages in northwestern China (e.g., Song, 1958; Songetal., 1999; Sun and Wang, 2005). For example, the highest percentages in the Qaidam Basin vary from 10% to 50% of pollen assemblages (Zhuetal., 1985). However, whether Ephedraceae percentage variation is also sensitive to temperature change, it has been ignored in many studies because of a lack of absolute age control (Wangetal., 1990) or low sampling density (Wangetal., 1990; Dupont-Nivetetal.,2008). In this paper, we address the temperature implication of Ephedraceae in the Cenozoic based on pollen records in northwestern China.

    2. Modern Ephedraceae distribution

    Ephedraceae is a desert perennial shrubby gymnosperm,which is mainly distributed in desert and grass zones of Asia,America, Southeastern Europe and Northern Africa (Figure 1a) (Gurevitchetal., 2002; Yang, 2002). Ephedraceae generally grows in arid climates, with very small leaves and low transpiration (Cutlar, 1939; Yang, 2002). In China,Ephedragrows where mean annual temperature (MAT) varies between -4 °C and 12 °C (Zhengetal., 2008), while in northern Africa (Sahara region), it grows where MAT is approximately 30 °C. Therefore, modern Ephedraceae belongs to eurythermic plants.

    Figure 1 Modern Ephedraceae distribution (a) in Eurasian and African regions (grey area) (after Caveney et al., 2001) and (b) Ephedraceae percentage variation in the Xining Basin (palaeomagnetic age control is from Dai etal., 2006)

    3. Geologic background, sampling method and results of the Xining Basin

    Located in the northeastern Tibetan Plateau, the Xining Basin holds over 800-m thick lacustrine saline playa and distal alluvial fan deposits (Daietal., 2006). Previous palynological studies about the deposits show that the climate in this basin is consistent with Cenozoic global cooling (Wangetal., 1990) or strongly influenced by the uplift of the Tibetan Plateau (Dupont-Nivetetal., 2008). However, climate implications of the dominant species of Ephedraceae with nearly the highest percentages in the aforementioned studies were not well discussed. A more detailed palynological record is required to constrain regional climate and reveal Ephedraceae climate implication based on improved palaeomagnostratigraphy. A total of 123 pollen samples were collected through approximately 819-m thick Xiejia section in the Xining Basin (Longetal., 2011).

    Our data provides a record of Ephedraceae percentage spanning the Early Eocene to Middle Miocene (52-17 Myr B.P.) (Daietal., 2006) in the Xining Basin (Figure 1b). During 52-33 Myr B.P., Ephedraceae percentage varied between 20% and 60%, with an average of 28%. Ephedraceae percentage dropped to approximately 20% at 33 Myr B.P. and maintained relatively constant after 33 Myr B.P.

    4. Combined Ephedraceae records from five other basins in northwestern China

    In Asia, climate transformation from a zonal pattern to a monsoon-dominated pattern occurred during the Miocene with the disappearance of typical subtropical aridity and the onset of inland deserts (Liuetal., 1998; Sun and Wang,2005; Guoetal., 2008). Before the Miocene, Ephedraceae was widely distributed in the subtropical arid zone throughout China and even reached to the northern South Yellow Sea Basin, and offshore western Korea (Yietal., 2003).Since the Miocene, the arid zone in Eastern China was replaced by monsoonal climate, and Ephedraceae percentage declined (with occasional occurrence of <1%) due to high precipitation brought by the Asian summer monsoon (Sun and Wang, 2005; Guoetal., 2008). Such precipitation change in the Cenozoic apparently affected Ephedraceae percentage in Eastern China. Therefore, to eliminate the humid response of Ephedraceae percentage, we compared our record of the Xining Basin with the combined Ephedraceae records from five other basins in northwestern China, all of which remained in a dry climate throughout the Cenozoic. These basins include the Tarim, Qaidam, Zhungaer, Jiuquan and Lunpolar basins (Figure 2), and age correlations are summarized in Sun and Wang (2005). Both the total and average percentages of Ephedraceae from the combined records were calculated from original data in the Tarim (Wang, 1990), Qaidam (Zhuetal., 1985), Jiuquan(Ma, 1993), Lunpolar (Song and Liu, 1982) and Zhungaer basins (Sun and Wang, 1990).

    Ephedraceae percentage of the combined records shows that Ephedraceae percentage was high during the Paleocene and Eocene, then decreased dramatically during the Oligocene and remained low through the Miocene,which is similar to Ephedraceae percentage record in the Xining Basin.

    Figure 2 Five basins always in the Cenozoic dry area (shallow grey) in northwestern China based on palynological and paleobotanical data (after Sun and Wang, 2005)

    5. Discussion

    The Ephedraceae record in the Xining Basin and the combined Ephedraceae records in northwestern China are generally comparable to the oxygen isotopic record of marine forams (Figure 3). The oxygen isotopic record of marine forams has been interpreted as a response to global temperature change, with higher δ18O values pointing to lower global temperatures (Zachosetal., 2001). The high Paleocene and Eocene Ephedraceae percentage is associated with low δ18O values, and the decrease of Ephedraceae percentage in Early Oligocene is coeval with an increase of δ18O values. Such co-variation suggests that variation of Ephedraceae percentage is coupled with global climate change in the Early Cenozoic, with high Ephedraceae percentage occurring in a greenhouse climate, and low Ephedraceae percentage in an icehouse climate during the Antarctic ice cap expansion. However,after the Late Oligocene, constant low Ephedraceae percentage was uncoupled with variation of the marine isotopic record, suggesting that Ephedraceae percentage was uncoupled with global warming in the Late Oligocene and cooling since the Middle Miocene (Figure 3). Therefore,Ephedraceae was warm-tolerant type vegetation during the Paleogene and adapted to a eurythermic environment since the Late Oligocene.

    Cenozoic variation of Ephedraceae percentage in northwestern China is also associated with variation of major pollen and spores assemblages. Fossil Ephedraceae of gnetophyte pollen grains dates back to the Triassic, and most of the modern groups diversified within their clade during the Middle Cretaceous (approximately 100 Myr B.P.) and became widely distributed with high abundance from the Middle Cretaceous to Eocene (Campbell, 2002;Judd, 2002). During the warm climate of the Paleocene and Eocene, high percentages of Ephedraceae were always accompanied by a number of tropical or subtropical types of vegetation in six basins (Song and Liu, 1982; Zhuet al.,1985; Wangetal., 1990; Ma, 1993; Songetal., 1999).These vegetation types includeEngelhardtioipollenties(Engelhardtia),Sapotaceoidaepollenites(Sapotaceae),Liquidambarpollenites(Liquidambar),Magnolipollis(Magnoliaceae),Nyssapollenties(Nyssa),Ilexpollenite(Aquifoliaceae),Sapindaceidites(Sapindaceae),Podocarpidites(Podocarpaceae),Meliaceoidites(Meliaceae),Euphorbiacites(Euphorbiaceae),Rhoipites(Anacardiaceae)andRutaceoipollenites(Rutaceae). The high percentage of Ephedraceae and diversity of pollen types associated with abundant tropical and subtropical plant species suggest a warm climate during the Paleocene and Eocene. During the Oligocene, a decrease of Ephedraceae percentage was associated with the occurrence of various conifers, such asPinus,Picea,Abies,Cedrus,TsugaandCupressaceae, and C4plants,e.g., Chenopodiaceae and Compositae. The low Ephedraceae percentage during the Oligocene is associated with the low percentage of subtropical or tropical elements.Miocene pollen assemblages in northwestern China were more diversified than those during the Oligocene, where most subtropical or tropical elements disappeared. However, Ephedraceae percentage maintained low throughout the Late Oligocene up to the present, suggesting that Ephedraceae was uncoupled with local vegetation change.Therefore, pollen and spore assemblages in northwestern China also show that Ephedraceae was warm-tolerant during the Paleogene, and adapted to a eurythermic environment after the Late Oligocene.

    Figure 3 Comparison between Cenozoic records of Ephedraceae percentages in the Xining Basin, combined records of Ephedraceae percentages in the five basins (Tarim, Qaidam, Jiuquan, Lunpolar and Zhungaer basins) in northwestern China with the δ18O record of marine forams (Zachos etal., 2001).

    Uplift of the Tibetan Plateau and retreat of the epicontinental sea, which are closely linked to the Indo-Asian collision since approximately 55 Myr B.P., have triggered dramatic aridification and cooling of the Asian interior and the onset of the Asian monsoonal climate (Harris, 2006;Zhangetal., 2007). Modern East Asian monsoon system is initiated and established during the Miocene based on pollen-vegetation as well as other climatic proxies (Liuetal.,1998; Sun and Wang, 2005; Fanetal., 2006, 2007; Guoet al., 2008). We argue that warm-tolerant Ephedraceae began to inhabit a eurythermic environment since the Late Oligocene which was mainly driven by the uplift of the Tibetan Plateau.

    The Tibetan Plateau progressively gained high elevation and expanded towards northwestern China since approximately 55 Myr B.P. (Tapponnieretal., 2001; Rowley and Currie, 2006; DeCellesetal., 2007; Wangetal., 2008; van der Beeketal., 2009). However, the uplift wasn’t significant enough to change the narrow climate arid belt stretching across China before the Oligocene (Sun and Wang, 2005;Guoetal., 2008). During global climate warming in the Late Oligocene and climatic optimum in Middle Miocene, high topography produced by the uplift of the Tibetan Plateau as well as enlargement of the land surface may have cooled down the interior of northwestern China, and initiated a topographic barrier for water vapor from the oceans. At the same time, Ephedraceae adapted to the cooling rather than migrating or extinction if its germ plasm can adapt itself to environmental change, and thus evolved to a eurythermal type which replaced the warm-tolerant vegetation type, but the exact timing is unclear.

    6. Conclusions

    The record of Ephedraceae percentage in the precisely dated Xining Basin and combined Ephedraceae records from five basins in northwestern China suggest that Ephedraceae was warm-tolerant during the Paleocene and Eocene, and adapted to a cooler climate since the Late Oligocene. The adaptation of Ephedraceae to a eurythermic environment since the Late Oligocene may be mainly driven by the uplift of the Tibetan Plateau.

    This work is supported by NSFC Grants (40802041,41002050) and the Foundation for Excellent Youth Scholars of CAREERI, CAS (51Y184991). We thank Fan MJ for help in English improvement and two anonymous reviewers for their valuable comments and suggestions.

    Campbell NA, Reece JB, 2002. Biology, 6thEdition. Benjamin Cummings,San Francisco.

    Caveney S, Charlet DA, Freitag H, Maier-Stolte M, Starratt AN, 2001. New observations on the secondary chemistry of worldEphedra(Ephedraceae). American Journal of Botany, 88: 1199-1208.

    Cutlar HC, 1939. Monograph of the North American species of the genusEphedra. Annals of the Missouri Botanical Garden, 26(4): 373-424, 426,428.

    Dai S, Fang XM, Dupont-Nivet G, Song CH, Gao JP, Krijgsman W,Langereis C, Zhang WL, 2006. Magnetostratigraphy of Cenozoic sediments from the Xining Basin: Tectonic implications for the northeastern Tibetan Plateau. Journal of Geophysical Research—Solid Earth, 111:B11102. DOI: 10.1029/2005JB004187.

    DeCelles PG, Quade J, Kapp P, Fan MJ, Dettman DL, Ding L, 2007. High and dry in central Tibet during the Late Oligocene. Earth and Planetary Science Letters, 253(3-4): 389-401.

    Dupont-Nivet G, Hoorn C, Konert M, 2008. Tibetan uplift prior to the Eocene-Oligocene climate transition: evidence from pollen analysis of the Xining Basin. Geological Science of America, 36: 987-990.

    Edmond JM, Huh Y, 1997. Chemical weathering yields from basement and orogenic terrains in hot and cold climates. In: Ruddiman WF (ed.). Tectonic Uplift and Climate Change. Plenum Press, New York. 330-350.

    Fan MJ, Dettman DL, Song CH, Fang XM, Garzione CN, 2007. Climatic variation in the Linxia basin, NE Tibetan Plateau, from 13.1 to 4.3 Ma:The stable isotope record. Palaeogeography, Palaeoclimatology, Palaeoecology, 247(3-4): 313-328.

    Fan MJ, Song CH, Dettman DL, Fang XM, Xu XH, 2006. Intensification of the Asian winter monsoon after 7.4 Ma: Grain-size evidence from the Linxia Basin, northeastern Tibetan Plateau, 13.1 Ma to 4.3 Ma. Earth and Planet Science Letters, 248(1-2): 186-197.

    Guo ZT, Sun B, Zhang ZS, Peng SZ, Xiao GQ, Ge JY, Hao QZ, Qiao YS,Liang MY, Liu JF, Yin QZ, Wei JJ, 2008. A major reorganization of Asian climate by the early Miocene. Climate of the Past, 4: 153-174.

    Gurevitch J, Schneider SM, Fox GA, 2002. The Ecology of Plants. Sinauer Associates, Inc., Sunderland MA.

    Harris NBW, 2006. The elevation history of the Tibetan Plateau and its implications for the Asian monsoon. Palaeogeography, Palaeoclimatology, Palaeoecology, 241: 4-15.

    Judd WS, 2002. Plant Systematics: A Phylogenetic Approach, 2ndEdition.Sinauer Associates, Inc., Sunderland MA.

    Krutzsch W, 1961. Uber Funde von ''ephedroidem'' Pollen im deutschen Terti?r. Geologie, Beih 32: 15-53.

    Kutzbach JE, Guetter PJ, Ruddiman WF, Prell WL, 1989. Sensitivity of climate to late Cenozoic uplift in southern Asia and the American West:numerical experiments. Journal of Geophysical Research, 94(D15):18393-18407.

    Liu TS, Zheng MP, Guo ZT, 1998. Initiation and evolution of the Asian monsoon system timely coupled with the ice-sheet growth and the tectonic movements in Asia. Quaternary Sciences, 3: 194-204.

    Long LQ, Fang XM, Miao YF, Bai Y, Wang YL, 2011. Northern Tibetan Plateau cooling and aridification linked to Cenozoic global cooling: Evidence from n-alkane distributions of Paleogene sedimentary sequences in the Xining Basin. Chinese Science Bulletin, 56(15): 1569-1578.

    Ma JQ, 1993. The Tertiary sporopollen assemblage in the Jiuquan Basin and the palaeoenvironment. Petroleum Geology & Experiment, 15(4):423-435.

    Raymo ME, Ruddiman WF, 1992. Tectonic forcing of late Cenozoic climate.Nature, 359: 117-122.

    Raymo ME, Ruddiman WF, Froelich PN, 1988. Influence of late Cenozoic mountain building on ocean geochemical cycles. Geology, 16: 649-653.

    Rowley DB, Currie BS, 2006. Palaeoaltimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature, 439: 677-681.

    Ruddiman W, Prell W, Raymo M, 1989. Late Cenozoic Uplift in Southern Asia and the American West: rationale for general circulation modeling experiments. Journal of Geophysical Research, 94(D15): 18379-18391.

    Song ZC, 1958. Tertiary spores and pollen complex from the red beds of Jiuquan, Kansu and their geological and botanical significance. Acta Palaeontol. Sin., 6(2): 159-167.

    Song ZC, Liu GW, 1982. Early Tertiary Palynoflora and its significance of Palaeogeography from Northern and Eastern Xizang. In: Team of Comprehensive Scientific Expedition to the Qinghai-Xizang Plateau, Academia Sinica (Eds.). Palaeontology of Xizang. Science Press, Beijing.165-190.

    Song ZC, Zheng YH, Li MN, 1999. Fossil spores and pollen of China (I):Late of Cretaceous-Tertiary spores and pollen. Science Press, Beijing.749-757.

    Sun MR, Wang XZ, 1990. Tertiary palynological assemblages from the Junggar Basin, Xinjiang. In: Institute of Geology, Chinese Academy of Geological Sciences, Research Institute of Petroleum Exploration and Development, Xinjiang Petroleum Administration (Eds.). Permian to Tertiary Strata and Palynological Assemblages in the North of Xinjiang.China Environmental Science Press, Beijing. 122-151.

    Sun XJ, Wang PX, 2005. How old is the Asian monsoon system? Palaeobotanical records from China. Palaeogeography, Palaeoclimatology,Palaeoecology, 222: 181-222.

    Tapponnier P, Xu Z, Palmer TN, Shukla J, Tomas RA, Yanai M, Yasunari T,2001. Oblique stepwise rise and growth of the Tibetan Plateau. Science,294: 1671-1677.

    van der Beek PA, Van Melle J, Guillot S, Pêcher A, Reiners PW, Nicolescu S, Latif M, 2009. Eocene Tibetan Plateau remnants preserved in the northwest Himalaya. Nature Geoscience, 2: 364-368.

    Wallmann K, 2001. Controls on the Cretaceous and Cenozoic evolution of seawater composition, atmospheric CO2, and climate. Geochimica et Cosmochimica Acta, 65: 3005-3025.

    Wang CS, Zhao XX, Liu ZF, Lippert PC, Graham SA, Coe RS, Yi HS, Zhu LD, Liu S, Li YL, 2008. Constraints on the early uplift history of the Tibetan Plateau. Proceedings of the National Academy Sciences of the United States of America, 105: 4987-4992.

    Wang DN, Sun XY, Zhao YN, 1990. Late Cretaceous to Tertiary palynofl oras in Xinjiang and Qinghai, China. Review of Palaeobotany Palynology,65: 95-104.

    Yang Y, 2002. Systematic and evolution ofEphedra L. (Ephedraceae) from China. PhD Thesis, Institute of Botany Chinese Academy of Sciences,Beijing. 1-231.

    Yi S, Yi S, Batten DJ, Yun H, Park SJ, 2003. Cretaceous and Cenozoic non-marine deposits of the Northern South Yellow Sea Basin, offshore western Korea: palynostratigraphy and palaeoenvironments. Palaeogeography, Palaeoclimatology, Palaeoecology, 191: 15-44.

    Zachos JC, Pagani M, Sloan L, Thomas E, Billups K, 2001. Trends, rhythms,and aberrations in global climate 65 Ma to present. Science, 292:686-693.

    Zhang ZS, Wang HJ, Guo ZT, Jiang DB, 2007. What triggers the transition of palaeoenvironmental patterns in China, the Tibetan Plateau uplift or the Paratethys Sea retreat? Palaeogeography, Palaeoclimatology, Palaeoecology, 245: 317-331.

    Zheng Z, Huang KY, Xu QH, Lu HY, Cheddadi R, Luo YL, Beaudouin C,Luo CX, Zheng YW, Li CH, Wei JH, Du CB, 2008. Comparison of climatic threshold of geographical distribution between dominant plants and surface pollen in China. Science in China (Series D: Earth Science),51(8): 1107-1120.

    Zhu ZH, Wu LY, Xi P, Song ZC, Zhang YY, 1985. A Research on Tertiary Palynology from the Qaidam Basin, Qinghai Province. Petroleum Industry Publishing House, Beijing. 1-41.

    10.3724/SP.J.1226.2011.00375

    *Correspondence to: Dr. YunFa Miao, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences. No. 320, West Donggang Road, Lanzhou, Gansu 730000, China. Tel: +86-931-4967544; Email: miaoyunfa@lzb.ac.cn

    24 March 2011 Accepted: 15 June 2011

    午夜免费观看性视频| 最近2019中文字幕mv第一页| 成人无遮挡网站| 亚洲色图综合在线观看| 王馨瑶露胸无遮挡在线观看| 99九九在线精品视频 | 日本欧美视频一区| 日韩欧美一区视频在线观看 | 国产国拍精品亚洲av在线观看| 精品久久国产蜜桃| 日本av手机在线免费观看| 91在线精品国自产拍蜜月| 六月丁香七月| 免费观看的影片在线观看| 最近2019中文字幕mv第一页| 欧美日韩亚洲高清精品| 观看免费一级毛片| 欧美激情国产日韩精品一区| 欧美日韩综合久久久久久| 精品国产露脸久久av麻豆| 在线看a的网站| 亚洲精品乱码久久久久久按摩| 制服丝袜香蕉在线| 看十八女毛片水多多多| 欧美日韩综合久久久久久| 国产成人精品久久久久久| 在线看a的网站| 日本与韩国留学比较| 搡女人真爽免费视频火全软件| 一级毛片 在线播放| 九色成人免费人妻av| 99九九线精品视频在线观看视频| 亚洲欧美日韩卡通动漫| 国语对白做爰xxxⅹ性视频网站| 麻豆成人午夜福利视频| 亚洲精品456在线播放app| 乱码一卡2卡4卡精品| 一级毛片aaaaaa免费看小| 亚洲第一av免费看| 亚洲国产成人一精品久久久| 国产一区二区在线观看av| 免费播放大片免费观看视频在线观看| 亚州av有码| 国产亚洲最大av| 少妇裸体淫交视频免费看高清| 一本色道久久久久久精品综合| 亚洲国产精品一区二区三区在线| 午夜福利网站1000一区二区三区| 成人免费观看视频高清| 精品人妻一区二区三区麻豆| 亚洲av成人精品一区久久| 日韩精品免费视频一区二区三区 | 国产精品成人在线| 搡女人真爽免费视频火全软件| 一本色道久久久久久精品综合| av天堂久久9| 性色avwww在线观看| 日韩亚洲欧美综合| 午夜免费观看性视频| av网站免费在线观看视频| 有码 亚洲区| 国产 精品1| 精品一品国产午夜福利视频| av播播在线观看一区| 丰满迷人的少妇在线观看| 亚洲欧美日韩另类电影网站| 国产成人freesex在线| 亚洲熟女精品中文字幕| 丰满迷人的少妇在线观看| 春色校园在线视频观看| 一本一本综合久久| 黄色毛片三级朝国网站 | 啦啦啦在线观看免费高清www| 久久ye,这里只有精品| 美女内射精品一级片tv| 大香蕉97超碰在线| 人妻少妇偷人精品九色| 性色av一级| 亚洲欧美日韩另类电影网站| 免费看日本二区| 99热这里只有是精品50| 亚洲丝袜综合中文字幕| 老司机影院毛片| 美女大奶头黄色视频| 日本免费在线观看一区| 在线观看www视频免费| 亚洲国产成人一精品久久久| 免费人成在线观看视频色| 另类亚洲欧美激情| 午夜免费男女啪啪视频观看| 在线观看www视频免费| 男人爽女人下面视频在线观看| 久久精品夜色国产| 纯流量卡能插随身wifi吗| 在线观看一区二区三区激情| a级片在线免费高清观看视频| 色网站视频免费| 一级,二级,三级黄色视频| 亚洲伊人久久精品综合| 丰满迷人的少妇在线观看| 六月丁香七月| 在现免费观看毛片| 啦啦啦啦在线视频资源| 18+在线观看网站| 免费观看av网站的网址| 国产精品一区二区在线观看99| 久久久亚洲精品成人影院| 这个男人来自地球电影免费观看 | 亚洲精品国产av蜜桃| 久久久久久久久久久丰满| 色5月婷婷丁香| 夫妻性生交免费视频一级片| 丰满迷人的少妇在线观看| 国语对白做爰xxxⅹ性视频网站| 成人二区视频| 国产高清三级在线| 中文资源天堂在线| 边亲边吃奶的免费视频| 国产精品秋霞免费鲁丝片| 亚洲一级一片aⅴ在线观看| 狂野欧美激情性xxxx在线观看| 国语对白做爰xxxⅹ性视频网站| 中文字幕亚洲精品专区| 一个人免费看片子| 免费看不卡的av| 女性生殖器流出的白浆| 亚洲国产精品专区欧美| 亚洲va在线va天堂va国产| 夜夜爽夜夜爽视频| 亚洲熟女精品中文字幕| 一本一本综合久久| 国产成人freesex在线| 日韩不卡一区二区三区视频在线| 亚洲欧美中文字幕日韩二区| 亚洲国产日韩一区二区| av又黄又爽大尺度在线免费看| 久久久久网色| 免费大片黄手机在线观看| 极品人妻少妇av视频| 少妇猛男粗大的猛烈进出视频| 热99国产精品久久久久久7| 亚洲欧美一区二区三区国产| 极品教师在线视频| 国产日韩欧美在线精品| 内射极品少妇av片p| 国内少妇人妻偷人精品xxx网站| 久久精品久久久久久噜噜老黄| 成人漫画全彩无遮挡| 麻豆成人午夜福利视频| 亚洲图色成人| 91精品一卡2卡3卡4卡| 国产精品久久久久久久电影| 美女主播在线视频| 国产视频首页在线观看| 麻豆成人午夜福利视频| 国产免费又黄又爽又色| 亚洲经典国产精华液单| 欧美亚洲 丝袜 人妻 在线| 精品一区二区免费观看| 国产黄片视频在线免费观看| 能在线免费看毛片的网站| 久久99热6这里只有精品| 亚洲三级黄色毛片| 国产白丝娇喘喷水9色精品| 免费高清在线观看视频在线观看| 国产欧美另类精品又又久久亚洲欧美| 久久97久久精品| 国产精品一二三区在线看| 久久久国产欧美日韩av| 一个人看视频在线观看www免费| 亚洲av欧美aⅴ国产| 我的女老师完整版在线观看| 99九九在线精品视频 | 婷婷色综合大香蕉| 精品少妇内射三级| 亚洲欧美成人精品一区二区| 亚洲av成人精品一二三区| 久久国内精品自在自线图片| 内射极品少妇av片p| 日韩大片免费观看网站| 啦啦啦啦在线视频资源| 天天操日日干夜夜撸| 人人澡人人妻人| 亚洲精品一区蜜桃| 久久99精品国语久久久| 国产精品嫩草影院av在线观看| 黄片无遮挡物在线观看| 2021少妇久久久久久久久久久| 中文资源天堂在线| 日日撸夜夜添| 18禁动态无遮挡网站| av.在线天堂| 狂野欧美激情性xxxx在线观看| 少妇 在线观看| 成人综合一区亚洲| 精品国产露脸久久av麻豆| 久久ye,这里只有精品| av线在线观看网站| 久久99蜜桃精品久久| 亚洲精品国产av成人精品| 日日摸夜夜添夜夜添av毛片| 国产一区亚洲一区在线观看| 欧美3d第一页| 成人毛片a级毛片在线播放| 天美传媒精品一区二区| av视频免费观看在线观看| 亚洲欧洲国产日韩| 热re99久久精品国产66热6| 最近中文字幕2019免费版| 久久久精品94久久精品| 国产色爽女视频免费观看| 在线观看免费日韩欧美大片 | 久久久a久久爽久久v久久| 久久99精品国语久久久| 又大又黄又爽视频免费| 美女cb高潮喷水在线观看| 欧美+日韩+精品| 日韩三级伦理在线观看| 亚洲精品国产av蜜桃| av网站免费在线观看视频| 在线观看免费高清a一片| 国产免费又黄又爽又色| www.色视频.com| 亚洲精品第二区| 美女脱内裤让男人舔精品视频| 我要看日韩黄色一级片| 精品一品国产午夜福利视频| 日本wwww免费看| 97精品久久久久久久久久精品| 免费av不卡在线播放| 亚洲精品国产色婷婷电影| 日日啪夜夜爽| 最新的欧美精品一区二区| 亚洲va在线va天堂va国产| 久久久久久久久久成人| av一本久久久久| 国产爽快片一区二区三区| 91久久精品电影网| 91在线精品国自产拍蜜月| 精品99又大又爽又粗少妇毛片| 精品酒店卫生间| 欧美日韩在线观看h| 精品久久国产蜜桃| 精品人妻熟女av久视频| 大又大粗又爽又黄少妇毛片口| 亚洲国产精品一区二区三区在线| av又黄又爽大尺度在线免费看| 一本一本综合久久| 免费人成在线观看视频色| 亚洲av欧美aⅴ国产| 夫妻午夜视频| 最近2019中文字幕mv第一页| 18+在线观看网站| av播播在线观看一区| 免费观看无遮挡的男女| 老女人水多毛片| 国产av码专区亚洲av| 国产成人91sexporn| 久久久久久久精品精品| 中文字幕免费在线视频6| 高清视频免费观看一区二区| 日本av免费视频播放| 久久青草综合色| 性色av一级| 美女高潮到喷水免费观看| 日本wwww免费看| 在线观看舔阴道视频| 飞空精品影院首页| 性高湖久久久久久久久免费观看| 一区二区av电影网| av不卡在线播放| 男女无遮挡免费网站观看| 1024视频免费在线观看| 欧美久久黑人一区二区| 久久久精品免费免费高清| 成人国产av品久久久| av天堂在线播放| 成人手机av| 成年人午夜在线观看视频| 人人妻人人澡人人爽人人夜夜| 亚洲av电影在线观看一区二区三区| 热99国产精品久久久久久7| 国产亚洲av片在线观看秒播厂| 久久精品国产亚洲av高清一级| 国产男女内射视频| 日韩 亚洲 欧美在线| 国产91精品成人一区二区三区 | 国产日韩一区二区三区精品不卡| 一区二区日韩欧美中文字幕| 久久久国产一区二区| 十八禁高潮呻吟视频| 日本av免费视频播放| 国产精品免费视频内射| a级毛片在线看网站| 久久精品亚洲熟妇少妇任你| 中文字幕另类日韩欧美亚洲嫩草| 人妻人人澡人人爽人人| 99国产综合亚洲精品| 一级毛片女人18水好多| 精品人妻熟女毛片av久久网站| 欧美精品av麻豆av| 啦啦啦免费观看视频1| 女警被强在线播放| 亚洲 国产 在线| 国产av又大| 又紧又爽又黄一区二区| av超薄肉色丝袜交足视频| 不卡av一区二区三区| 亚洲av电影在线进入| 脱女人内裤的视频| 十八禁网站免费在线| av一本久久久久| 日韩 欧美 亚洲 中文字幕| 女人精品久久久久毛片| 男女午夜视频在线观看| 免费不卡黄色视频| 午夜免费成人在线视频| 日本wwww免费看| 中文字幕制服av| 欧美成狂野欧美在线观看| 亚洲五月色婷婷综合| 在线看a的网站| 日韩免费高清中文字幕av| 性高湖久久久久久久久免费观看| 国产成人a∨麻豆精品| 国产一区二区三区综合在线观看| 久久青草综合色| 深夜精品福利| 欧美大码av| 在线永久观看黄色视频| 男女高潮啪啪啪动态图| 国产不卡av网站在线观看| 国产精品欧美亚洲77777| 在线观看一区二区三区激情| 婷婷丁香在线五月| 精品国产一区二区三区四区第35| 欧美另类亚洲清纯唯美| 成年动漫av网址| 亚洲综合色网址| 日本91视频免费播放| 99久久精品国产亚洲精品| 久久久久久久国产电影| 国产极品粉嫩免费观看在线| 久久久久久久国产电影| 日韩制服骚丝袜av| 91成人精品电影| 99久久精品国产亚洲精品| 乱人伦中国视频| 亚洲欧美成人综合另类久久久| 午夜视频精品福利| 国产成人一区二区三区免费视频网站| 嫩草影视91久久| 日本一区二区免费在线视频| 自线自在国产av| 国产国语露脸激情在线看| 12—13女人毛片做爰片一| 制服诱惑二区| 午夜精品国产一区二区电影| 午夜老司机福利片| 丁香六月天网| 日本vs欧美在线观看视频| 欧美+亚洲+日韩+国产| 99热国产这里只有精品6| 国产一级毛片在线| 在线观看免费午夜福利视频| av线在线观看网站| 18禁裸乳无遮挡动漫免费视频| 精品亚洲成国产av| 午夜激情久久久久久久| av视频免费观看在线观看| 午夜成年电影在线免费观看| 国产91精品成人一区二区三区 | 热re99久久精品国产66热6| 久久性视频一级片| 女人被躁到高潮嗷嗷叫费观| 免费在线观看黄色视频的| 每晚都被弄得嗷嗷叫到高潮| 午夜老司机福利片| 免费黄频网站在线观看国产| 中文精品一卡2卡3卡4更新| 男人添女人高潮全过程视频| 欧美中文综合在线视频| 久久狼人影院| √禁漫天堂资源中文www| 国产亚洲精品第一综合不卡| 精品欧美一区二区三区在线| 久久亚洲精品不卡| 亚洲国产精品一区三区| 亚洲精品美女久久av网站| 啦啦啦在线免费观看视频4| 美女高潮到喷水免费观看| 在线观看免费高清a一片| 91精品三级在线观看| 国产精品 欧美亚洲| 韩国精品一区二区三区| 1024视频免费在线观看| 精品卡一卡二卡四卡免费| 亚洲第一青青草原| 日韩大片免费观看网站| 飞空精品影院首页| 老鸭窝网址在线观看| 亚洲av片天天在线观看| 十八禁网站免费在线| 久久久精品94久久精品| 人妻一区二区av| 久久青草综合色| 女性生殖器流出的白浆| 中文字幕精品免费在线观看视频| 亚洲黑人精品在线| 激情视频va一区二区三区| 久久久国产成人免费| 91字幕亚洲| 精品一区二区三区四区五区乱码| 天天躁狠狠躁夜夜躁狠狠躁| 欧美少妇被猛烈插入视频| 欧美激情 高清一区二区三区| 青青草视频在线视频观看| 十八禁网站网址无遮挡| 精品国产国语对白av| 国产伦人伦偷精品视频| 狂野欧美激情性bbbbbb| 日本av免费视频播放| 亚洲精品国产av蜜桃| 午夜精品久久久久久毛片777| 99热全是精品| 日本a在线网址| 亚洲av电影在线观看一区二区三区| 新久久久久国产一级毛片| 亚洲五月婷婷丁香| 午夜激情av网站| 亚洲欧美精品自产自拍| 日韩 亚洲 欧美在线| 成人手机av| 亚洲专区中文字幕在线| 中文字幕色久视频| 国产精品国产av在线观看| 两个人看的免费小视频| 国产一区二区三区综合在线观看| 午夜91福利影院| 国产成人精品无人区| 欧美日韩精品网址| 香蕉丝袜av| 色视频在线一区二区三区| 久久久欧美国产精品| 精品国产乱子伦一区二区三区 | 夜夜骑夜夜射夜夜干| 欧美精品一区二区大全| 不卡一级毛片| 日韩制服骚丝袜av| 久久精品熟女亚洲av麻豆精品| 国产片内射在线| 老汉色av国产亚洲站长工具| 国产亚洲精品一区二区www | 欧美xxⅹ黑人| 黄网站色视频无遮挡免费观看| 99精品久久久久人妻精品| 啦啦啦免费观看视频1| 老司机福利观看| 国产91精品成人一区二区三区 | 自线自在国产av| 狂野欧美激情性xxxx| 80岁老熟妇乱子伦牲交| 窝窝影院91人妻| 欧美激情高清一区二区三区| 秋霞在线观看毛片| 国产成人一区二区三区免费视频网站| 男人添女人高潮全过程视频| 我的亚洲天堂| 色94色欧美一区二区| 免费在线观看视频国产中文字幕亚洲 | 少妇人妻久久综合中文| 亚洲精品一区蜜桃| 亚洲国产av影院在线观看| 天天躁夜夜躁狠狠躁躁| 国产精品偷伦视频观看了| 黄色视频在线播放观看不卡| 性色av乱码一区二区三区2| 日日爽夜夜爽网站| 久久中文看片网| 欧美少妇被猛烈插入视频| 男女无遮挡免费网站观看| 中文字幕色久视频| tube8黄色片| 成人国产av品久久久| 悠悠久久av| e午夜精品久久久久久久| 久热这里只有精品99| 人人妻人人添人人爽欧美一区卜| 国产精品自产拍在线观看55亚洲 | 日韩免费高清中文字幕av| 1024视频免费在线观看| www.自偷自拍.com| 国产精品欧美亚洲77777| 成年人免费黄色播放视频| 一区二区三区乱码不卡18| 啪啪无遮挡十八禁网站| 久久久久久久大尺度免费视频| 各种免费的搞黄视频| 久久久欧美国产精品| 99国产精品99久久久久| 美女大奶头黄色视频| 少妇粗大呻吟视频| 色综合欧美亚洲国产小说| 亚洲久久久国产精品| 人妻人人澡人人爽人人| 欧美亚洲 丝袜 人妻 在线| 国产精品影院久久| 久久久久精品国产欧美久久久 | 久久影院123| 欧美日韩中文字幕国产精品一区二区三区 | 午夜福利视频精品| 电影成人av| 亚洲专区中文字幕在线| 国产成人啪精品午夜网站| 精品人妻熟女毛片av久久网站| 高清欧美精品videossex| 国产成人影院久久av| 亚洲精品一区蜜桃| 成人影院久久| 一个人免费在线观看的高清视频 | 精品免费久久久久久久清纯 | 欧美日韩av久久| 欧美日韩一级在线毛片| avwww免费| 啦啦啦视频在线资源免费观看| 大型av网站在线播放| 蜜桃国产av成人99| 老司机福利观看| 成年人免费黄色播放视频| 国产老妇伦熟女老妇高清| 69精品国产乱码久久久| 男女无遮挡免费网站观看| 日日爽夜夜爽网站| av超薄肉色丝袜交足视频| 伊人久久大香线蕉亚洲五| 亚洲欧洲日产国产| 久久女婷五月综合色啪小说| 亚洲欧美日韩另类电影网站| 日本vs欧美在线观看视频| 亚洲精品一二三| 国产亚洲精品一区二区www | 一级,二级,三级黄色视频| 丝瓜视频免费看黄片| 国产片内射在线| 亚洲性夜色夜夜综合| 黄网站色视频无遮挡免费观看| 成人国产av品久久久| 中文字幕人妻丝袜制服| 一边摸一边抽搐一进一出视频| 亚洲人成77777在线视频| 中文欧美无线码| 久久久精品区二区三区| 国产av又大| 午夜视频精品福利| 国产成人av教育| 三上悠亚av全集在线观看| av福利片在线| 999久久久国产精品视频| 国产成人av教育| 十八禁高潮呻吟视频| 老司机午夜福利在线观看视频 | 99国产精品一区二区三区| 电影成人av| 激情视频va一区二区三区| 成年女人毛片免费观看观看9 | 黄色a级毛片大全视频| 久久99一区二区三区| 久久久久久人人人人人| 欧美另类一区| 亚洲九九香蕉| 另类精品久久| 婷婷丁香在线五月| 成人免费观看视频高清| 一边摸一边做爽爽视频免费| 国产97色在线日韩免费| 欧美日本中文国产一区发布| 下体分泌物呈黄色| 日本撒尿小便嘘嘘汇集6| 欧美变态另类bdsm刘玥| 我的亚洲天堂| 久久中文看片网| 人成视频在线观看免费观看| 五月天丁香电影| 最近最新免费中文字幕在线| 国产一级毛片在线| 老司机午夜十八禁免费视频| 久久狼人影院| 91大片在线观看| 亚洲成av片中文字幕在线观看| 免费在线观看日本一区| 免费高清在线观看日韩| 男人爽女人下面视频在线观看| 亚洲人成电影观看| 久久久久久人人人人人| 夜夜夜夜夜久久久久| 午夜免费观看性视频| 高潮久久久久久久久久久不卡| videosex国产| 欧美性长视频在线观看| 久久久国产成人免费| 在线永久观看黄色视频| 老司机深夜福利视频在线观看 | 亚洲精品中文字幕在线视频| 欧美另类亚洲清纯唯美| 黄色视频,在线免费观看| 国产成人欧美| svipshipincom国产片| 少妇裸体淫交视频免费看高清 | 亚洲色图 男人天堂 中文字幕| 欧美黑人精品巨大| 亚洲欧美清纯卡通| 亚洲人成电影免费在线| 亚洲第一青青草原| 国产精品久久久久久精品电影小说| 国产极品粉嫩免费观看在线|