• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Finite element simulation of elastoplastic field near crack tips and results for a central cracked plate of LE?LHP material under tension

    2019-04-01 14:51:14JiZhu
    Acta Mechanica Sinica 2019年4期

    X. Ji · F. Zhu

    Abstract The elastoplastic field near crack tips is investigated through finite element simulation. A refined mesh model near the crack tip is proposed. In the mesh refining area, element size continuously varies from the nanometer scale to the micrometer scale and the millimeter scale. Graphics of the plastic zone, the crack tip blunting, and the deformed crack tip elements are given in the paper. Based on the curves of stress and plastic strain, closely near the crack tip, the stress singularity index and the stress intensity factor, as well as the plastic strain singularity index and the plastic strain intensity factor are determined. The stress and plastic strain singular index vary with the load, while the dimensions of the stress and the plastic strain intensity factors depend on the stress and the plastic strain singularity index, respectively. The singular field near the elastoplastic crack tip is characterized by the stress singularity index and the stress intensity factor, or alternatively the plastic strain singularity index and the plastic strain intensity factor. At the end of the paper, following Irwin’s concept of fracture mechanics,ò Kcriterion and σ Qcriterion are proposed. Besides, crack tip angle criterion is also presented.

    Keywords Crack · Fracture mechanics · Elastoplasticity · Finite element method · Geometry nonlinearity* X. Ji jixing@#edu.cn

    1 Introduction

    Since the end of World War II, fracture mechanics has developed steadily and fruitfully, including linear elastic fracture mechanics (LEFM), elastoplastic fracture mechanics(EPFM), and interfacial fracture mechanics (IFFM). Many researchers have worked in this field. Among the m, Irwin[1], Rice et al. [2–5], Huchinson [6, 7], and Wells [8] contributed many important advances. Thereupon, the application of fracture mechanics in structural design and analysis has increased significantly [9].

    Because the fracture parameters of criteria for LEFM and IFFM are extracted from the rigorous solutions in linear elasticity [2, 3, 6, 10–12], the the oretical background is solid. But, the fracture parameters of criteria for EPFM, such as J integral, crack-tip opening displacement (CTOD), and crack-tip opening angle (CTOA) are based on the simplified solutions in nonlinear plasticity [4, 5, 7, 8], without the supports from the reliable the oretical verifications. Continuing efforts have been devoted to improving the theory for more than half a century [13]. Because of the mathematical difficulty of nonlinearity, up to now, advances in EPFM are limited.

    Therefore, the attention has been switched to numerical analysis [14]. Considering the inexactness of elastic–plastic finite element analysis (EPFEA) of the crack tip field,it is most important to improve the accuracy of EPFEA.Although some progress in EPFEA has been made [15], satisfactory results have not been achieved yet.

    In the present paper, a finite element numerical study for the stress field near elastoplastic crack tips is carried out.To increase the accuracy, a refined mesh model near the crack tip is proposed. In the mesh refining area, element size continuously varies from the nanometer scale (nm) to the micrometer scale (μm), and the millimeter scale (mm).Two crack tip elements (CTE) (1st and 2nd) are specifically designed. The 1st CTE at the left side of the crack tip is an isosceles triangle having a center angle of 120°, and the 2nd CTE at the right side of the crack tip is a right-angled triangle having a center angle of 60°. Graphics of the plastic zone, the crack tip blunting, and the deformed crack tip elements are given in the paper. Based on the curves of stress and plastic strain, closely near the crack tip, the stress singularity index λpand the stress intensity factor Kp, as well as the plastic strain singularity indexpand the plastic strain intensity factor Qpare determined. It is seen that the stress and the plastic strain singular index vary with the load, while the dimensions of the stress and the plastic strain intensity factors depend on the stress and the plastic strain singularity index, respectively. Therefore, the singular field near the elastoplastic crack tip is characterized by the stress singularity index and the stress intensity factor, or alternatively the plastic strain singularity index and the plastic strain intensity factor. The stress intensity factor Kpor plastic strain intensity factor Qpcannot be used alone as a fracture parameter.At the end of the paper, following Irwin’s concept of fracture mechanics, the ò Kcriterion and the Qcriterion are proposed. In addition, the crack tip angle criterion is also presented.

    2 Overview of elastoplastic finite element analysis on crack tip fields

    It is noteworthy that in the 1970s, researchers paid significant attention to the EPFEA of finite deformation [16, 17] and the EPFEA of crack problems [18–20], to investigate EPFM by numerical approaches. The ir work laid the foundation for research in computational elastoplastic fracture mechanics [21, 22].

    In the following decades, the finite element analysis of large elastoplastic deformation near the crack tip has become the focus of research [23–27]. In order to correctly analyze the elastoplastic crack tip field, finite element modeling with suitable mesh refining near the crack tip is a key problem.Work by Lamain [28] summarized the main points that the modeling needs to follow. The y pointed out that six-node triangular isoparameter elements are more suitable for modeling the area containing the crack tip, and the crack tip elements should describe the plastic incompressibility. The y also proposed the iteration process for equilibrium correction, the iteration process for yield surface correction, as well as the combination of iteration and substepping to minimize the nonlinear error.

    3 Finite element analysis o f elastic p late containing a central crack

    Recently, Ji et al. [29] took full advantage of the modelling capability provided by the finite element software Abaqus/Standard, and achieved a promising numerical result. An element mesh model of a central cracked plate is presented in Fig. 1 [29], and the n the stress intensity factor is determined from the finite element analysis. In the mesh refining area, the size of the smallest element is 3.8 nm, and the largest element is 0.82 mm, rendering the refining ratio of around 216,000. Element size continuously varies from the nanometer scale (nm) to the micrometer scale (μm), and the millimeter scale (mm).

    Compared with the rigorous solution, the error of the obtained stress intensity factor is less than 1% in general[29]. It is demonstrated that the stress singularity near the crack tip can be simulated accurately through classic finite element method (FEM).

    Therefore, it is feasible to utilize the FEM with the element size continuously varying from the nanometer scale to the micrometer scale and the millimeter scale to solve the elastoplastic crack problems.

    Fig. 1 a Finite element mesh of a quarter plate. b Refined mesh model near the crack tip [29]

    4 Finite element simulation of elastoplastic plate containing a crack

    Consider an elastoplastic plate containing a central crack under tension, subjected to finite plastic deformation. Assume the plate size is 200 mm, the crack length is 2a = 20 mm, and the maximum applied tensile load is 150 MPa. The origin is set at the crack tip, the x-axis and y-axis are oriented along and perpendicular to the crack,respectively. The material obeys von Mises flow criterion and the associated flow rule. The elastoplastic crack problem is analyzed with EPFEM (Abaqus/St and ard). In the calculation, material nonlinearity and geometric nonlinearity are considered.

    4.1 Mesh refinement near the crack tip

    As shown in Fig. 2a, b, the mesh refining area is a circular domain, with the center at the crack tip. The radii of the inner circle, the middle circle and the outer circle are r1= 300 nm, r2= 1000 nm, and r3= 2 mm, respectively.?

    Fig. 2 a Finite element mesh of a quarter of an elastoplastic plate. b Refined mesh model near the elastoplastic crack tip. c Crack tip elements

    Inside the inner circle, the modified six-node triangular isoparametric elements are adopted. Ten divisions are uniformly allocated along the crack surface, one division of 60 nm and eight divisions of 30 nm are allocated along the positive x-axis. The area within the inner circle of r1= 300 nm, are divided into 10 layers radially. The most outer layer is uniformly subdivided into 20 divisions circumferentially. Each inner layer decreases two divisions compared to the adjacent outer layer. Two crack tip elements (1st and 2nd CTE) are specially created for capturing the seriously nonuniform distribution of plastic deformation. As showed in Fig. 2c, the 1st CTE at the left side of the crack tip is an isosceles triangle having a center angle of 120°, and the 2nd CTE at the right side of the crack tip is a right-angled triangle with a center angle of 60°.

    In the annulus between the inner and the middle circles,modified six-node triangular isoparametric elements are adopted. Fourteen elements are distributed along the radial direction with the element size varying according to the bias ratio of 2.28 (Abaqus index). A long the circumferential direction, elements are uniformly distributed. From the inner to the middle circles, the number of elements along the circumference increases from 20 to 48.

    In the annulus between the middle and the outer circles,eight-node quadrilateral isoparametric elements are adopted.One hundred and twelve elements are distributed along the radial direction with the element size being proportional to the radius according to the bias ratio of 1869 (Abaqus index) and 48 elements are uniformly distributed in the circumferential direction.

    In the refined mesh area, the size of the smallest element is 30 nm, and that of the largest element is 0.131 mm,which gives the refining ratio of around 4367. Element size continuously varies from the nanometer scale (nm) to the micrometer scale (μm), and the millimeter scale (mm). The finite element mesh for a quarter of the plate contains 7974 elements in total.

    Our experience shows that the refined mesh model of the elastoplastic cracked plate, showed in Fig. 2, works well in the whole loading process, until the maximum tensile load 150 MPa is reached.

    4.2 Element type

    In Fig. 2, inside of the circle of radius r2= 1000 nm, modified six-node triangular isoparametric elements (CPS6 M for plane stress analysis, CPE6 M for plane strain analysis) are adopted. Outside of the circle of radius r2= 1000 nm, eightnode quadrilateral isoparametric elements (CPS8 for plane stress analysis, CPE8 for plane strain analysis) are adopted.

    Regular second-order triangular elements (CPS6, CPE6)are typically preferable in Abaqus/Standard. However, these elements may exhibit “volumetric locking” when incompressibility is encountered, for example, in problems with large plastic deformation. The modified triangular isoparametric elements exhibit minimal shear and volumetric locking, and are robust during finite plastic deformation.

    The modified six-node triangular isoparametric element and eight-node quadrilateral isoparametric elements are incompatible. But in our case, the results show that the disturbance at the boundary of these two kinds of elements is not significant and may be negligible.

    4.3 Material property

    For the purpose of simplicity, the material is assumed as linear elastic-linear hardening plastic (LE-LHP). Assume that Young’s modulus is 198,000 MPa, Poisson’s ratio is 0.3, and yield stress is 2000 MPa. The tangential plastic modulus is 20,000 MPa. The input data of plastic properties for the material model are listed in Table 1.

    The continuity hypothe sis in theory of elastoplasticity holds that the constitutive relationship of the material remains unchanged when the volume element approaches zero. Therefore, in the finite element analysis, the finite element of nanometer scale size can be modeled by the conventional plastic medium’s constitutive relationship. Only in this way can the results from finite element modeling be determined to be the approximate numerical solution, which is consistent with the classical elastic–plastic theory.

    4.4 Nonlinear analysis

    Because of the large plastic deformation, the option“NLGEOM” is set at “on” in Abaqus/Standard to deal with the geometric nonlinearity. The updated Lagrangian formulation is used when NLGEOM is specified.

    The external load is divided into three steps (0–50 MPa,50–100 MPa, 100–150 MPa). To avoid the divergence in iteration, for each load step, the minimum time increment is set at 0.001 (corresponding 0.05 MPa). At the end of each time increment, the nodes are updated to the current(deformed) configurations, and a new stiffness matrix is formed.

    Table 1 Plastic property of the material

    The n the force residual for the iteration Rais calculated by Abaqus. If Rais less than the force residual tolerance at all nodes, the solution being in equilibrium is accepted.By default, this tolerance value is set to 0.5% of the average force in the structure, which is averaged over time.The last displacement correction cais also checked. If cais less than a fraction (1% by default) of the incremental displacement, the solution is accepted. Both convergence checks must be satisfied before a solution is said to have converged for that time increment. Otherwise, another iteration (attempt) would be performed. If the time increment becomes smaller than the defined minimum value or more than five attempts are needed, Abaqus/Standard interrupts the analysis.

    The total computer time to analyze a typical crack problem with a high-performance personal computer is generally less than 60 m in.

    As the calculation process is strictly monitored by the Abaqus/Standard, we did not find any sign of the divergence in the numerical results due to the vast span of element size from nanometer scale to the millimeter scale.

    5 Results from finite element analysis

    5.1 Plastic zone

    Figures 3 and 4 show the plastic zone of the central cracked plate at different loading levels in the undeformed configuration, in plane strain and plane stress, respectively.The initial mesh is also plotted in the figures.

    In plane stress, the plastic zone is extended along the ligament of the cracked plane. It is noted that, in plane strain, the plastic zone is confined to a shorter range along the x-axis. But it does not mean that the plastic zone does not extend, it is just extending along the oblique direction of about ± 70°.

    Fig. 3 Plastic zone in plane strain. a Load: 10–40 MPa. b Load: 50–90 MPa. c Load: 100–150 MPa

    The plastic zone radius rpof the plane strain and the plane stress, as well as the plastic zone radius along the x-axis of the plane strainunder different loads, are given in Fig. 5.

    Fig. 4 Plastic zone in plane stress. a Load: 10–40 MPa. b Load: 50–90 MPa. c Load: 100–150 MPa

    Fig. 5 Plastic radius under different load

    Figure 5 shows that the radius of the plastic zone near the crack tip increases faster than the load as the plastic deformation becomes dominant. The plastic zone radius in plane strain is much smaller than that in plane stress under the same load.

    5.2 Blunting of the crack tip

    Figures 6 and 7 illuminate the crack tip blunting of the central cracked p late under different loading levels, in plane strain and plane stress, respectively. Blunting greatly alters the shape of the crack surface near the crack tip.

    Fig. 6 Blunting of the crack tip in plane strain

    Fig. 7 Blunting of the crack tip in plane stress

    5.3 Deformed crack tip elements

    Figures 8 and 9 describe the shapes of the crack tip elements and their neighboring elements subjected to plastic deformation under different loading levels, in plane strain and plane stress, respectively. In Figs. 8 and 9, equivalent plastic strain (PEEQ) is expressed with color. A comparison of the deformed crack tip element with its initial shape demonstrates the complication of the blunting phenomena.

    Fig. 8 Deformed crack tip elements in plane strain

    Fig. 9 Deformed crack tip elements in plane stress

    Fig. 10 CTA under different load

    The plastic deformation process of the 1st CTE has unique features. As loading increases from 0 to 150 MPa,it is seen that the bottom edge (crack flank) rotates from horizontal to a certain angle () and elongated in y-direction.

    It is especially interesting to draw attention to the stress and strain state of the 2nd CTE. Since the bottom edge of the 2nd CTE is located at the starting portion of the ligament,the extension of the crack will likely start at this place.

    During loading, the upper and lower crack flanks open to a concave angle2(0<2

    国产精品无大码| 又黄又爽又刺激的免费视频.| 91午夜精品亚洲一区二区三区| 国产亚洲精品久久久com| 草草在线视频免费看| 亚洲成人中文字幕在线播放| 午夜免费男女啪啪视频观看| av在线播放精品| 国产亚洲5aaaaa淫片| 亚洲经典国产精华液单| 日本一本二区三区精品| 成年免费大片在线观看| 亚洲高清免费不卡视频| 国产白丝娇喘喷水9色精品| 欧美成人免费av一区二区三区| 日日干狠狠操夜夜爽| 国产极品天堂在线| 亚洲欧美日韩东京热| av在线老鸭窝| 免费在线观看成人毛片| 毛片女人毛片| 亚洲av成人av| 看黄色毛片网站| 成人鲁丝片一二三区免费| 欧美色视频一区免费| 一级毛片电影观看 | 啦啦啦韩国在线观看视频| 午夜激情福利司机影院| 午夜激情福利司机影院| 久久久久网色| 欧美一区二区国产精品久久精品| 亚洲人成网站在线观看播放| 色视频www国产| 日韩 亚洲 欧美在线| 午夜免费激情av| 亚洲精品成人久久久久久| 赤兔流量卡办理| 久久精品综合一区二区三区| 夜夜看夜夜爽夜夜摸| 日韩一区二区视频免费看| 韩国av在线不卡| 国产精品久久视频播放| 久久6这里有精品| 一个人观看的视频www高清免费观看| 国产精品国产三级国产av玫瑰| 国内少妇人妻偷人精品xxx网站| .国产精品久久| 又黄又爽又刺激的免费视频.| 亚洲图色成人| 免费黄网站久久成人精品| 别揉我奶头 嗯啊视频| 午夜激情福利司机影院| 亚洲精品亚洲一区二区| 日本一本二区三区精品| 国产日韩欧美在线精品| 免费一级毛片在线播放高清视频| 亚洲四区av| 亚洲av一区综合| 亚洲av成人av| www.色视频.com| av在线观看视频网站免费| 日本免费在线观看一区| 高清视频免费观看一区二区 | 69av精品久久久久久| 国产黄色小视频在线观看| 免费播放大片免费观看视频在线观看 | 欧美性猛交╳xxx乱大交人| eeuss影院久久| 久久久亚洲精品成人影院| 99热这里只有精品一区| 欧美成人一区二区免费高清观看| 我要搜黄色片| 日韩精品青青久久久久久| 黄色日韩在线| 欧美潮喷喷水| a级一级毛片免费在线观看| 中国美白少妇内射xxxbb| 亚洲性久久影院| 看片在线看免费视频| 国产精品永久免费网站| 国产精品麻豆人妻色哟哟久久 | 18禁裸乳无遮挡免费网站照片| 日产精品乱码卡一卡2卡三| 日韩欧美国产在线观看| 国产亚洲av嫩草精品影院| 日本一二三区视频观看| 在线免费十八禁| 熟女人妻精品中文字幕| 日日撸夜夜添| 2021天堂中文幕一二区在线观| 黄色日韩在线| 免费观看精品视频网站| 成人美女网站在线观看视频| 成人午夜精彩视频在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 欧美日本视频| 国产色爽女视频免费观看| 国产亚洲av片在线观看秒播厂 | 亚洲av.av天堂| 热99在线观看视频| 国产欧美另类精品又又久久亚洲欧美| 久久亚洲精品不卡| 成年版毛片免费区| 亚洲国产成人一精品久久久| 久久精品国产亚洲网站| 久久草成人影院| 国产精品国产三级国产专区5o | 18禁动态无遮挡网站| 热99re8久久精品国产| 午夜老司机福利剧场| 美女xxoo啪啪120秒动态图| 精品久久久久久电影网 | 97超视频在线观看视频| 欧美日韩在线观看h| 欧美日韩精品成人综合77777| 亚洲中文字幕一区二区三区有码在线看| 成人一区二区视频在线观看| 国产免费又黄又爽又色| 国产精品蜜桃在线观看| 热99re8久久精品国产| 亚洲四区av| 麻豆成人午夜福利视频| 亚洲自拍偷在线| 插逼视频在线观看| 插逼视频在线观看| 日韩精品青青久久久久久| a级一级毛片免费在线观看| 国产一级毛片在线| 在现免费观看毛片| 秋霞在线观看毛片| 中文字幕免费在线视频6| 男女那种视频在线观看| 欧美成人免费av一区二区三区| 色视频www国产| 最近最新中文字幕大全电影3| 国产精品人妻久久久久久| 国产亚洲精品av在线| 嘟嘟电影网在线观看| 天美传媒精品一区二区| 亚洲国产欧洲综合997久久,| 精品久久国产蜜桃| 亚洲高清免费不卡视频| 人妻少妇偷人精品九色| 直男gayav资源| 非洲黑人性xxxx精品又粗又长| 欧美zozozo另类| 亚洲av成人精品一二三区| 久久婷婷人人爽人人干人人爱| 亚洲av不卡在线观看| 国产乱人偷精品视频| 看片在线看免费视频| 中文资源天堂在线| 99久久成人亚洲精品观看| 内地一区二区视频在线| 久久精品国产99精品国产亚洲性色| 久久99热6这里只有精品| 亚洲一区高清亚洲精品| av黄色大香蕉| 日日摸夜夜添夜夜添av毛片| 亚洲av成人精品一区久久| 国产精品久久久久久精品电影小说 | 日日摸夜夜添夜夜添av毛片| 国产一级毛片在线| 午夜精品在线福利| 午夜老司机福利剧场| 床上黄色一级片| 99热网站在线观看| 人人妻人人澡欧美一区二区| 一个人看的www免费观看视频| 亚洲欧美日韩东京热| 两性午夜刺激爽爽歪歪视频在线观看| 久久精品国产亚洲av涩爱| 搞女人的毛片| 黄色一级大片看看| 女人久久www免费人成看片 | 五月玫瑰六月丁香| 少妇的逼好多水| 91aial.com中文字幕在线观看| 日韩精品有码人妻一区| 床上黄色一级片| 99国产精品一区二区蜜桃av| 国产精品三级大全| 3wmmmm亚洲av在线观看| 精品人妻偷拍中文字幕| av在线观看视频网站免费| 免费av毛片视频| 国产成人福利小说| 日本av手机在线免费观看| 搡老妇女老女人老熟妇| 国内精品宾馆在线| 成人二区视频| 秋霞伦理黄片| 成人高潮视频无遮挡免费网站| 久久精品熟女亚洲av麻豆精品 | 欧美性猛交╳xxx乱大交人| 18禁在线播放成人免费| 国产亚洲精品久久久com| 99久国产av精品| 成年免费大片在线观看| 欧美成人免费av一区二区三区| 亚洲av一区综合| 最近的中文字幕免费完整| 欧美极品一区二区三区四区| 亚洲人成网站在线播| 欧美潮喷喷水| 在线观看66精品国产| www.av在线官网国产| 91午夜精品亚洲一区二区三区| 国产成人免费观看mmmm| 久久久久久久久大av| АⅤ资源中文在线天堂| av免费观看日本| 国产一区亚洲一区在线观看| 床上黄色一级片| 九九热线精品视视频播放| 亚洲国产最新在线播放| 成人二区视频| 国产精品人妻久久久久久| 国产午夜福利久久久久久| 三级经典国产精品| 天堂中文最新版在线下载 | 99久久中文字幕三级久久日本| 九色成人免费人妻av| 青春草亚洲视频在线观看| 免费观看性生交大片5| 性插视频无遮挡在线免费观看| 免费观看的影片在线观看| 午夜激情欧美在线| 午夜精品国产一区二区电影 | 搞女人的毛片| 久久久久久九九精品二区国产| 国产私拍福利视频在线观看| 久久久久久久午夜电影| 色哟哟·www| 黑人高潮一二区| 淫秽高清视频在线观看| 午夜老司机福利剧场| 女的被弄到高潮叫床怎么办| 日韩视频在线欧美| 免费看光身美女| 国产精品综合久久久久久久免费| 在线观看一区二区三区| 99九九线精品视频在线观看视频| 麻豆一二三区av精品| 亚洲人成网站在线播| 成人亚洲精品av一区二区| 亚洲精品乱码久久久v下载方式| 国产精品电影一区二区三区| 中文亚洲av片在线观看爽| 黄片wwwwww| 亚洲成人精品中文字幕电影| 最近最新中文字幕免费大全7| 亚州av有码| 18禁在线播放成人免费| 国内精品宾馆在线| 欧美成人免费av一区二区三区| 看片在线看免费视频| 精品国产一区二区三区久久久樱花 | 亚洲欧洲日产国产| 最近手机中文字幕大全| 久久久久久久久久久丰满| 国产亚洲精品av在线| 国产老妇女一区| 久久精品久久久久久噜噜老黄 | 亚洲久久久久久中文字幕| 国产成人a区在线观看| 国语自产精品视频在线第100页| 国产精品无大码| 精品免费久久久久久久清纯| 精品无人区乱码1区二区| 久久久精品大字幕| 亚洲av不卡在线观看| 久久久国产成人精品二区| av线在线观看网站| 国产精品野战在线观看| 纵有疾风起免费观看全集完整版 | 国产高潮美女av| 国产 一区精品| 国产精品国产三级国产av玫瑰| 性插视频无遮挡在线免费观看| 人妻系列 视频| 国产探花在线观看一区二区| 亚洲国产高清在线一区二区三| 九九久久精品国产亚洲av麻豆| 久久久久久国产a免费观看| 91在线精品国自产拍蜜月| 如何舔出高潮| 欧美不卡视频在线免费观看| 少妇丰满av| 99国产精品一区二区蜜桃av| 精品欧美国产一区二区三| 亚洲一区高清亚洲精品| 99热精品在线国产| 欧美最新免费一区二区三区| 男女啪啪激烈高潮av片| 最近最新中文字幕免费大全7| 精品免费久久久久久久清纯| 亚洲成人久久爱视频| 国产乱人偷精品视频| 中文字幕av在线有码专区| 插逼视频在线观看| eeuss影院久久| 中国国产av一级| 久久久国产成人免费| 别揉我奶头 嗯啊视频| 日日摸夜夜添夜夜添av毛片| 我的老师免费观看完整版| 日韩精品有码人妻一区| 国产高清国产精品国产三级 | 少妇裸体淫交视频免费看高清| 成人av在线播放网站| 中文字幕人妻熟人妻熟丝袜美| 精品少妇黑人巨大在线播放 | 亚洲精品国产av成人精品| 色视频www国产| 可以在线观看毛片的网站| 青春草视频在线免费观看| 人妻制服诱惑在线中文字幕| 成人三级黄色视频| 日日摸夜夜添夜夜爱| 99热这里只有精品一区| 白带黄色成豆腐渣| 小说图片视频综合网站| 2022亚洲国产成人精品| 亚洲一级一片aⅴ在线观看| 69av精品久久久久久| 别揉我奶头 嗯啊视频| 人人妻人人澡人人爽人人夜夜 | 欧美潮喷喷水| 日韩人妻高清精品专区| 亚洲最大成人av| 中文字幕制服av| 色综合色国产| 精品久久久久久久久亚洲| 偷拍熟女少妇极品色| 国产人妻一区二区三区在| 亚洲美女搞黄在线观看| av天堂中文字幕网| 在线免费观看的www视频| 久久久国产成人免费| 国产亚洲av片在线观看秒播厂 | 久久久久九九精品影院| av黄色大香蕉| 夫妻性生交免费视频一级片| 久久久成人免费电影| 亚洲五月天丁香| 午夜精品国产一区二区电影 | 国产精品无大码| av视频在线观看入口| 国产 一区 欧美 日韩| 插逼视频在线观看| 亚洲av中文字字幕乱码综合| 欧美日韩一区二区视频在线观看视频在线 | 午夜福利高清视频| 我要看日韩黄色一级片| 精品久久久久久成人av| av.在线天堂| 精品久久国产蜜桃| 狂野欧美白嫩少妇大欣赏| 亚洲av中文字字幕乱码综合| 亚洲中文字幕一区二区三区有码在线看| 久久久成人免费电影| 一二三四中文在线观看免费高清| 亚洲av电影不卡..在线观看| 插逼视频在线观看| 97在线视频观看| 国产精品久久电影中文字幕| 亚洲欧美精品自产自拍| 噜噜噜噜噜久久久久久91| 国产成人aa在线观看| 午夜免费男女啪啪视频观看| 村上凉子中文字幕在线| 国产精品久久视频播放| 十八禁国产超污无遮挡网站| 亚洲欧美精品自产自拍| 欧美性猛交黑人性爽| 一级av片app| 看免费成人av毛片| 久久久久精品久久久久真实原创| 国产一区二区亚洲精品在线观看| 国产精品美女特级片免费视频播放器| 成人高潮视频无遮挡免费网站| 日本猛色少妇xxxxx猛交久久| 免费黄网站久久成人精品| 日韩av不卡免费在线播放| 国产亚洲av嫩草精品影院| 99久久九九国产精品国产免费| 精品久久国产蜜桃| 老女人水多毛片| 亚洲国产精品sss在线观看| 精品无人区乱码1区二区| 麻豆久久精品国产亚洲av| 国语对白做爰xxxⅹ性视频网站| 国产成人午夜福利电影在线观看| 国产成年人精品一区二区| 蜜桃久久精品国产亚洲av| 亚洲精品自拍成人| 亚洲av熟女| 亚洲丝袜综合中文字幕| 99热网站在线观看| 国产片特级美女逼逼视频| 两性午夜刺激爽爽歪歪视频在线观看| 日日撸夜夜添| 国产69精品久久久久777片| 高清午夜精品一区二区三区| 久久久久久久久久黄片| 97热精品久久久久久| 国产色爽女视频免费观看| 麻豆久久精品国产亚洲av| 国产亚洲午夜精品一区二区久久 | 伦理电影大哥的女人| 亚洲伊人久久精品综合 | 久久久国产成人精品二区| 久久久欧美国产精品| 人人妻人人澡欧美一区二区| 最近视频中文字幕2019在线8| 国产精品伦人一区二区| 黄色一级大片看看| 高清日韩中文字幕在线| 在现免费观看毛片| 中文字幕av在线有码专区| 国产一区二区三区av在线| 岛国在线免费视频观看| 亚洲国产精品国产精品| 国产女主播在线喷水免费视频网站 | 伦精品一区二区三区| 欧美日韩精品成人综合77777| 中文乱码字字幕精品一区二区三区 | 日韩亚洲欧美综合| 久久久精品大字幕| 我的老师免费观看完整版| 国产精品精品国产色婷婷| 国产亚洲一区二区精品| 黄色日韩在线| 日本猛色少妇xxxxx猛交久久| 亚洲久久久久久中文字幕| 午夜日本视频在线| 久久国内精品自在自线图片| 国产成人一区二区在线| 少妇人妻一区二区三区视频| 69av精品久久久久久| 日韩视频在线欧美| 最新中文字幕久久久久| 免费观看的影片在线观看| 成人欧美大片| 精品人妻视频免费看| 好男人在线观看高清免费视频| 乱系列少妇在线播放| 又爽又黄a免费视频| 在线观看av片永久免费下载| 国产高清有码在线观看视频| 国产精品麻豆人妻色哟哟久久 | 我的老师免费观看完整版| 狠狠狠狠99中文字幕| 久久精品国产鲁丝片午夜精品| 国产女主播在线喷水免费视频网站 | 免费观看精品视频网站| 汤姆久久久久久久影院中文字幕 | 白带黄色成豆腐渣| 亚洲18禁久久av| 最近2019中文字幕mv第一页| 不卡视频在线观看欧美| 免费av毛片视频| 99热6这里只有精品| 欧美日韩国产亚洲二区| 国产亚洲最大av| 国产精品国产三级国产专区5o | 黄片wwwwww| 性色avwww在线观看| 秋霞伦理黄片| 日本色播在线视频| 久久久久网色| 欧美激情久久久久久爽电影| 日韩三级伦理在线观看| 水蜜桃什么品种好| 久久亚洲国产成人精品v| 久久久久精品久久久久真实原创| 国产精华一区二区三区| 97超碰精品成人国产| 黄片wwwwww| 99在线视频只有这里精品首页| 特级一级黄色大片| 亚州av有码| 国产精品一二三区在线看| 白带黄色成豆腐渣| 亚洲内射少妇av| 男人狂女人下面高潮的视频| 人妻夜夜爽99麻豆av| 91久久精品国产一区二区成人| 联通29元200g的流量卡| 久久国产乱子免费精品| 国模一区二区三区四区视频| 日韩欧美在线乱码| 99久久中文字幕三级久久日本| 99热这里只有是精品在线观看| av.在线天堂| 岛国在线免费视频观看| 99久久精品一区二区三区| 草草在线视频免费看| 国产亚洲一区二区精品| 亚洲av日韩在线播放| 亚洲国产精品成人综合色| 国产伦一二天堂av在线观看| 少妇的逼好多水| 真实男女啪啪啪动态图| 亚洲av成人精品一二三区| 国产精品蜜桃在线观看| 91aial.com中文字幕在线观看| 久久综合国产亚洲精品| 真实男女啪啪啪动态图| 在线观看一区二区三区| 免费在线观看成人毛片| 国产免费一级a男人的天堂| 97热精品久久久久久| 成年版毛片免费区| 久久99热这里只频精品6学生 | 一区二区三区高清视频在线| 日韩高清综合在线| 精品少妇黑人巨大在线播放 | 联通29元200g的流量卡| 色综合亚洲欧美另类图片| 欧美成人午夜免费资源| eeuss影院久久| 如何舔出高潮| 美女大奶头视频| 日本黄色片子视频| 22中文网久久字幕| 亚洲四区av| .国产精品久久| 校园人妻丝袜中文字幕| 人人妻人人看人人澡| 有码 亚洲区| 欧美97在线视频| 亚洲18禁久久av| 国产高清三级在线| 亚洲一级一片aⅴ在线观看| 中文字幕亚洲精品专区| 亚洲激情五月婷婷啪啪| 精品一区二区三区视频在线| 精品国产露脸久久av麻豆 | 少妇人妻一区二区三区视频| 久久人人爽人人片av| 日本免费一区二区三区高清不卡| 大香蕉97超碰在线| .国产精品久久| 色播亚洲综合网| 日韩,欧美,国产一区二区三区 | av专区在线播放| 欧美精品国产亚洲| 真实男女啪啪啪动态图| 男女下面进入的视频免费午夜| 欧美成人精品欧美一级黄| 哪个播放器可以免费观看大片| 成人av在线播放网站| 欧美不卡视频在线免费观看| 国产黄色小视频在线观看| 人人妻人人看人人澡| 3wmmmm亚洲av在线观看| 国产中年淑女户外野战色| 国产乱人视频| 国产黄色视频一区二区在线观看 | 国产精品熟女久久久久浪| 国产熟女欧美一区二区| 97热精品久久久久久| 白带黄色成豆腐渣| 一夜夜www| 久久久久国产网址| 久久韩国三级中文字幕| 久久久久久久久久久免费av| 91精品伊人久久大香线蕉| .国产精品久久| 一边摸一边抽搐一进一小说| 精品不卡国产一区二区三区| 亚洲精品国产av成人精品| 亚洲欧美精品自产自拍| 99久久精品国产国产毛片| 身体一侧抽搐| 亚洲国产色片| 九九在线视频观看精品| 丰满少妇做爰视频| 夫妻性生交免费视频一级片| 少妇猛男粗大的猛烈进出视频 | 一级毛片久久久久久久久女| 国产成人一区二区在线| 观看美女的网站| 九草在线视频观看| 毛片一级片免费看久久久久| 亚洲经典国产精华液单| 美女内射精品一级片tv| 成人亚洲欧美一区二区av| 一边摸一边抽搐一进一小说| 中文亚洲av片在线观看爽| 亚洲av免费高清在线观看| 国内精品美女久久久久久| 国产精品久久视频播放| 在线a可以看的网站| 一级毛片我不卡| 中文亚洲av片在线观看爽| 免费观看的影片在线观看| 日本黄色视频三级网站网址| 男插女下体视频免费在线播放| 人体艺术视频欧美日本| 2021少妇久久久久久久久久久| 中文天堂在线官网| 久久久久性生活片| 日韩中字成人| 级片在线观看| 高清av免费在线| 91精品一卡2卡3卡4卡| 青青草视频在线视频观看| 久久精品国产亚洲av涩爱| 欧美激情在线99| av福利片在线观看| 日本一二三区视频观看| 国产女主播在线喷水免费视频网站 |