• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of air masses on particle number concentration and size distribution at Mt. Waliguan, Qinghai Province, China

    2011-12-09 09:36:34MingJinZhanJunYingSunJianMinYin
    Sciences in Cold and Arid Regions 2011年5期

    MingJin Zhan , JunYing Sun , JianMin Yin

    1. Jiangxi Climate Center, Nanchang, 330046, China

    2. Center for Atmosphere Watch and Service, Beijing 10081, China

    Influence of air masses on particle number concentration and size distribution at Mt. Waliguan, Qinghai Province, China

    MingJin Zhan1*, JunYing Sun2, JianMin Yin1

    1.Jiangxi Climate Center, Nanchang, 330046, China

    2.Center for Atmosphere Watch and Service, Beijing 10081, China

    Particle size distribution of 12-500 nm was measured at Mt. Waliguan, China Global Atmosphere Watch Baseline Observatory,from Aug. in 2005 to May in 2007. 72-hr back-trajectories at 100-m arrival height above ground level for the same period were calculated at 6:00, 12:00, and 21:00 (Beijing Time) for each day using the Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT-4) model developed by NOAA/ARL. It was found that air mass sources significantly impact particle number concentration and size distribution at Mt. Waliguan. Cluster analysis of back-trajectories show that higher Aitken mode particle number concentration was observed when air masses came from or passed by the northeastern section of Mt. Waliguan, with short trajectory length. High number concentration of nucleation mode was associated with air masses from clean regions, with long trajectory length.

    particle number concentration; particle size distribution; back-trajectories; cluster analysis; Mt. Waliguan

    1. Research background

    Particle size is a very important property of a particle,relating to its lifespan, transport distance and impact on the environment and human health. Atmospheric particle diameter varies substantially from one to another, ranging from several nm to 100 μm. Based on the distribution of surface area concentration, three aerosol modes were summarized by Whiteby (1978), namely Aitken mode with a size of <0.05 μm, accumulation mode with a size range of 0.05-2 μm, and coarse particle mode with a size of >2 μm.In the 1990s, with the development of measurement technology and instruments, a lower limit of 3 nm was obtained for aerosol particle diameter. Hussein and other researchers(Hussein, 2005) modified Whiteby’s classification and defined four modes,i.e., nucleation mode (<25 nm), Aitken mode (25-100 nm), accumulation mode (0.1-1 μm), and coarse particle mode (>1 μm). Though different researchers may have different definitions on particle size of each mode,the classification developed by Husseinet al. (2005) is generally accepted by the aerosol community. Different mode particles demonstrate differences in formation and removal mechanism. Nucleation mode particles are usually formed by low volatile substance in the atmosphere, and then grow from molecular clusters into nucleation mode particles via condensation and coagulation processes (Hussein, 2005).Aitken mode particles mainly come from direct emission from combustion processes (Whiteby, 1978). Meanwhile,the growth of nucleation mode particles into Aitken mode particles through condensation and coagulation is also an important way (Kerminenet al., 2001). The Aitken mode particles can be removed by wet deposition or grow into accumulation mode particles (Kulmalaet al., 2004) due to coagulation processes. The main sources of accumulation mode particles are condensation and coagulation of Aitken mode particles and steam condensation during combustion.Coagulation and condensation growth decreases when particle size approaches 1 μm (Tanget al., 2006), which makes it difficult for particles to grow larger than 1 μm through coagulation and condensation, therefore, wet deposition is the main removal mechanism (Kulmalaet al.,2004). Coarse mode particles mainly come from primary aerosols during mechanical processes such as dust, sea salt powder, and volcanic ash.

    Previous research has shown that source and property of air mass have significant impacts on particle number and size distribution. ZhiJun Wu (2007) analyzed the impact of air mass on particle number concentration and size distribution in Beijing. They found that nucleation mode particles are dominant when the air mass originates from clean regions of China (northeast, northwest), while Aitken mode particles are dominant when the air mass originates from near Beijing. Birmiliet al.(2001) analyzed the impact that air mass has on particle number and size distribution in Europe. They found higher Aitken mode density and lower accumulation mode density when the air mass was from the Atlantic; there were higher accumulation mode particles in the air when the air mass was from Russia.

    At present, there are few observational studies of atmospheric particle number and size distribution in China.This study documents the impact of air mass source on particle number concentration and size distribution at Mt.Waliguan through analysis of particle number and size data collected at the China Global Atmosphere Watch Baseline Observatory, Mt. Waliguan, from August in 2005 to May in 2007, and calculated backward-trajectories data during the same period.

    2. Measurement site and instruments

    2.1. Measurement site

    Measurements were carried out at the China Global Atmosphere Watch Baseline Observatory, which is one of 24 global atmosphere watch baseline observatories under the framework of the World Meteorological Organization(WMO), and is also the only baseline observatory in the hinterland of the Eurasian continent. This observatory is located on the mountaintop of Mt. Waliguan in Hainan Zang Autonomous Region of Qinghai Province, at an altitude of 3,816 m (100.90°E, 36.29°N) (Figure 1). Mt. Waliguan belongs to the Nanshan range on the northeastern border of the Qinghai-Tibet Plateau, an isolated spindle-shaped mountain range oriented from northwest to southeast. With a relative height difference of 600 m, this mountain is far from industrial and densely populated areas, so it is almost no human direct influence. Xining City, the capital of Qinghai, is situated in the Huangshui River valley, about 90 km east of Mt.Waliguan. This river valley is bordered by numerous mountains with altitudes of over 4,000 m. Qiabuqia County, located in a basin valley, is about 30 km west of Mt. Waliguan.This county has a population of over 30,000, with some woolen, light, and processing industries. Mt. Waliguan and the neighboring areas are mainly covered with vegetation,arid and semi-arid deserts (South-West), grasslands and sandbars (South). People in this region live mainly on the livestock industry, except some farming in the river valleys.Neighboring areas are sparsely populated, with an average of six people per km2. For hundreds of kilometers in the western areas, population distribution is very sparse, with few residential areas, thus there is little anthropogenic pollution (Zhou, 2005).

    2.2. Instruments

    On-line measurements of fine particle number concentration and size distribution were obtained by use of the Differential Mobility Particle Sizer (DMPS), mainly consisting of a Differential Mobility Analyzer (DMA) and Condensation Particle Counter (CPC) (Finish Meteorological Institute). From August in 2005 to May in 2007,particle size measurements ranged from 12-500 nm at Mt.Waliguan, with a time resolution of 5-6 minutes. Due to instrument problems, no data were obtained from February to March and from July to August, 2006. Valid data was obtained for 436 days.

    3. The influence of air mass sources on the particle number concentration and the size distribution

    Air mass back-trajectories were calculated with the National Oceanic and Atmospheric Administration Air Resource Laboratory (NOAA) Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT_4) model, and NCEP/NCAR reanalysis data (http://www.arl.noaa.gov/).72-hr back-trajectories at 100-m arrival height above ground level for the same time period were calculated at 6:00, 12:00,21:00 (Beijing Time) for each day at Mt. Waliguan. Atmospheric aerosol number and size distribution data of 00:00-8:00, 8:00-16:00, 16:00-24:00 were regarded as that of particle number and size distribution at 6:00, 12:00, and 21:00, respectively. Three data groups were obtained after the data was processed, namely 72-hr back-trajectories data and particle number and size distribution data at 6:00, 12:00,21:00. 1,437 data groups were obtained after sorting.

    3.1. Cluster analysis theory

    Cluster analysis is used to group particles with nearly similar trajectories. Supposing there areNtrajectories, each of their trajectory spatial variance is defined as zero respectively, and each trajectory has a dependant cluster (spatial variance of each cluster is calculated by sum of squares of the distance between each trajectory and corresponding point of average trajectory). Calculate the two clusters’ spatial variance in all possible groupings and then merge these two clusters into a new group so as to sum the spatial variance of all clusters (TSV) that have the minimum increase after merging. Research shows thatTSVincreases rapidly at first, then slows down; butTSVincreases rapidly again after merging when clusters reach a certain amount, which means that the two clusters to be merged are very different from each other. Taking the point whereTSVis the second rapid increase as the final point of cluster grouping, considering each cluster divided before the point as the final cluster, and then calculating average of these clusters which represent several main airflow types of the sampling point in this period. Back-trajectory is calculated using the HYSPLIT model (Draxler, 1992; Yanet al., 1999).

    Particle number concentration in a certain particle diameter section is calculated as below:

    whereirepresents ordinal number of the trajectory in a cluster;nrepresents total trajectory number contained in the cluster,Nrepresents hour average concentration in a certain particle diameter section observed at the corresponding trajectoryi.

    Figure 1 Geographical location of Mt. Waliguan, China Global Atmosphere Watch Baseline Observatory

    3.2. The influence of air mass sources on the particle number and size distribution

    Figure 2 is the result of clustering using HYSPLIT. It can be seen from the graph that sources, transmission paths and trajectory lengths of the five back-trajectories are different. Thus, it can be concluded that the first cluster takes up 14% of the total days, 26% of summer days (June to August) and 44% of autumn days (September to November). The air mass originated mainly in the eastern and northeastern section of Mt. Waliguan. The back-trajectory length is shorter than those of the third, fourth and fifth clusters. The second cluster takes up 38% of the total days,47% of autumn days and 23% of winter days (December to February (next year)). The air mass originated mainly in the Qinghai-Tibet Plateau area in the western section of Mt.Waliguan. The third cluster takes up 28% of the total days,21% of spring days (March to May), 33% of autumn days and 44% of winter days. The air mass originated in the southern part of Xinjiang Province, in comparatively pollution-free deserts. The fourth cluster takes up 15% of the total days, 30% of autumn days and 64% of winter days.The air mass originated in the northern part of Xinjiang Province via Gansu and Inner Mongolia. Some clusters passed through northeast of Mt. Waliguan. The fifth cluster takes up 4% of the total days, and mainly 80% of winter days. The air mass originated in the northern part of India and central Asia via the Himalayas, most of which are pollution-free areas. Its back-trajectory length is obviously longer than the others.

    It can be seen from Table 1 and Figure 3, clusters 1 and 4 are similar in particle number and size distribution, particle number concentrations mainly in the Aitken mode and accumulation mode are almost the same. The reason for this may be that both clusters 1 and 4 pass over the eastern and northeastern sections of Mt. Waliguan, with Xining and Lanzhou in this direction. Thus, clusters 1 and 4 are under the influence of anthropogenic pollution. Particle number concentrations are very similar in clusters 3 and 5. Particle number concentration in the nucleation mode is obviously higher than in the other modes. Air masses in clusters 3 and 5 have longer trajectory lengths and faster speed. Under this condition, Mt. Waliguan often has sunny weather, dry and clean air, which makes it easy to form new particles. Particle number concentration in Aitken mode and accumulation mode are relatively lower due to fast movement. Particle number concentration in Aitken mode and accumulation mode in cluster 2, of which the particle diameter is larger than 50 nm, are very similar to those in clusters 3 and 5. But particle number concentration of those with particle diameter smaller than 50 nm is obviously lower than those in clusters 3 and 5.

    Figure 2 The back-trajectories of the five clusters and their average at Mt. Waliguan

    Table 1 Average temperature, relative humidity, particle number concentration of different back-trajectory clusters

    Figure 3 Average particle number size distribution of different back-trajectory clusters

    4. Conclusion

    Back-trajectories were divided into five categories through HYSPLIT cluster analysis. Particle number concentration in Aitken mode and accumulation mode in clusters 1 and 4, which passed over the northern and eastern sections of Mt. Waliguan, are higher due to anthropogenic pollution.Particle number concentration of nucleation mode is very high in clusters 3 and 5 which travel a long distance and whose source areas and passing areas have little pollution,while particle number concentration in Aitken mode and accumulation are lower.

    Back-trajectories in cluster 2, mainly from the northwestern section of Mt. Waliguan, are similar to those in clusters 3 and 5, but particle number concentration of nucleation mode is obviously low. In conclusion, air mass sources greatly impact particle number concentration and size distribution.

    The research was sponsored by National Key Development Program for Fundamental Research (973 Program) Project(Nos. 2006CB403703 and 2006CB403701)

    Birmili W, Wiedensohler A, Heintzenberg J, Lehmann K, 2001. Atmospheric particle number size distribution in central Europe: Statistical relations to air masses and meteorology. Journal of Geophysical Research Atmospheres, 106(23): 32005-32018.

    Draxler RR, 1992. Hybrid Single-Particle Lagrangian Integrated Trajectories(HY-SPLIT): Version 3.0—User’s Guide and Model Description, NOAA Technical Memo ERL ARL, 195.

    Hussein T, 2005. Indoor and outdoor aerosol particle size characterization in Helsinki. Report Series in Aerosol Science, 74: 1-53.

    Kerminen VM, Pirjola L, Kulmala M, 2001. How significantly does coagulational scavenging limit atmospheric particle production. Journal of Geophysical Research—Atmospheres, 106(20): 119-125.

    Kulmala M, Vehkamaki H, Petaja T, Dal Maso M, Lauri A, Kerminen VM,Birmili W, McMurry PH, 2004. Formation and growth rates of ultrafine atmospheric particles: a review of observations. Journal of Aerosol Science, 35: 143-176.

    Tang XY, Zhang YH, Shao M, 2006. Atmospheric Environmental Chemistry.Higher Education Press, Beijing.

    Whiteby KH, 1978. The Physical characteristics of sulfur aerosol. Atmospheric Environment, 12: 135-159.

    Wu ZJ, 2007. Variations and Characteristics of Fine and Ultrafine Particle Number Size Distributions in the Urban Atmosphere of Beijing. PhD Thesis of Peking University. 123-125.

    Yan P, Fang XM, Li XS, 1999. Analysis of the source region and variation of surface SO2at Lin’an Station. Quarterly Journal of Applied Meteorology,10(3): 267-275.

    Zhou XJ, 2005. Final Progress Report of China Global Atmosphere Watch Baseline Observatory. China Metrological Press, Beijing.

    10.3724/SP.J.1226.2011.00436

    *Correspondence to: MingJin Zhan, Engineer of Jiangxi Climate Center. No.109, North 2nd Road of Governmental Compound,Nanchang, Jiangxi 330046, China. Tel: +86-791-6273521; Email: hellorm@126.com

    22 April 2011 Accepted: 11 July 2011

    国产成人欧美| 99re6热这里在线精品视频| 国产一区二区三区综合在线观看 | 亚洲精品国产av成人精品| 国产乱来视频区| 午夜免费观看性视频| 日本-黄色视频高清免费观看| 免费人妻精品一区二区三区视频| 日韩中字成人| 视频区图区小说| 婷婷色麻豆天堂久久| 男女免费视频国产| 国产有黄有色有爽视频| 99视频精品全部免费 在线| 老司机影院毛片| 精品酒店卫生间| 你懂的网址亚洲精品在线观看| 国产欧美亚洲国产| 寂寞人妻少妇视频99o| 永久网站在线| 最近最新中文字幕大全免费视频 | 免费观看av网站的网址| av免费观看日本| 国产高清国产精品国产三级| 欧美丝袜亚洲另类| 免费大片黄手机在线观看| 一区二区三区精品91| 男女高潮啪啪啪动态图| 麻豆精品久久久久久蜜桃| 精品一品国产午夜福利视频| freevideosex欧美| 综合色丁香网| 自线自在国产av| 九草在线视频观看| 国产一区二区在线观看av| 国产1区2区3区精品| 欧美3d第一页| 欧美激情极品国产一区二区三区 | 精品久久久精品久久久| 亚洲欧美清纯卡通| 亚洲人与动物交配视频| 在线亚洲精品国产二区图片欧美| 在线亚洲精品国产二区图片欧美| av天堂久久9| 青青草视频在线视频观看| 精品少妇内射三级| 国产成人免费无遮挡视频| 久久韩国三级中文字幕| 在线免费观看不下载黄p国产| 亚洲国产精品国产精品| 久久久欧美国产精品| 少妇高潮的动态图| 国产免费一级a男人的天堂| 午夜日本视频在线| 日韩伦理黄色片| 国产精品秋霞免费鲁丝片| 免费久久久久久久精品成人欧美视频 | 成年人免费黄色播放视频| 国产伦理片在线播放av一区| 亚洲性久久影院| 国产免费现黄频在线看| 九九在线视频观看精品| 制服丝袜香蕉在线| 纵有疾风起免费观看全集完整版| 日韩av在线免费看完整版不卡| 在线观看免费日韩欧美大片| 精品国产一区二区久久| 黑人高潮一二区| 成人漫画全彩无遮挡| 在线观看免费高清a一片| 一本大道久久a久久精品| 在线免费观看不下载黄p国产| 自线自在国产av| 久久这里有精品视频免费| 免费大片黄手机在线观看| 22中文网久久字幕| 亚洲国产精品一区三区| 在线亚洲精品国产二区图片欧美| 成人免费观看视频高清| 日韩不卡一区二区三区视频在线| 丝袜美足系列| 日韩视频在线欧美| 香蕉国产在线看| 久久99热这里只频精品6学生| 999精品在线视频| 99re6热这里在线精品视频| 五月伊人婷婷丁香| 日本爱情动作片www.在线观看| 日本爱情动作片www.在线观看| 熟女电影av网| av.在线天堂| freevideosex欧美| 91精品国产国语对白视频| 亚洲美女搞黄在线观看| 午夜福利网站1000一区二区三区| 9色porny在线观看| 久久久精品区二区三区| 九九在线视频观看精品| 久久久久人妻精品一区果冻| 男人舔女人的私密视频| 男女下面插进去视频免费观看 | 国产精品麻豆人妻色哟哟久久| 制服丝袜香蕉在线| 成人漫画全彩无遮挡| 亚洲精品456在线播放app| 不卡视频在线观看欧美| 亚洲成国产人片在线观看| www日本在线高清视频| 欧美97在线视频| 交换朋友夫妻互换小说| 亚洲av电影在线观看一区二区三区| 麻豆精品久久久久久蜜桃| 91精品三级在线观看| 少妇被粗大猛烈的视频| 国产精品久久久久成人av| 成年女人在线观看亚洲视频| 亚洲精品乱码久久久久久按摩| 国产亚洲最大av| 久久久精品区二区三区| 99视频精品全部免费 在线| 成人国语在线视频| 美女国产高潮福利片在线看| 97超碰精品成人国产| 国产精品一国产av| 啦啦啦视频在线资源免费观看| 久久人人97超碰香蕉20202| 久久久久久久久久人人人人人人| 国产国拍精品亚洲av在线观看| 熟女人妻精品中文字幕| 久久久久国产网址| www.色视频.com| 99久久精品国产国产毛片| 两个人免费观看高清视频| 国产精品成人在线| av卡一久久| 日日啪夜夜爽| 久久鲁丝午夜福利片| 精品人妻偷拍中文字幕| 国产成人91sexporn| 春色校园在线视频观看| 中国美白少妇内射xxxbb| 欧美日韩精品成人综合77777| 18禁在线无遮挡免费观看视频| 国产精品麻豆人妻色哟哟久久| 制服丝袜香蕉在线| 成人国产麻豆网| 日本-黄色视频高清免费观看| 少妇的丰满在线观看| 国产黄色视频一区二区在线观看| 国产一区二区三区综合在线观看 | 又黄又爽又刺激的免费视频.| 欧美日本中文国产一区发布| 男女免费视频国产| 黄色怎么调成土黄色| 日韩制服丝袜自拍偷拍| 一级片免费观看大全| 大片电影免费在线观看免费| 亚洲国产最新在线播放| 97在线人人人人妻| 最近中文字幕2019免费版| 香蕉国产在线看| 亚洲精品色激情综合| 黄色毛片三级朝国网站| 欧美3d第一页| 美女中出高潮动态图| 免费女性裸体啪啪无遮挡网站| 少妇人妻久久综合中文| 国产av国产精品国产| 国产日韩欧美视频二区| 美女中出高潮动态图| 亚洲,欧美,日韩| 日本-黄色视频高清免费观看| 欧美日韩精品成人综合77777| 国产视频首页在线观看| 熟妇人妻不卡中文字幕| 亚洲一区二区三区欧美精品| 91精品伊人久久大香线蕉| 午夜激情av网站| 欧美 日韩 精品 国产| 精品亚洲成国产av| 久久久国产欧美日韩av| 国产一区二区三区综合在线观看 | 国产av国产精品国产| 欧美日韩亚洲高清精品| 男女啪啪激烈高潮av片| 丰满少妇做爰视频| 欧美+日韩+精品| 最近最新中文字幕免费大全7| 日韩 亚洲 欧美在线| 日本黄色日本黄色录像| 一边亲一边摸免费视频| 国产69精品久久久久777片| 成人亚洲欧美一区二区av| 国产亚洲午夜精品一区二区久久| 久久精品国产鲁丝片午夜精品| 亚洲精品aⅴ在线观看| 久久97久久精品| 欧美97在线视频| 国产熟女午夜一区二区三区| 老司机影院成人| 国产成人一区二区在线| 国产亚洲午夜精品一区二区久久| 国产亚洲精品第一综合不卡 | 亚洲美女搞黄在线观看| 中文欧美无线码| 精品久久久精品久久久| 亚洲在久久综合| 亚洲国产欧美在线一区| 内地一区二区视频在线| 亚洲av欧美aⅴ国产| 国产1区2区3区精品| 久久婷婷青草| 亚洲成国产人片在线观看| 国产69精品久久久久777片| 你懂的网址亚洲精品在线观看| 久久热在线av| 国产淫语在线视频| av片东京热男人的天堂| 晚上一个人看的免费电影| 高清黄色对白视频在线免费看| 天美传媒精品一区二区| 亚洲人成网站在线观看播放| 各种免费的搞黄视频| 久久久精品区二区三区| a级毛片在线看网站| 青青草视频在线视频观看| 国产精品久久久久久精品古装| 久久精品国产a三级三级三级| 成年动漫av网址| 亚洲精品一区蜜桃| 精品一品国产午夜福利视频| 天天躁夜夜躁狠狠久久av| 一本—道久久a久久精品蜜桃钙片| av国产精品久久久久影院| 亚洲欧美日韩另类电影网站| 日韩欧美一区视频在线观看| 国产免费福利视频在线观看| 多毛熟女@视频| 亚洲精品国产av蜜桃| 国产精品 国内视频| 久久午夜福利片| a级片在线免费高清观看视频| 女人精品久久久久毛片| 秋霞在线观看毛片| 十八禁网站网址无遮挡| 国产女主播在线喷水免费视频网站| 精品午夜福利在线看| 久久 成人 亚洲| 亚洲美女搞黄在线观看| 女性生殖器流出的白浆| 一区二区av电影网| 亚洲国产最新在线播放| 夜夜爽夜夜爽视频| 日韩av在线免费看完整版不卡| 中国国产av一级| 国产成人精品一,二区| 欧美bdsm另类| 建设人人有责人人尽责人人享有的| 欧美xxⅹ黑人| 18禁在线无遮挡免费观看视频| 18禁国产床啪视频网站| 夫妻午夜视频| 亚洲国产看品久久| 大码成人一级视频| 国产亚洲精品第一综合不卡 | videos熟女内射| 波多野结衣一区麻豆| 国产成人aa在线观看| 国产男女超爽视频在线观看| 国产成人a∨麻豆精品| 亚洲精华国产精华液的使用体验| 有码 亚洲区| 日本91视频免费播放| 哪个播放器可以免费观看大片| 最近2019中文字幕mv第一页| 男女下面插进去视频免费观看 | 男女啪啪激烈高潮av片| 亚洲欧美中文字幕日韩二区| 免费观看av网站的网址| 国产在视频线精品| 国产av精品麻豆| av国产精品久久久久影院| 热99久久久久精品小说推荐| 有码 亚洲区| 久久久国产欧美日韩av| 一级毛片 在线播放| 亚洲精品国产av蜜桃| 在线观看免费日韩欧美大片| 人妻少妇偷人精品九色| 交换朋友夫妻互换小说| 亚洲国产精品成人久久小说| 欧美xxⅹ黑人| 午夜av观看不卡| 国产精品久久久久成人av| videosex国产| 男男h啪啪无遮挡| 精品少妇黑人巨大在线播放| 成人漫画全彩无遮挡| 午夜福利乱码中文字幕| 国产国拍精品亚洲av在线观看| 精品亚洲成a人片在线观看| 欧美日韩精品成人综合77777| 日韩一区二区三区影片| 国产精品国产三级专区第一集| 在现免费观看毛片| 亚洲av日韩在线播放| 精品卡一卡二卡四卡免费| 久久久久精品人妻al黑| 久久精品久久精品一区二区三区| 欧美+日韩+精品| 国产精品一区二区在线不卡| 亚洲精品一二三| 精品久久国产蜜桃| 人妻 亚洲 视频| 久久人人爽人人爽人人片va| 日本欧美视频一区| 亚洲国产欧美在线一区| 国产免费又黄又爽又色| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲av在线观看美女高潮| 免费观看a级毛片全部| 国产乱来视频区| 成人毛片a级毛片在线播放| 一区二区三区乱码不卡18| 久久精品人人爽人人爽视色| 卡戴珊不雅视频在线播放| 久久久久久久久久成人| 观看美女的网站| 亚洲,欧美精品.| 夫妻午夜视频| 国产成人午夜福利电影在线观看| 欧美少妇被猛烈插入视频| 国产淫语在线视频| 多毛熟女@视频| 国产淫语在线视频| 多毛熟女@视频| 亚洲丝袜综合中文字幕| 欧美少妇被猛烈插入视频| 免费人成在线观看视频色| 亚洲国产欧美在线一区| 日韩精品免费视频一区二区三区 | 天堂俺去俺来也www色官网| 国产成人精品在线电影| 亚洲精品国产色婷婷电影| 久久久久久久国产电影| 欧美日韩一区二区视频在线观看视频在线| 国产国拍精品亚洲av在线观看| 999精品在线视频| 欧美xxⅹ黑人| 久久精品久久精品一区二区三区| 久久精品熟女亚洲av麻豆精品| 亚洲美女视频黄频| 少妇人妻精品综合一区二区| 黄色配什么色好看| 在线观看三级黄色| 久久国产精品男人的天堂亚洲 | 久久亚洲国产成人精品v| 久久ye,这里只有精品| 欧美变态另类bdsm刘玥| 成人18禁高潮啪啪吃奶动态图| 18+在线观看网站| 国产片内射在线| 另类亚洲欧美激情| 两个人看的免费小视频| 日韩,欧美,国产一区二区三区| 久久久久久久精品精品| 日韩,欧美,国产一区二区三区| xxxhd国产人妻xxx| videosex国产| 美国免费a级毛片| 欧美日韩综合久久久久久| 午夜91福利影院| 国产高清不卡午夜福利| 国内精品宾馆在线| 一级片免费观看大全| 欧美xxxx性猛交bbbb| 男女边摸边吃奶| 久久人人爽人人片av| 视频在线观看一区二区三区| 妹子高潮喷水视频| 日韩精品有码人妻一区| 91成人精品电影| 亚洲精品色激情综合| 巨乳人妻的诱惑在线观看| 亚洲国产欧美在线一区| 丝瓜视频免费看黄片| 香蕉国产在线看| 国产精品熟女久久久久浪| 99re6热这里在线精品视频| 精品久久蜜臀av无| 内地一区二区视频在线| 欧美日韩精品成人综合77777| 飞空精品影院首页| 草草在线视频免费看| 亚洲少妇的诱惑av| 大码成人一级视频| 另类亚洲欧美激情| 亚洲精品久久午夜乱码| 久久久a久久爽久久v久久| 男女边摸边吃奶| 午夜福利视频精品| 丁香六月天网| 汤姆久久久久久久影院中文字幕| 韩国高清视频一区二区三区| 少妇被粗大猛烈的视频| 国产亚洲精品第一综合不卡 | 亚洲人成网站在线观看播放| 午夜免费鲁丝| 国产精品一区二区在线观看99| 精品久久久精品久久久| 国产女主播在线喷水免费视频网站| 97人妻天天添夜夜摸| 91午夜精品亚洲一区二区三区| 亚洲av免费高清在线观看| 伦理电影大哥的女人| 国产成人精品婷婷| 丝袜脚勾引网站| 久久久久久久久久久免费av| 午夜久久久在线观看| 欧美成人精品欧美一级黄| 成年美女黄网站色视频大全免费| 中文字幕最新亚洲高清| 乱人伦中国视频| 人人妻人人澡人人看| 日韩一区二区三区影片| 欧美日韩一区二区视频在线观看视频在线| 国产片内射在线| 久久久a久久爽久久v久久| av免费观看日本| 最近的中文字幕免费完整| 亚洲人成77777在线视频| 色哟哟·www| 热99久久久久精品小说推荐| 亚洲 欧美一区二区三区| videosex国产| www日本在线高清视频| 日韩av在线免费看完整版不卡| 久久久精品区二区三区| 日本wwww免费看| 亚洲欧美色中文字幕在线| 国产精品欧美亚洲77777| 国产伦理片在线播放av一区| 日本av手机在线免费观看| 国产精品一区二区在线观看99| 国产亚洲精品久久久com| 天天躁夜夜躁狠狠久久av| 在线观看www视频免费| 免费播放大片免费观看视频在线观看| 91成人精品电影| 日韩av免费高清视频| 欧美老熟妇乱子伦牲交| 毛片一级片免费看久久久久| 热99国产精品久久久久久7| 成人午夜精彩视频在线观看| 国产高清国产精品国产三级| 九草在线视频观看| 免费av中文字幕在线| kizo精华| 国产成人a∨麻豆精品| 天堂中文最新版在线下载| 久久精品夜色国产| 中文字幕人妻熟女乱码| 老女人水多毛片| 国国产精品蜜臀av免费| 捣出白浆h1v1| 99久久精品国产国产毛片| 男女边摸边吃奶| 丝袜在线中文字幕| 一本—道久久a久久精品蜜桃钙片| 精品人妻在线不人妻| 天美传媒精品一区二区| 国产熟女欧美一区二区| 国产成人aa在线观看| 亚洲熟女精品中文字幕| 免费黄频网站在线观看国产| 成人影院久久| 久久精品人人爽人人爽视色| 曰老女人黄片| 观看av在线不卡| 国产日韩欧美亚洲二区| 亚洲精品国产色婷婷电影| 久久久久国产网址| 热99国产精品久久久久久7| 国产精品国产三级专区第一集| 天天躁夜夜躁狠狠躁躁| 在线观看三级黄色| 99re6热这里在线精品视频| 99九九在线精品视频| 母亲3免费完整高清在线观看 | 亚洲图色成人| 亚洲内射少妇av| 精品人妻熟女毛片av久久网站| 一区二区三区乱码不卡18| 91午夜精品亚洲一区二区三区| 中文字幕亚洲精品专区| 中文精品一卡2卡3卡4更新| 人妻一区二区av| 咕卡用的链子| 91午夜精品亚洲一区二区三区| 久久久久久久大尺度免费视频| 国产欧美另类精品又又久久亚洲欧美| 欧美激情 高清一区二区三区| 美女内射精品一级片tv| 男的添女的下面高潮视频| 香蕉精品网在线| 黑人高潮一二区| 亚洲性久久影院| 最后的刺客免费高清国语| 亚洲精品日韩在线中文字幕| 男人舔女人的私密视频| 男女边吃奶边做爰视频| 五月开心婷婷网| 亚洲欧美中文字幕日韩二区| 久久精品国产自在天天线| 一级爰片在线观看| 天美传媒精品一区二区| 亚洲欧美一区二区三区黑人 | 91精品三级在线观看| 春色校园在线视频观看| 街头女战士在线观看网站| 亚洲国产精品国产精品| 久久久精品94久久精品| 国产精品.久久久| 国产老妇伦熟女老妇高清| 91aial.com中文字幕在线观看| 午夜福利视频在线观看免费| 亚洲情色 制服丝袜| 你懂的网址亚洲精品在线观看| 建设人人有责人人尽责人人享有的| av片东京热男人的天堂| 中国美白少妇内射xxxbb| 国语对白做爰xxxⅹ性视频网站| 2022亚洲国产成人精品| 新久久久久国产一级毛片| 久久午夜综合久久蜜桃| 在线天堂最新版资源| 一边摸一边做爽爽视频免费| 少妇人妻久久综合中文| 久久亚洲国产成人精品v| av电影中文网址| 中文欧美无线码| 国产精品久久久av美女十八| 校园人妻丝袜中文字幕| 永久免费av网站大全| 女的被弄到高潮叫床怎么办| 又粗又硬又长又爽又黄的视频| 久久鲁丝午夜福利片| 亚洲国产色片| 亚洲美女视频黄频| 蜜桃在线观看..| 日韩欧美精品免费久久| 街头女战士在线观看网站| 亚洲欧美色中文字幕在线| 精品少妇久久久久久888优播| 最近最新中文字幕大全免费视频 | 一级片'在线观看视频| 久久鲁丝午夜福利片| a 毛片基地| 日韩制服骚丝袜av| 国产伦理片在线播放av一区| 2021少妇久久久久久久久久久| 哪个播放器可以免费观看大片| 男女无遮挡免费网站观看| 卡戴珊不雅视频在线播放| 亚洲一区二区三区欧美精品| 精品亚洲成国产av| 亚洲精品久久午夜乱码| 欧美精品人与动牲交sv欧美| 国产在线一区二区三区精| 久久热在线av| 高清黄色对白视频在线免费看| 午夜精品国产一区二区电影| 男女国产视频网站| 国产精品久久久久久久电影| 在线观看www视频免费| 亚洲av福利一区| 性高湖久久久久久久久免费观看| 国产黄色视频一区二区在线观看| 99热网站在线观看| 久久精品国产亚洲av涩爱| 亚洲国产色片| 亚洲伊人久久精品综合| 欧美人与善性xxx| 国产片特级美女逼逼视频| 精品国产一区二区久久| 免费看不卡的av| 人妻人人澡人人爽人人| av免费观看日本| av视频免费观看在线观看| 亚洲综合精品二区| 国产 一区精品| 秋霞伦理黄片| 91精品国产国语对白视频| 天堂中文最新版在线下载| 99热全是精品| 欧美bdsm另类| 国产色爽女视频免费观看| 男女高潮啪啪啪动态图| 日本黄色日本黄色录像| 人妻人人澡人人爽人人| 1024视频免费在线观看| 三上悠亚av全集在线观看| 亚洲国产欧美在线一区| 国产成人午夜福利电影在线观看| 热re99久久国产66热| 街头女战士在线观看网站| 成年动漫av网址| 国语对白做爰xxxⅹ性视频网站| 69精品国产乱码久久久| 赤兔流量卡办理| 久久国内精品自在自线图片| 久久久久精品久久久久真实原创| 熟女av电影| 丝袜脚勾引网站| 亚洲一级一片aⅴ在线观看|