• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modeling and power performance improvement of a piezoelectric energy harvester for low?frequency vibration environments

    2019-04-01 14:51:30DongxingCaoYanhuiGaoWenhuaHu
    Acta Mechanica Sinica 2019年4期

    Dongxing Cao · Yanhui Gao · Wenhua Hu

    Abstract A novel oscillator structure consisting of a bimorph piezoelectric cantilever beam with two steps of different thicknesses is proposed to improve the energy harvesting performance of a vibration energy harvester (VEH) for use in low-frequency vibration environments. Firstly, the piezoelectric cantilever is segmented to obtain the energy functions based on the Euler–Bernoulli beam assumptions, the n the Galerkin approach is utilized to discretize the energy functions. Applying boundary conditions and continuity conditions enforced at separation locations, the coupled electromechanical equations governing the piezoelectric energy harvester are introduced by means of the Lagrange equations. Furthermore, expressions for the steady-state response are obtained for harmonic base excitations at arbitrary frequencies. Numerical results are computed, and the effects of the ratio of lengths, ratio of thicknesses, end thickness, and load resistance on the output voltage, harvested power, and power density are discussed. Moreover, to verify the analytical results, finite element method simulations are also conducted to analyze the performance of the proposed VEH, showing good agreement. A ll the results show that the present oscillator structure is more efficient than the conventional, uniform beam structure, specifically for vibration energy harvesting in low-frequency environments.

    Keywords Vibration energy harvesting · Piezoelectric cantilever beam · Stepped variable thicknesses · Finite element method simulation

    1 Introduction

    with the rapid development of integrated circuits, the size and power consumption of electronic devices have reduced dramatically [1, 2], making it possible to power devices using vibration energy harvesting techniques without an external power source. Over the last decade, energy harvesting from vibrating mechanical structures has been studied by several researchers [3–5]. Various transduction mechanisms have been reported for vibration energy harvesting, including electrostatic [6–8], electromagnetic [9–11], piezoelectric[4, 12], and magnetostrictive [13, 14] mechanisms, as well as the use of electronic and ionic electroactive polymers [15,16] or polymer electrets [17], and even flexoelectricity for energy harvesting [18, 19]. Among the basic transduction mechanisms that can be used for vibration-to-electricity conversion, piezoelectric transduction has received the most attention due to the high power density and ease of application of piezoelectric materials. Many researchers have focused their work on modeling and applications of piezoelectric energy harvesters in vibration environments.Various kinds of piezoelectric vibration energy harvester(VEH) were investigated by Erturk et al. [20–23] using analytical methods with experimental validation based on nonlinear dynamic theory. A systematic comparison between VEHs using Pb(M g1/3Nb2/3)O3-PbTiO3(PMN-PT) or Pb(Zn1/3Nb2/3)O3-PbTiO3(PZN-PT) single crystals and lead zirconate titanate (PZT) ceramics was presented by Yang and Zu [24]. A novel design for a rotational power scavenging system was presented by Febbo et al. [25] as an alternative to cantilever beams attached to a hub. Many studied on piezoelectric VEHs have been reported in Refs. [26–29].It is worth mentioning that Chen and Jiang [30, 31] also proposed use of the internal resonance of a nonlinear system to enhance VEH performance. The concept of nonlinear internal resonance was also introduced by Cao et al. [23]to study broadb and energy harvesting using an L-shaped beam–mass structure with quadratic nonlinearity. A large number of other studies have been devoted to improving the energy harvesting performance of piezoelectric VEHs, but we cannot list all the achievements here.

    Note that most vibration oscillators in VEHs are currently uniform structures, for instance, uniform beam and plate structures. However, the re is no reason why the geometry should be lim ited to traditional, uniform configurations. In fact, use of nonuniform structures could increase the coupling performance, and energy harvesters with alternative geometries have been shown to be of interest. It was proposed by Baker and Roundy [32] that varying the width(trapezoidal shape) of a beam can increase the efficiency.Literature studies investigating the strain distribution in cantilever beams with various shapes, such as rectangular, triangular, and trapezoidal geometries, have revealed that use of a triangular cantilever beam can improve the strain distribution and generate more voltage compared with a rectangular beam under the same conditions [33–35]. An innovative design platform for a segment-type piezoelectric energy harvester was presented by Lee et al. [36]. A bimorph piezoelectric beam with periodically variable cross-sections was presented by Hajhosseini and Rafeeyan [37], offering three advantages over a uniform piezoelectric beam, i.e., greater voltage output over a wide frequency range, enhanced vibration absorption, and lower weight. A harvester based on a propped cantilever beam with variable overhangs having step sections was examined by Usharani et al. [38]. Flexible longitudinal zigzag energy harvesters were studied by Zhou et al. [39] with the aim of enhancing energy harvesting from low-frequency low-amplitude excitations.

    In the work presented herein, a bimorph piezoelectric cantilever beam with two steps with different thicknesses is proposed for high-output vibration energy harvesting.The remainder of this manuscript is organized as follows.Section 2 describes the structural model of the proposed VEH and the basic assumptions. Theoretical modeling of the VEH is the n established, and expressions for the steady-state response for harmonic base excitations at arbitrary frequencies are derived in Sect. 3. Numerical results based on the theoretical analysis are obtained and discussed in detail in Sect. 4. In Sect. 5, finite element method (FEM) simulations are conducted to validate the results of the theoretical analysis, where the effects of geometric parameters on the natural frequency, output voltage, harvested power, and power density of the harvester are analyzed and discussed. Finally, the main conclusions are drawn in Sect. 6.

    Fig. 1 Structural model of piezoelectric energy harvester

    2 Structural model and basic assumptions

    A piezoelectric cantilever beam with two steps with different thicknesses is considered for vibration energy harvesting,being composed of two segments with different thicknesses and a tip segment, as shown in Fig. 1. A base excitationof the clamping mechanism is used to simulate environmental excitation.L is the total length of the beam,L1is the length of the first segment of the beam, and L2?L1is the length of the second segment of the beam.Hi(i=1,2,3)are the thicknesses of the first, second, and third segments of the substructure layer, respectively.Hpis the thickness of the piezoceramic layers, and the width of the whole structure is B. In Fig. 1, the x-, y- (perpendicular to the paper and pointing into it), and z-directions, respectively, are coincident with the 1-, 2-, and 3-directions of piezoelectricity, the former being preferred for mechanical derivations, whereas the latter are used in the piezoelectric constitutive relations.The piezoceramic layers of the bimorph are poled oppositely in the z-direction, so the configuration represents series connection of the piezoceramic layers. The output terminals of the electrodes of the first two segments of the piezoelectric beam are connected directly to load resistors RL1and RL2,respectively.

    Before deriving the coupled electromechanical equation governing the VEH with two steps of different thicknesses,the following assumptions are introduced: (a) each segment of the piezoelectric cantilever beam is considered to be an Euler–Bernoulli beam; (b) the influence of the bonding layer is neglected, i.e., the piezoceramic layers and the substructure layer are ideally bonded, and the displacement and force on the bonding layer are continuous; (c) the electrode coated on the upper and lower surfaces of the piezoceramic layers is very thin compared with the total thickness of the harvester,so their contribution to the thickness dimension is negligible; (d) the piezoceramic layers produce an electric field perpendicular to the beam surface and distributed uniform ly along the thickness direction.

    3 Theoretical modeling

    3.1 Distributed?parameter electromechanical energy formulation

    Based on assumption (a), the axial strain can be expressed as Eq. (1), where w(x,t)is the transverse displacement of the beam at point x and time t relative to the moving base

    where the prime notation()is shorthand for α∕αx, and z is the position from the neutral axis of the piezoelectric cantilever beam.

    The isotropic substructure layer obeys Hooke’s law

    where Txx,Sxx, and Esare the axial stress, axial strain, and elastic modulus of the substructure layer, respectively.

    Due to the transverse vibration of the piezoelectric cantilever beam system, the piezoelectric effect of the piezoelectric material is considered. The constitutive equations of the piezoceramic layers can be expressed as

    where T1and S1are the axial stress and axial strain of the piezoceramic layers, respectively,is the elastic modulus under constant electric field,e31is the piezoelectric coupling coefficient, and E3and D3are the electric field strength and electric displacement in the z-direction, respectively.σSis

    33 the permittivity under constant strain.

    Based on assumption (d), the electric field distribution in the VEH with two steps of different thicknesses in series can be expressed as

    where vR1(t) and vR2(t)are the voltages across the load resistances RL1and RL2, respectively.

    The Lagrange equations are employed to establish the coupled electromechanical equations governing the piezoelectric cantilever beam with two steps of different thicknesses. The Lagrange function for the system can be expressed as

    where T , U, and Weare the total kinetic energy, internal potential energy, and electrical energy of the system, respectively. The specific expressions for the various energies of the system are introduced as follows.

    3.1.1 Kinetic energy

    The kinetic energy T of the system is the sum of the kinetic energy of the substructure layer (Ts) and the piezoceramic layers (Tp) and can be written as

    where an overdot indicates a derivative with respect to time t. When 0?x?L1,i=1,j=1,2; when L1?x?L2,i=2,j=3,4; when L2?x?L,j=3.Vsiis the volume of the i-th segment of the substructure layer, and Vpjis the volume of the j-th piezoceramic layer.psis the density of the substructure layer, and ppis the density of the piezoceramic layers.w0i(x,t)represents the absolute transverse displacement of the i-th segment at point x and time t.

    The kinetic energy Tsof the substructure layer can be expressed as

    where Asi=BHiis the cross-sectional area of the substructure layer for the i th segment of the beam.is the vibration velocity of the base.

    The kinetic energy Tpof the piezoceramic layers can be expressed as

    where Api=BHpis the cross-sectional area of the piezoceramic layers for the i-th segment of the beam.

    3.1.2 Internal potential energy

    The internal potential energy of the harvester can be defined as

    Substituting Eqs. (2) and (3) into Eq. (10), the potential energy can be written as

    where Usand Upsonly depend on the strain of the substructure layer and piezoceramic layers, respectively, while Upedepends on both the strain of the piezoceramic layers and the electric field.

    Substituting Eqs. (1) and (5) into Eq. (11),Uscan be expressed as

    Upsis given by

    where Ep=is the ( elastic modulus of t)h/e piezoceramic layers, and Ipi=12 is the area moment of inertia of the piezoceramic layers for the i-th segment of the beam.

    Upeis given by

    3.1.3 Electrical energy

    The electrical energy of the harvester is defined as

    Substituting Eq. (4) into Eq. (15),Wecan be w ritten as

    where Wpe1depends on both the strain and the electric field,while Wpe2only depends on the electric field.

    Substituting Eqs. (1) and (5) into Eq. (16),Wpe1can be expressed as

    Wpe2is given by

    3.2 Spatial discretization of the energy equations

    The Galerkin method is utilized to discretize the Lagrange function. The transverse displacement w(x,t) of the piezoelectric cantilever beam can be written as

    where φm(x) and qm(t)are the unknown mode shape and generalized modal coordinate of the m th mode, respectively.

    Due to the two steps with different thicknesses, the piezoelectric cantilever beam is a discontinuous laminated beam,with varying material and geometric characteristics. Therefore, the mode shape function of each segment is different, and piecewise calculation is required. The mode shape functions of the m th mode can be written as

    where φm1(x),φm2(x), and φm3(x)can be expressed as

    The coefficients in the mode shape function are determined by the boundary conditions and continuity conditions.The boundary conditions at x=0 and x=L can be written as

    The continuity conditions at x=L1can be written as

    The continuity conditions at x=L2can be written as

    where EIiis the flexural stiffness at segment i of the beam,EIi=EsIsi+2EpIpi(i=1,2), and EI3=EsIs3.

    The modal frequency of each segment of the beam is consistent, so the following equation applies:

    where pAiis the mass of the i-th segment of the beam,pAi= psAsi+2ppApi(i=1,2), and pA3= psAs3.

    Substituting Eq. (20) into Eqs. (24)–(26), homogeneous linear equations can be obtained as

    To further standardize the mode shapes, the following orthogonality conditions are introduced:

    where is the Kronecker delta.

    When the piezoelectric cantilever beam with two steps of different thicknesses is operated in a low-frequency vibration environment, because of the sparsity of the structural modes,the first mode is often closer to the excitation frequency,playing the leading role in the displacement response of the structure, which can thus be simplified to

    3.3 Coup led electromechanical equations for the VEH

    Substituting Eq. (30) into Eq. (6) and using the orthogonality conditions in Eq. (29), the reduced Lagrange function can be obtained as

    where w1is the first natural frequency of the piezoelectric cantilever beam,?1and ?2are the model electromechanical coupling coefficients,is the model base excitation coefficient,Cp1and Cp2are equivalent capacitances, and M is the total mass of the piezoelectric cantilever beam. The se coefficients are given by

    Substituting Eq. (31) into the Lagrange equations yields

    where F1(t)is the generalized dissipative force, and QR1(t) and QR2(t)are the generalized output charges across the load resistances RL1and RL2, respectively. Considering the energy function of the generalized dissipative force as the Rayleigh function yields F1(t)=?2

    欧美在线黄色| 一级作爱视频免费观看| 最近最新中文字幕大全免费视频| 国产黄a三级三级三级人| 亚洲欧美日韩无卡精品| 少妇粗大呻吟视频| 一级a爱视频在线免费观看| 一本综合久久免费| 国产激情欧美一区二区| www.自偷自拍.com| 久久久久久人人人人人| 亚洲成人免费电影在线观看| 国产成+人综合+亚洲专区| 亚洲午夜理论影院| 亚洲欧美日韩高清在线视频| 久久午夜综合久久蜜桃| 夫妻午夜视频| 夫妻午夜视频| 男女高潮啪啪啪动态图| 在线播放国产精品三级| 女人被狂操c到高潮| 一级作爱视频免费观看| 国产色视频综合| 交换朋友夫妻互换小说| 国产成人精品无人区| 久久人妻熟女aⅴ| 淫秽高清视频在线观看| 91成年电影在线观看| 婷婷六月久久综合丁香| 日韩欧美一区视频在线观看| 亚洲自拍偷在线| 每晚都被弄得嗷嗷叫到高潮| 日本黄色视频三级网站网址| 国产精品99久久99久久久不卡| 女性被躁到高潮视频| 亚洲一区二区三区不卡视频| 色综合婷婷激情| 人人妻人人添人人爽欧美一区卜| 久久国产精品人妻蜜桃| svipshipincom国产片| 免费在线观看黄色视频的| 香蕉丝袜av| 一进一出好大好爽视频| 天天躁夜夜躁狠狠躁躁| 身体一侧抽搐| 麻豆成人av在线观看| 日韩精品中文字幕看吧| 9191精品国产免费久久| 久久人人爽av亚洲精品天堂| 中文字幕最新亚洲高清| 成人18禁在线播放| 国产精品 欧美亚洲| 欧美另类亚洲清纯唯美| 级片在线观看| 精品国内亚洲2022精品成人| 精品一区二区三区av网在线观看| 久久国产精品人妻蜜桃| 亚洲精品av麻豆狂野| 国产高清国产精品国产三级| 伦理电影免费视频| 50天的宝宝边吃奶边哭怎么回事| 国产高清videossex| 国产片内射在线| 欧美日韩亚洲国产一区二区在线观看| 成人亚洲精品av一区二区 | 法律面前人人平等表现在哪些方面| 亚洲一区高清亚洲精品| 国产单亲对白刺激| 婷婷丁香在线五月| 欧洲精品卡2卡3卡4卡5卡区| 国产精品 欧美亚洲| 亚洲在线自拍视频| 亚洲色图综合在线观看| 久久久久久久久中文| 日韩免费高清中文字幕av| 欧美国产精品va在线观看不卡| 国产伦一二天堂av在线观看| 在线十欧美十亚洲十日本专区| 亚洲国产精品合色在线| 久热爱精品视频在线9| 亚洲精品一卡2卡三卡4卡5卡| 午夜激情av网站| 在线观看免费视频日本深夜| 女同久久另类99精品国产91| 国产亚洲av高清不卡| 热re99久久精品国产66热6| 丰满饥渴人妻一区二区三| 日本三级黄在线观看| 黄色毛片三级朝国网站| 丝袜人妻中文字幕| 岛国视频午夜一区免费看| 日韩免费高清中文字幕av| 国产精品野战在线观看 | 国产精品久久久av美女十八| 波多野结衣av一区二区av| 亚洲精品一区av在线观看| 欧美日本亚洲视频在线播放| 精品久久久久久,| 精品人妻在线不人妻| 亚洲av美国av| 欧美日本中文国产一区发布| 国产一区二区在线av高清观看| 亚洲精品美女久久久久99蜜臀| 国产熟女午夜一区二区三区| 电影成人av| 成年人黄色毛片网站| 在线观看免费午夜福利视频| 色婷婷av一区二区三区视频| 国产精品亚洲av一区麻豆| 多毛熟女@视频| 亚洲在线自拍视频| 看片在线看免费视频| 欧美乱色亚洲激情| 亚洲av五月六月丁香网| 777久久人妻少妇嫩草av网站| 国产成人欧美| 村上凉子中文字幕在线| 免费少妇av软件| 亚洲av日韩精品久久久久久密| 国产精品久久久人人做人人爽| 男女做爰动态图高潮gif福利片 | 午夜91福利影院| 91在线观看av| 丰满饥渴人妻一区二区三| www.自偷自拍.com| 美女午夜性视频免费| 在线观看免费视频网站a站| 男女床上黄色一级片免费看| 国产一区二区在线av高清观看| 国产av精品麻豆| av网站免费在线观看视频| 嫁个100分男人电影在线观看| 成人黄色视频免费在线看| 亚洲成a人片在线一区二区| 可以免费在线观看a视频的电影网站| 一级片'在线观看视频| 久久人人爽av亚洲精品天堂| 国产成人精品久久二区二区免费| 免费在线观看视频国产中文字幕亚洲| www日本在线高清视频| av免费在线观看网站| 999久久久国产精品视频| 国产真人三级小视频在线观看| 午夜福利,免费看| 午夜福利在线免费观看网站| 久久人妻熟女aⅴ| 久久久国产成人免费| 少妇的丰满在线观看| 黄色a级毛片大全视频| 激情在线观看视频在线高清| 嫩草影视91久久| 少妇被粗大的猛进出69影院| 女生性感内裤真人,穿戴方法视频| 亚洲欧美一区二区三区黑人| 男人的好看免费观看在线视频 | 久久草成人影院| 久久影院123| 午夜日韩欧美国产| 精品少妇一区二区三区视频日本电影| 亚洲成人久久性| 无遮挡黄片免费观看| 在线永久观看黄色视频| 午夜福利免费观看在线| 中亚洲国语对白在线视频| 久久这里只有精品19| www.熟女人妻精品国产| 国产成+人综合+亚洲专区| 99久久久亚洲精品蜜臀av| 亚洲第一av免费看| 久久精品影院6| 高清黄色对白视频在线免费看| 日韩大码丰满熟妇| x7x7x7水蜜桃| 精品第一国产精品| 不卡av一区二区三区| 欧美+亚洲+日韩+国产| 亚洲男人天堂网一区| 午夜亚洲福利在线播放| 精品一区二区三区视频在线| 国产久久久一区二区三区| 99久久99久久久精品蜜桃| 欧美不卡视频在线免费观看| 精品人妻偷拍中文字幕| av国产免费在线观看| 国产亚洲欧美在线一区二区| 男插女下体视频免费在线播放| 91麻豆av在线| 美女被艹到高潮喷水动态| 国语自产精品视频在线第100页| 两个人的视频大全免费| 欧美在线黄色| 欧美性猛交黑人性爽| 嫩草影院入口| 国产精品美女特级片免费视频播放器| 乱码一卡2卡4卡精品| 日日摸夜夜添夜夜添av毛片 | 国产精品98久久久久久宅男小说| 最新中文字幕久久久久| 亚洲av一区综合| 男插女下体视频免费在线播放| 一级av片app| 99久久精品一区二区三区| 婷婷精品国产亚洲av| 中文字幕av成人在线电影| 免费av毛片视频| 我要搜黄色片| 午夜精品久久久久久毛片777| 久久国产精品人妻蜜桃| 伦理电影大哥的女人| 精华霜和精华液先用哪个| 麻豆久久精品国产亚洲av| 久久欧美精品欧美久久欧美| 亚洲激情在线av| 欧美在线一区亚洲| 欧美色欧美亚洲另类二区| 亚洲av成人精品一区久久| 两性午夜刺激爽爽歪歪视频在线观看| 三级国产精品欧美在线观看| 日韩欧美一区二区三区在线观看| 日韩欧美免费精品| 美女cb高潮喷水在线观看| 亚洲不卡免费看| 91在线观看av| 嫩草影视91久久| 久久精品国产清高在天天线| 69av精品久久久久久| 在线看三级毛片| 精品久久久久久久人妻蜜臀av| 日韩精品中文字幕看吧| 亚洲精品在线观看二区| 少妇的逼好多水| 最后的刺客免费高清国语| 欧美高清性xxxxhd video| 国产成+人综合+亚洲专区| 每晚都被弄得嗷嗷叫到高潮| 亚洲激情在线av| 男女视频在线观看网站免费| 老司机福利观看| 免费av观看视频| 久久热精品热| 我的女老师完整版在线观看| 久久6这里有精品| 精品无人区乱码1区二区| 啦啦啦韩国在线观看视频| 人妻制服诱惑在线中文字幕| 国产av在哪里看| 亚洲国产欧洲综合997久久,| 国模一区二区三区四区视频| 精品久久久久久成人av| 成人精品一区二区免费| 午夜两性在线视频| 久久久久亚洲av毛片大全| 好男人电影高清在线观看| 欧美又色又爽又黄视频| 神马国产精品三级电影在线观看| 国产黄a三级三级三级人| 一个人免费在线观看电影| 午夜激情福利司机影院| 亚洲国产精品久久男人天堂| 欧美激情国产日韩精品一区| 国产爱豆传媒在线观看| 亚洲欧美日韩无卡精品| 亚洲精品粉嫩美女一区| 一进一出抽搐动态| 午夜精品一区二区三区免费看| 亚洲成人免费电影在线观看| 久久婷婷人人爽人人干人人爱| 天美传媒精品一区二区| 男人狂女人下面高潮的视频| netflix在线观看网站| 久久久久亚洲av毛片大全| 哪里可以看免费的av片| 色精品久久人妻99蜜桃| 亚洲男人的天堂狠狠| 欧美+日韩+精品| 嫩草影视91久久| 国产一区二区在线av高清观看| 亚洲欧美日韩高清专用| 最近最新中文字幕大全电影3| 欧美精品啪啪一区二区三区| 国产野战对白在线观看| 久久人人爽人人爽人人片va | 一级av片app| 欧美精品啪啪一区二区三区| 久久国产乱子免费精品| 国内毛片毛片毛片毛片毛片| 午夜激情欧美在线| 国产精品野战在线观看| 99久久久亚洲精品蜜臀av| 亚洲,欧美精品.| 一本久久中文字幕| 亚洲第一电影网av| 国产精品1区2区在线观看.| av欧美777| 老鸭窝网址在线观看| 亚洲男人的天堂狠狠| 亚洲国产精品合色在线| 国产高清激情床上av| 久久天躁狠狠躁夜夜2o2o| 国产久久久一区二区三区| 国产老妇女一区| 高清日韩中文字幕在线| 性色av乱码一区二区三区2| 夜夜夜夜夜久久久久| 少妇熟女aⅴ在线视频| 精品久久久久久久久亚洲 | 亚洲自偷自拍三级| 99精品久久久久人妻精品| 国产综合懂色| 不卡一级毛片| 91麻豆精品激情在线观看国产| 嫁个100分男人电影在线观看| 亚洲avbb在线观看| 久久久久免费精品人妻一区二区| 国内少妇人妻偷人精品xxx网站| 国产精品一区二区三区四区久久| 俺也久久电影网| 欧美高清性xxxxhd video| 免费av不卡在线播放| 一进一出好大好爽视频| 亚洲最大成人手机在线| 精品人妻一区二区三区麻豆 | 欧美黑人欧美精品刺激| 99国产精品一区二区蜜桃av| 如何舔出高潮| 少妇高潮的动态图| 黄片小视频在线播放| 最近在线观看免费完整版| 日日摸夜夜添夜夜添小说| 大型黄色视频在线免费观看| 国产高清有码在线观看视频| 色综合欧美亚洲国产小说| 日韩高清综合在线| 真实男女啪啪啪动态图| 大型黄色视频在线免费观看| 90打野战视频偷拍视频| 美女高潮的动态| 亚洲最大成人中文| eeuss影院久久| 毛片一级片免费看久久久久 | a级毛片a级免费在线| 国产精品伦人一区二区| 久久久久久久久久成人| 婷婷精品国产亚洲av在线| 我要看日韩黄色一级片| 亚洲精品久久国产高清桃花| 又爽又黄a免费视频| 成年女人看的毛片在线观看| 日韩欧美三级三区| 在线免费观看不下载黄p国产 | 国产亚洲精品av在线| ponron亚洲| 国产av不卡久久| 久久久色成人| 在线播放国产精品三级| 国产白丝娇喘喷水9色精品| 丁香欧美五月| 欧美xxxx黑人xx丫x性爽| 99热精品在线国产| 亚洲自拍偷在线| 51午夜福利影视在线观看| 色视频www国产| 中文字幕久久专区| 人人妻,人人澡人人爽秒播| 欧美激情在线99| 国产在视频线在精品| 国产高清视频在线播放一区| 国产高清有码在线观看视频| 亚洲不卡免费看| 91久久精品电影网| 一个人免费在线观看的高清视频| 又爽又黄无遮挡网站| 精品不卡国产一区二区三区| 欧美性猛交黑人性爽| 亚洲avbb在线观看| 日本黄大片高清| 俄罗斯特黄特色一大片| 成人亚洲精品av一区二区| 精品国产亚洲在线| 琪琪午夜伦伦电影理论片6080| 色视频www国产| 日本成人三级电影网站| 亚洲熟妇中文字幕五十中出| 亚洲成a人片在线一区二区| 婷婷亚洲欧美| 久久精品影院6| 91麻豆av在线| 全区人妻精品视频| 琪琪午夜伦伦电影理论片6080| 99热这里只有精品一区| 亚洲电影在线观看av| 午夜福利免费观看在线| 精品午夜福利视频在线观看一区| 精品国产亚洲在线| 长腿黑丝高跟| 免费看日本二区| 亚洲成人免费电影在线观看| 日韩欧美免费精品| 日本一本二区三区精品| 亚洲精品一区av在线观看| 性色avwww在线观看| 丁香六月欧美| 精品人妻视频免费看| 亚洲av免费高清在线观看| a级一级毛片免费在线观看| 少妇丰满av| 一进一出抽搐动态| 亚洲欧美日韩东京热| 深夜精品福利| 亚洲一区高清亚洲精品| 中文亚洲av片在线观看爽| 国产精品精品国产色婷婷| 亚洲不卡免费看| 久久精品人妻少妇| 亚洲黑人精品在线| 日韩大尺度精品在线看网址| 欧美在线黄色| 午夜精品久久久久久毛片777| 日韩精品中文字幕看吧| 色哟哟·www| 国产v大片淫在线免费观看| 欧美三级亚洲精品| 一个人免费在线观看电影| 国产成人a区在线观看| 久久国产乱子伦精品免费另类| 天美传媒精品一区二区| 十八禁国产超污无遮挡网站| 日韩成人在线观看一区二区三区| 久久久久九九精品影院| 少妇熟女aⅴ在线视频| 哪里可以看免费的av片| 内地一区二区视频在线| 好男人电影高清在线观看| 精品久久久久久久末码| 日韩欧美在线乱码| 黄片小视频在线播放| 精品午夜福利视频在线观看一区| 两个人的视频大全免费| 欧美激情在线99| 免费一级毛片在线播放高清视频| 久久精品国产亚洲av香蕉五月| 国产精品美女特级片免费视频播放器| 午夜福利在线观看吧| 国产精品美女特级片免费视频播放器| 免费av不卡在线播放| 在线观看美女被高潮喷水网站 | 黄色一级大片看看| 亚洲精品粉嫩美女一区| 国产成人啪精品午夜网站| 国产三级在线视频| 国产亚洲精品久久久com| 免费看光身美女| 国产黄a三级三级三级人| 国产久久久一区二区三区| 亚洲精品一区av在线观看| 免费观看的影片在线观看| 欧美日韩国产亚洲二区| 99在线人妻在线中文字幕| 尤物成人国产欧美一区二区三区| 亚洲乱码一区二区免费版| 日韩亚洲欧美综合| 精品不卡国产一区二区三区| 欧美成人性av电影在线观看| 午夜久久久久精精品| 日本五十路高清| 国产欧美日韩一区二区精品| 久久国产精品影院| 极品教师在线免费播放| 色综合婷婷激情| 欧美黑人欧美精品刺激| 别揉我奶头 嗯啊视频| 午夜影院日韩av| 在线免费观看不下载黄p国产 | 亚洲一区二区三区色噜噜| 色播亚洲综合网| 99国产精品一区二区三区| 有码 亚洲区| 久久人妻av系列| 少妇丰满av| 国产成人欧美在线观看| 又粗又爽又猛毛片免费看| 亚洲精华国产精华精| 伊人久久精品亚洲午夜| 久久精品影院6| 一本精品99久久精品77| 久久精品夜夜夜夜夜久久蜜豆| 亚洲精品456在线播放app | 久久热精品热| 欧美成人一区二区免费高清观看| 成人国产综合亚洲| 免费观看人在逋| 亚洲成av人片在线播放无| 十八禁网站免费在线| 夜夜躁狠狠躁天天躁| 久久99热这里只有精品18| 免费在线观看亚洲国产| 成年女人看的毛片在线观看| 欧美黑人巨大hd| 久久久久国产精品人妻aⅴ院| 一级毛片久久久久久久久女| 赤兔流量卡办理| 欧美黑人欧美精品刺激| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 免费电影在线观看免费观看| 极品教师在线视频| 日韩欧美精品v在线| 简卡轻食公司| 日本黄大片高清| 日韩高清综合在线| 亚洲经典国产精华液单 | 在线播放无遮挡| 欧美日韩中文字幕国产精品一区二区三区| 国产大屁股一区二区在线视频| 色综合亚洲欧美另类图片| 欧美极品一区二区三区四区| 久久国产乱子伦精品免费另类| 亚洲欧美激情综合另类| 人人妻,人人澡人人爽秒播| 非洲黑人性xxxx精品又粗又长| 99久久久亚洲精品蜜臀av| 禁无遮挡网站| 国产精品乱码一区二三区的特点| 日韩欧美免费精品| 91九色精品人成在线观看| 色综合站精品国产| 成人一区二区视频在线观看| 国产精品一区二区三区四区久久| 精品久久久久久久久久久久久| 男女下面进入的视频免费午夜| 精品午夜福利视频在线观看一区| 午夜影院日韩av| 国产日本99.免费观看| 久久欧美精品欧美久久欧美| 热99re8久久精品国产| 91字幕亚洲| 三级毛片av免费| 大型黄色视频在线免费观看| 亚洲国产色片| 不卡一级毛片| 日韩亚洲欧美综合| 99久久久亚洲精品蜜臀av| 麻豆国产av国片精品| 欧美日韩黄片免| 亚洲最大成人手机在线| 亚洲 欧美 日韩 在线 免费| 18禁裸乳无遮挡免费网站照片| 一级黄色大片毛片| 国产精品久久视频播放| 国产精品乱码一区二三区的特点| 嫩草影院新地址| 欧美绝顶高潮抽搐喷水| 欧美日韩乱码在线| 内射极品少妇av片p| 制服丝袜大香蕉在线| 欧美+日韩+精品| 搡老妇女老女人老熟妇| 熟妇人妻久久中文字幕3abv| 国产伦人伦偷精品视频| 一本综合久久免费| 免费看美女性在线毛片视频| 日本熟妇午夜| 久久6这里有精品| 老熟妇乱子伦视频在线观看| 亚洲av第一区精品v没综合| 9191精品国产免费久久| 欧美精品国产亚洲| 老司机午夜福利在线观看视频| 亚洲中文字幕一区二区三区有码在线看| 久久久精品欧美日韩精品| 成人亚洲精品av一区二区| 亚洲成人久久性| 欧美在线一区亚洲| 欧美潮喷喷水| 国产不卡一卡二| 国产人妻一区二区三区在| 国产精品一区二区三区四区免费观看 | 成人特级av手机在线观看| 小蜜桃在线观看免费完整版高清| 午夜福利免费观看在线| 午夜日韩欧美国产| 日韩欧美免费精品| 欧美日韩瑟瑟在线播放| 夜夜爽天天搞| 女同久久另类99精品国产91| 亚洲五月婷婷丁香| 成人av一区二区三区在线看| 午夜激情福利司机影院| 精品久久久久久,| 人妻久久中文字幕网| avwww免费| 国产综合懂色| 99在线人妻在线中文字幕| 波多野结衣巨乳人妻| 欧美一区二区亚洲| 少妇熟女aⅴ在线视频| 老鸭窝网址在线观看| 亚洲电影在线观看av| 亚洲人成电影免费在线| 神马国产精品三级电影在线观看| 亚洲成a人片在线一区二区| 丁香欧美五月| 成熟少妇高潮喷水视频| 99久久精品热视频| 亚洲人成网站高清观看| 亚洲内射少妇av| 人人妻人人看人人澡| 国产黄色小视频在线观看| 国语自产精品视频在线第100页| 99riav亚洲国产免费| 1000部很黄的大片| 99久久精品国产亚洲精品| 亚洲精品成人久久久久久| 国产精品永久免费网站| 亚洲熟妇中文字幕五十中出| 9191精品国产免费久久|