• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Free vibration analysis of a spinning piezoelectric beam with geometric nonlinearities

    2019-04-01 14:51:26WeiLiXiaoDongYangWeiZhangYuanRenTianZhiYang
    Acta Mechanica Sinica 2019年4期

    Wei Li · Xiao?Dong Yang · Wei Zhang · Yuan Ren · Tian?Zhi Yang

    Abstract The linear and non-linear free vibrations of a spinning piezoelectric beam are studied by considering geometric nonlinearities and electromechanical coupling effect. The non-linear differential equations of the spinning piezoelectric beam governing two transverse vibrations are derived by using transformation of two Euler angles and the extended Hamilton principle,wherein an additional piezoelectric coupling term and different linear terms are present in contrast to the traditional shaft model. Linear frequencies are obtained by solving the standard eigenvalues of the linearized system directly, and the nonlinear frequencies and non-linear complex modes are achieved by using the method of multiple scales. For free vibrations analysis of a spinning piezoelectric beam, the non-linear modal motions are investigated as forward and backward precession with different spinning speeds. The responses to the initial conditions for this gyroscopic system are studied and a beat phenomenon is found, which are the n validated by numerical simulation. The influences of some parameters such as electrical resistance, rotary inertia and spinning speeds to the non-linear dynamics of a spinning piezoelectric beam are investigated.

    Keywords Spinning piezoelectric beam· Free vibrations· Non-linear frequencies· Complex modes

    1 Introduction

    A spinning piezoelectric beam can often be used to make a piezoelectric vibratory gyroscope, which has several applications such as in mobile phones, high-grade cars, intelligent robotics, military weapons and aerospace systems. In the past,the piezoelectric vibratory gyroscope has become one of the best essential electromechanical system sensors, especially in the field of inertial navigation systems [1]. To simplify the analysis of the piezoelectric gyroscope, traditionally, most investigations are confined to the linear system with piezoelectric excitation and piezoelectric detection [2, 3]. Based on the linear approximation and non-linear “slow” system, Lajimietal. [4] investigated the non-linear estimate of the mechanical thermal noise for an electrostatic gyroscope. The applications of non-linear analysis are also significant for flexible components, and the characteristics of the non-linear gyroscopic system have attracted much attention in a field of rotating shaft [5,6]. By using the fractional calculus and the Gurtin–Murdoch theory, Oskouie et al. [7] investigated the nonlinear vibration of viscoelastic Euler–Bernoulli nanobeam. By considering three types of boundary conditions, Zhao et al. [8] studied the natural frequencies of the Timoshenko beam with surface effects. Recently, the re has been a growing research interest to investigate piezoelectric materials on energy harvesters [9–11] and microstructures [12–15] for rotational motion. As a conclusion, the non-linear characteristics of gyroscopes modeled by a spinning piezoelectric beam should be investigated, so that the guidance to improve the performance of piezoelectric vibratory gyroscope can be proposed.

    Modal analysis of gyroscopic system is an effective tool to investigate the dynamic responses and mode interactions [16,17]. However, when coping with the gyroscopic continuum,the modal theories become difficult because the complex modes should be considered [18, 19]. To this end, Rosenburg[20] firstly presented the non-linear normal modes, which exp and ed the modal motions from the linear non-gyroscopic systems to non-linear non-gyroscopic systems. The non-linear normal mode concept is utilized in the field of non-linear systems by many researchers. By using the multiple scales method, Nayfeh and Nayfeh [21, 22] studied the non-linear normal modes with internal resonance and geometric nonlinearity of a one-dimensional continuous system. To solve the modal motions of gyroscopic systems, Shaw and Pierre[23, 24] used the invariant manifold method to exp and the non-linear normal modes to the gyroscope coupling systems.The work of Carlos et al. [25] made a comparison for the nonlinear normal modes of an axially loaded beam by both the invariant manifold method and multiple scales method. For a linear system, Uspensky and Avramov [26] studied the nonlinear normal mode under a forced excitation by using the invariant manifold method and Rauscher method. To analyze the free vibration of a gyroscopic system, Arvin and Nejad[27] described the complex dynamical characteristics of nonlinear normal modes. In their work, Qian et al. [28] studied parametric instability analysis of a linear gyroscopic system based on the traditional coupled gyroscopic system and decoupled gyroscopic modes decoupling method. Recently, the re are several valuable research towards non-linear normal modes of undamped systems [29–31] and damped systems [32, 33] by using numerical calculation. The study by Pan et al. [34] used the complex modal technique to evaluate the natural frequencies and complex modes of serpentine belt drives.

    The gyroscopic effect caused by spinning motion appears comprehensively in the rotor dynamics systems [35, 36]. By deriving the closed polynomial of frequency equations and integral forms under an ordinary forcing function, Sturla and Argento [37] studied the free and forced vibrations of a viscoelastic rotating Rayleigh beam. The work Ishida and Inoue [38] considered the effect of internal resonance of a non-linear rotor. It is always hard to gain the physical model of nonlinear rotor-bearing system, thus Ma etal. [39] identified a data-driven non-linear auto-regressive network with exogenous inputs (NARX) model to solve this problem. By considering r and om excitations, Hosseini and Khadem [40]investigated the vibration and stability of a spinning beam with r and om characteristics subject to white noise by using the finite element method. In order to guide the design of distorted model, Luo et al. [41] provided a new dynamic scaling law of geometrically distorted model in predicting the dynamic characteristics. Moreover, many researchers analyzed the free vibrations dynamic properties of shafts by different methods [5, 6, 42, 43].

    In this paper, the piezoelectric coupling governing differential expressions with non-linearities in curvature and inertia of a spinning piezoelectric beam are obtained, and the natural frequencies, as well as gyroscopic complex modes, are analyzed. By using the multiple scales method,the non-linear modal motions and non-linear frequencies are investigated. The responses to the initial values are discussed for the gyroscopic system by multiple scales method, and numerical simulation validates the results. The piezoelectric coupling effect and non-linear features of the gyroscopic continuum are also investigated in detail. The contribution of the electrical resistance, rotary inertia, electromechanical coupling coefficient and spinning speeds to the forward and backward natural frequencies of the spinning piezoelectric beam are studied, which prompts possible optimizations in the design of piezoelectric vibratory gyroscopes.

    Fig. 1 Spinning beam with surrounded four piezoelectric films

    2 Governing equations of a spinning piezoelectric beam

    Figure1 shows the structure of a spinning beam which is surrounded with four piezoelectric films. The length (L1, L2,L) and width (wb, wp) of the beam and piezoelectric films are shown in the figure. The beam displacement is made of three components, u(s, t), v(s, t), and w(s, t), along the inertial frame x, y, and z directions, respectively, where s denotes the undeformed arclength along the x-axis from the root of the beam to the observed reference point, t denotes time. The x–y–z coordinate system denotes the inertial frame.

    The transformation of two Euler angles by which an arbitrary beam cross section can be expressed with three coordinate systems is shown in Fig.2. The x0–y0–z0system is a

    For an in-extensional beam, u′ ? ?(v′2+ w′2)/2, exp anding ? with a Taylor series, cos ? = 1??2/2, sin? = ???3/6, the transformation matrix P can be attained as

    spinning frame around the x-axis with constant speed Ω of the undeformed beam; the x1–y1–z1and x2–y2–z2systems are orthogonal coordinate frames associated with Euler angle transformation. Moreover, we let (ix, iy, iz),and (i1,i2, i3) represent the unit vectors of the x0–y0–z0, x1–y1–z1, and x2–y2–z2coordinate frames, respectively.

    From the undeformed plane, the cross section first spins by α degree about n axis from x0–y0–z0to x1–y1–z1

    The transformation matrix B(α) can be expressed by the displacements [44]

    Here, the primes of (u, v, w) denote the derivatives with respect to s, respectively.

    Further, the cross-section spins ? by about x1axis from x1–y1–z1to x2–y2–z2, thus the transformation from x0–y0–z0to x2–y2–z2is

    Using the concept of continuity, one can obtain the deformed curvatures ρi(i = 1, 2, 3)

    The relative angular velocity vector ω to the inertial frame are the n obtained as

    Fig. 2 Sequence of Euler angle transformation

    Here, the dots of (u, v, w) denote the derivatives with respect to t, respectively.

    The deformation of any point on the beam can be denoted by the position vector R as

    Using directional time derivatives,in the coordinate system of x0–y0–z0is expressed as

    with

    The kinetic energy of a spinning Rayleigh beam can be obtained by substituting Eqs.(6), (8), and (9) into the following expression

    According to the assumption of an inextensional beam and using the geometric boundary condition u(0,t) = 0, one can obtain

    Hence, the kinetic energy can be obtained as

    with

    In Eq.(13), H(s) is the Heaviside function, A is the cross sectional area of the beam, m, ρ(s), and j are the total mass,total density, and total rotary inertia of the beam and the piezoelectric films, respectively, and ρb,p, wb,p, and hb,p(wb/hb= 1) are the volumetric mass density, width and thickness of the beam and the piezoelectric film, respectively. For all the parameters used in this paper, subscript b denotes the beam material and p denotes piezoelectric film.

    The mechanical properties of piezoelectric films are coupled with their electric properties. For the configuration and non-linear strain considered here, the electrical displacement is one dimensional and the stress–strain relations for these materials are known as follows [45, 46]

    where Epis the stiffness coefficient, ing33is the dielectric permittivity, Tpis the stress, S is the strain, e31is the piezoelectric strain constant, D is the electrical displacement, E3is the electrical field, and Vv,wis the voltage. The relation between voltage and current is

    where Z is electrical resistance, Q is charge quantity.

    An isotropic beam is considered, and the stress–strain satisfies the relation

    where Ebst and s for stiffness coefficient.

    The total potential energy for spinning beam can be derived as follows

    Substituting Eq.(15) into Eq.(14), then further inserting the results and Eq.(16) into Eq.(17), we can obtain

    w here EI=EbIb+S(s)EpIpis bending stiffness,Cp=wpσ33∕hpis piezoelectric film capacitor,? =wpe31(hb∕2+hp)is electromechanical coupling coefficient, and

    The virtual work done by mechanical damping and electrical resistance is

    The next step is to substitute the results of kinetic, potential energy and virtual work into the Hamilton principle

    Because the torsional frequency is larger than the flexural frequency, so the twist angle ? can be neglected [42]. By using voltage and current relation and exp anding the results up to three orders, we can obtain the following four partial governing equations with electromechanical coupling

    Su b s t i t u t i n g p e r i o d i c v o l t a g e sinto the last two equations of Eq.(22), removing the overbar above the displacements and voltages for simplification, we obtain

    with Z0= 1/(iωCp).

    Hence, substituting Eq.(23) into Eq.(22), the last two equations of (22) can be eliminated by using displacements to replace voltages [47], and the n the equations can be reduced to partial differential equations of two degrees of freedom

    Introducing dimensionless variables and parameters

    Substituting Eq.(25) into Eq.(24), the dimensionless form of the governing equations becomes

    By neglecting the terms of the rotary inertia and geometric non-linearity, our governing Eq.(26) can recover those equations in Refs. [1, 2] that focused on the linear counterpart of the piezoelectric gyroscope. In contrast to the nonlinear shaft models [42, 48], which studied only a rotating beam without piezoelectric materials, two additional piezoelectric coupling terms (κS(s)″2v/(1 + Z0/Z) and κS(s)″2w/(1 + Z0/Z)) and different linear terms such as gyroscopic coupling terms and centrifugal force terms are presented in the current formulation for an investigation.

    In this study, considering the simply-supported boundary condition (v = w=0 and v″ = w″ = 0) at both ends, we use Galerkin method and the appropriate sine function

    where n is the mode number, p and q are generalized temporal coordinates and coupled to each other. Substituting Eq.(27) into Eq.(26), letting L1= 0, L2= L, and assuming a constant base angular speed Ω, we can obtain two non-linear ordinary differential equations

    3 Analysis of the linear frequency and responses to initial conditions

    In this section, the free vibration of the linear part of Eq.(28)is studied first. Neglecting damping and non-linear terms,one can obtain two second-order linear ordinary differential equations with respect to t

    Substituting Q = μeiωtinto Eq.(29), and according to the boundary conditions, the natural frequencies based on the linear system can be obtained as

    Fig. 3 Natural frequencies versus spinning speed (J = 0.002, n = 1,κ = 0.5, and c = 0)

    The n, the corresponding column vector μ can be obtained by substituting ωfand ωbof Eq.(31) back into Eq.(29). The column vector μ is different when Ω greater or smaller than a critical value

    where the first column [?i 1]Tcorresponding to ωfrepresents forward precession and the second column [i 1]Tcorresponding to ωbrepresents backward precession in the sub-critical case. On the critical value the re exists a switch point of the first mode from backward precession to forward precession. Beyond the critical point, both modes are forward precession.

    The two scalar equations of Eq.(29) are only linearly gyroscopic coupled by neglecting the non-linear terms and damping. In Fig.3, the first two natural frequencies versus spinning speeds are plotted for electrical resistance Z0/Z = 10 and Z0/Z = ∞ with parameters J = 0.002, n = 1, κ = 0.5, and c = 0. For each value of Z, two natural frequencies correspond to the two gyroscopic modes of the spinning piezoelectric beam. Figure3 shows that the forward frequency ωfincreases and the backward frequency ωbdecreases, followed by an increase after the critical point. In the local amplified plot, the re are no electric fields in both directions for the case of shortened electrodes (Z0/Z = ∞). In this case, the piezoelectric coupling effect related to electric fields does not exist. When the electrodes are not shortened (Z0/Z = 10), as presented in Fig.3, the re are electric energy transfers in the two directions, which causes stiffening of the spinning piezoelectric beam, and higher frequencies are found. Figure3 also shows that the frequency ωbis decreasing first, and the n increasing, and the re exists a critical switch value. When the electrodes are not shortened (Z0/Z = 10), the point of critical value is pushed back compared with the shortened case(Z0/Z = ∞), although the effect of the electrodes is weak.Similarly, Fig.4 shows the second two natural frequencies versus spinning speeds, which are plotted for Z0/Z = 10 and Z0/Z = ∞ with parameters J = 0.002, n = 2, κ = 0.5, and c = 0.When shortened electrodes (Z0/Z = ∞) are considered, the re exist neither electric fields nor piezoelectric coupling effect.When the electrodes are not shortened (Z0/Z = 10), electric field appears causing higher frequencies. We will further explain the dynamics of the four typical points Af,b, Bf,b, Cf,b, and Df,bon Figs.3 and 4 in the analysis of modal motions in the next section.

    Fig. 4 Natural frequencies versus spinning speed (J = 0.002, n = 2,κ = 0.5, and c = 0)

    4 Application of multiple scales method for the non?linear system

    The method of multiple scales is extensively used in this study of gyroscopic system. Now we treat the non-linear gyroscopic system Eq.(28) by using the procedure of the multiple scales method. The n, the solutions of Eq.(28) are assumed as

    where ing is a bookkeeping device denoting small parameter, and the fast and slow time scale T0= t and T2= ing2t are introduced. Damping c is scaled with cing2since it is usually very weak. The time derivatives can be written as

    with D0= ?/?T0, D2= ?/?T2.

    Substituting Eqs.(33) and (34) into Eq.(28) and equating the coefficient of different orders of ing yields

    Substituting Eq.(37) into Eq.(36), one can obtain

    where “nst” denotes non-secular terms, “cc” denotes the conjugate of the proceeding terms, and

    To determine the solvability conditions of gyroscopic ordinary differential Eq.(38), q3and p3are expressed as

    Substituting Eq.(40) into Eq.(39) and equating the coefficient of eiwfT0, we obtain

    Similarly, for coefficient of eiwbT0, the following equations are obtained

    Equations(41) and (42) are composed of algebraic equations with respect to A11(T2), A21(T2) and A12(T2), A22(T2).The nontrivial condition can be expressed as [42]

    After some mathematical manipulations, the solvability conditions can be written as

    with

    For the super-critical case,

    青草久久国产| 叶爱在线成人免费视频播放| www.www免费av| 国产极品粉嫩免费观看在线| 性欧美人与动物交配| 一边摸一边抽搐一进一小说| 啦啦啦在线免费观看视频4| 一级作爱视频免费观看| 亚洲av熟女| 午夜亚洲福利在线播放| 欧美日韩亚洲综合一区二区三区_| 国产精品九九99| 天堂动漫精品| 久久精品国产清高在天天线| 1024香蕉在线观看| 亚洲精品一二三| av欧美777| 在线观看一区二区三区| 在线观看一区二区三区激情| 婷婷精品国产亚洲av在线| 亚洲av成人不卡在线观看播放网| 两个人免费观看高清视频| 搡老岳熟女国产| 国产有黄有色有爽视频| 老司机午夜十八禁免费视频| 国产激情欧美一区二区| 国产精品影院久久| 午夜福利免费观看在线| 国产精品美女特级片免费视频播放器 | 黄片小视频在线播放| 亚洲精品中文字幕一二三四区| 中文欧美无线码| 99久久综合精品五月天人人| 男男h啪啪无遮挡| 午夜两性在线视频| 日本 av在线| 欧美激情极品国产一区二区三区| 国产麻豆69| 欧美大码av| 亚洲精品av麻豆狂野| 亚洲一区二区三区不卡视频| 国产一区二区三区视频了| 精品国产亚洲在线| 88av欧美| 国产精品成人在线| 黑人欧美特级aaaaaa片| 在线观看66精品国产| 亚洲欧美日韩无卡精品| 色精品久久人妻99蜜桃| 人妻久久中文字幕网| 99久久99久久久精品蜜桃| 国产99白浆流出| 久久精品aⅴ一区二区三区四区| 99国产综合亚洲精品| 69精品国产乱码久久久| 亚洲一区二区三区不卡视频| 波多野结衣av一区二区av| 亚洲精品粉嫩美女一区| 两人在一起打扑克的视频| 国产精品电影一区二区三区| 色哟哟哟哟哟哟| 88av欧美| 99精品久久久久人妻精品| 日韩成人在线观看一区二区三区| 岛国视频午夜一区免费看| 一个人观看的视频www高清免费观看 | 女同久久另类99精品国产91| 免费av毛片视频| 狠狠狠狠99中文字幕| 精品久久久久久电影网| 久久精品国产综合久久久| 亚洲精品在线观看二区| 午夜影院日韩av| 亚洲欧美一区二区三区久久| 午夜福利在线观看吧| 男人操女人黄网站| 满18在线观看网站| 满18在线观看网站| 免费搜索国产男女视频| 很黄的视频免费| 麻豆一二三区av精品| 国产无遮挡羞羞视频在线观看| 他把我摸到了高潮在线观看| 大香蕉久久成人网| 一级毛片女人18水好多| 动漫黄色视频在线观看| 久久精品aⅴ一区二区三区四区| 日本a在线网址| 国产单亲对白刺激| 99国产精品99久久久久| 精品国产一区二区三区四区第35| av网站免费在线观看视频| 国产成人欧美在线观看| 高清欧美精品videossex| 新久久久久国产一级毛片| 国产三级黄色录像| 精品午夜福利视频在线观看一区| 亚洲色图av天堂| 国产在线观看jvid| 1024视频免费在线观看| 天堂影院成人在线观看| 动漫黄色视频在线观看| 成年人免费黄色播放视频| 成年人黄色毛片网站| 天堂影院成人在线观看| 男人舔女人的私密视频| 日韩视频一区二区在线观看| 欧美丝袜亚洲另类 | 97碰自拍视频| 女同久久另类99精品国产91| 激情在线观看视频在线高清| 欧美日韩精品网址| 亚洲色图av天堂| 一进一出抽搐gif免费好疼 | 国产91精品成人一区二区三区| 日韩欧美三级三区| 午夜福利免费观看在线| 视频区欧美日本亚洲| av网站免费在线观看视频| 午夜精品在线福利| 免费在线观看黄色视频的| 久久这里只有精品19| bbb黄色大片| av片东京热男人的天堂| 欧美日韩亚洲国产一区二区在线观看| 夜夜躁狠狠躁天天躁| 美国免费a级毛片| 亚洲国产精品合色在线| 高清欧美精品videossex| 久热爱精品视频在线9| 亚洲成人免费电影在线观看| 午夜精品国产一区二区电影| 亚洲欧美日韩无卡精品| 人人妻人人爽人人添夜夜欢视频| 90打野战视频偷拍视频| 一二三四社区在线视频社区8| 19禁男女啪啪无遮挡网站| 午夜福利免费观看在线| 亚洲av熟女| 久久午夜亚洲精品久久| 欧美日韩福利视频一区二区| 成人影院久久| 亚洲色图综合在线观看| 成人精品一区二区免费| 亚洲va日本ⅴa欧美va伊人久久| 又紧又爽又黄一区二区| 精品一区二区三区视频在线观看免费 | 自拍欧美九色日韩亚洲蝌蚪91| 国产高清videossex| 丝袜美足系列| 亚洲色图av天堂| 91成人精品电影| 国产亚洲欧美在线一区二区| 午夜福利在线观看吧| 女人被狂操c到高潮| 黄色丝袜av网址大全| 黑人欧美特级aaaaaa片| 国产欧美日韩综合在线一区二区| 欧美中文日本在线观看视频| 亚洲色图综合在线观看| 老司机靠b影院| 大型黄色视频在线免费观看| 欧美激情 高清一区二区三区| 99精品欧美一区二区三区四区| av网站免费在线观看视频| 狠狠狠狠99中文字幕| 欧美日韩乱码在线| 99国产综合亚洲精品| 国产精品一区二区三区四区久久 | 可以免费在线观看a视频的电影网站| 可以在线观看毛片的网站| 国产在线精品亚洲第一网站| 欧美精品一区二区免费开放| 91国产中文字幕| 国产成人欧美在线观看| 午夜成年电影在线免费观看| 精品久久久久久电影网| 成人影院久久| 色播在线永久视频| 热re99久久精品国产66热6| 神马国产精品三级电影在线观看 | av有码第一页| 国产高清激情床上av| 日本五十路高清| 亚洲人成网站在线播放欧美日韩| 亚洲国产欧美日韩在线播放| 黄网站色视频无遮挡免费观看| 国产高清激情床上av| 一夜夜www| 久久性视频一级片| 啪啪无遮挡十八禁网站| 久9热在线精品视频| 亚洲男人的天堂狠狠| 欧美人与性动交α欧美软件| 亚洲国产欧美日韩在线播放| 亚洲第一青青草原| 91成年电影在线观看| 久久人妻熟女aⅴ| 一个人免费在线观看的高清视频| 欧美成人性av电影在线观看| 亚洲欧美激情综合另类| 色综合婷婷激情| 精品电影一区二区在线| 久久精品国产清高在天天线| 久久久久久大精品| 视频区图区小说| 色综合婷婷激情| a级毛片黄视频| 超碰97精品在线观看| 国产又色又爽无遮挡免费看| 亚洲av美国av| 一边摸一边抽搐一进一小说| 久久精品国产99精品国产亚洲性色 | 国产成人免费无遮挡视频| 久久热在线av| 国产成人一区二区三区免费视频网站| 亚洲欧美一区二区三区黑人| 一区二区三区精品91| 少妇的丰满在线观看| 亚洲 欧美一区二区三区| 亚洲中文字幕日韩| 男女下面进入的视频免费午夜 | 亚洲avbb在线观看| 黄色丝袜av网址大全| 搡老乐熟女国产| 欧美人与性动交α欧美软件| 在线观看免费视频网站a站| 午夜a级毛片| 亚洲伊人色综图| 亚洲成人免费av在线播放| 久久精品aⅴ一区二区三区四区| 亚洲精品美女久久久久99蜜臀| 亚洲精品粉嫩美女一区| 欧美日韩亚洲综合一区二区三区_| 桃红色精品国产亚洲av| aaaaa片日本免费| 免费一级毛片在线播放高清视频 | 午夜老司机福利片| 高清在线国产一区| 欧美激情久久久久久爽电影 | 欧美精品亚洲一区二区| 免费在线观看影片大全网站| av视频免费观看在线观看| 久久久国产精品麻豆| 欧美精品一区二区免费开放| 大码成人一级视频| 91老司机精品| 亚洲精品国产区一区二| 亚洲视频免费观看视频| 国产成人精品在线电影| 青草久久国产| xxx96com| 在线观看舔阴道视频| 精品国产亚洲在线| 国产av在哪里看| 80岁老熟妇乱子伦牲交| 国产一区二区在线av高清观看| 两个人免费观看高清视频| 亚洲熟妇中文字幕五十中出 | 亚洲一区高清亚洲精品| 首页视频小说图片口味搜索| 校园春色视频在线观看| av国产精品久久久久影院| 好看av亚洲va欧美ⅴa在| 不卡av一区二区三区| 日韩中文字幕欧美一区二区| 久久欧美精品欧美久久欧美| 欧美日本亚洲视频在线播放| 成年人免费黄色播放视频| 大香蕉久久成人网| 久久久久久久久免费视频了| 久久国产精品影院| 国产又爽黄色视频| 五月开心婷婷网| 欧美日韩福利视频一区二区| 啦啦啦在线免费观看视频4| 亚洲三区欧美一区| 久久精品国产亚洲av香蕉五月| 国产精品久久久久久人妻精品电影| 精品午夜福利视频在线观看一区| 丰满人妻熟妇乱又伦精品不卡| netflix在线观看网站| 韩国精品一区二区三区| 99在线人妻在线中文字幕| 日韩人妻精品一区2区三区| 国产单亲对白刺激| 精品国内亚洲2022精品成人| 777久久人妻少妇嫩草av网站| 欧美日韩黄片免| 国产精品香港三级国产av潘金莲| 久久99一区二区三区| 热99re8久久精品国产| 久久热在线av| 又紧又爽又黄一区二区| 国产精品国产av在线观看| 男女之事视频高清在线观看| aaaaa片日本免费| 看免费av毛片| 亚洲 欧美 日韩 在线 免费| 久热这里只有精品99| 亚洲一码二码三码区别大吗| 色尼玛亚洲综合影院| 久久婷婷成人综合色麻豆| 久久久久久久午夜电影 | 丰满人妻熟妇乱又伦精品不卡| 午夜免费鲁丝| 九色亚洲精品在线播放| 国产又色又爽无遮挡免费看| 18禁美女被吸乳视频| 久久久国产成人精品二区 | 9热在线视频观看99| 12—13女人毛片做爰片一| 精品国产一区二区三区四区第35| 国产有黄有色有爽视频| 人人妻人人澡人人看| 免费观看精品视频网站| 国产精品免费视频内射| 久热这里只有精品99| 啦啦啦 在线观看视频| 欧美精品一区二区免费开放| 欧美中文综合在线视频| 亚洲va日本ⅴa欧美va伊人久久| 韩国精品一区二区三区| 天堂√8在线中文| 69精品国产乱码久久久| 国产日韩一区二区三区精品不卡| 亚洲欧美精品综合一区二区三区| 男人舔女人下体高潮全视频| а√天堂www在线а√下载| 国产麻豆69| 亚洲av成人一区二区三| 嫩草影视91久久| 亚洲成人国产一区在线观看| 日日干狠狠操夜夜爽| www国产在线视频色| 成人永久免费在线观看视频| 国产99白浆流出| 他把我摸到了高潮在线观看| 岛国视频午夜一区免费看| 这个男人来自地球电影免费观看| 欧美日韩视频精品一区| 91麻豆av在线| 国产aⅴ精品一区二区三区波| 欧美精品啪啪一区二区三区| 国产精品免费视频内射| 精品国产一区二区三区四区第35| 成人免费观看视频高清| 午夜老司机福利片| 91精品国产国语对白视频| 纯流量卡能插随身wifi吗| 国产免费现黄频在线看| 别揉我奶头~嗯~啊~动态视频| xxx96com| 欧美亚洲日本最大视频资源| 日韩欧美一区二区三区在线观看| 满18在线观看网站| 精品午夜福利视频在线观看一区| 国产亚洲精品一区二区www| 黑人巨大精品欧美一区二区蜜桃| av有码第一页| 一进一出抽搐动态| 91精品国产国语对白视频| 亚洲美女黄片视频| 老鸭窝网址在线观看| 男女高潮啪啪啪动态图| 侵犯人妻中文字幕一二三四区| 国产av一区二区精品久久| 两性夫妻黄色片| 麻豆一二三区av精品| 国产在线观看jvid| 成人手机av| 欧美精品啪啪一区二区三区| 久久精品影院6| 国产亚洲欧美98| 精品福利观看| 日韩视频一区二区在线观看| 国内久久婷婷六月综合欲色啪| 国产一区在线观看成人免费| 久久久久久久午夜电影 | 日韩免费高清中文字幕av| 亚洲少妇的诱惑av| а√天堂www在线а√下载| e午夜精品久久久久久久| 中文字幕高清在线视频| 12—13女人毛片做爰片一| 国产高清视频在线播放一区| 亚洲激情在线av| 欧美日韩亚洲综合一区二区三区_| 精品日产1卡2卡| 九色亚洲精品在线播放| 久久国产精品男人的天堂亚洲| 精品久久久久久久毛片微露脸| 国产麻豆69| 亚洲一区二区三区不卡视频| 欧美日韩亚洲高清精品| 精品国产美女av久久久久小说| 久久精品国产亚洲av高清一级| 久久精品国产99精品国产亚洲性色 | 淫妇啪啪啪对白视频| 国产伦一二天堂av在线观看| 女人被躁到高潮嗷嗷叫费观| 美女高潮喷水抽搐中文字幕| 99riav亚洲国产免费| 成人18禁在线播放| 亚洲一区中文字幕在线| 欧美日韩亚洲高清精品| 国产一区二区三区综合在线观看| 国产精品久久久久久人妻精品电影| 狂野欧美激情性xxxx| 欧美性长视频在线观看| 亚洲国产精品sss在线观看 | 午夜免费观看网址| 久久久久九九精品影院| 亚洲 欧美一区二区三区| av天堂在线播放| 一级片免费观看大全| 国产精品一区二区免费欧美| 999久久久国产精品视频| 黑丝袜美女国产一区| av网站在线播放免费| 国产精品亚洲一级av第二区| 日本黄色日本黄色录像| 欧美成狂野欧美在线观看| 99精品在免费线老司机午夜| 女人被躁到高潮嗷嗷叫费观| 亚洲精品美女久久av网站| 香蕉国产在线看| 一区二区三区国产精品乱码| 婷婷精品国产亚洲av在线| 香蕉丝袜av| 亚洲欧美精品综合久久99| 欧美人与性动交α欧美软件| 国产高清激情床上av| 两性夫妻黄色片| 91九色精品人成在线观看| 国产精品国产av在线观看| 香蕉国产在线看| 精品久久久精品久久久| av欧美777| 又大又爽又粗| 夜夜躁狠狠躁天天躁| 999久久久国产精品视频| 国产精品自产拍在线观看55亚洲| 国产欧美日韩综合在线一区二区| 精品久久久久久久久久免费视频 | 麻豆久久精品国产亚洲av | 又大又爽又粗| 看免费av毛片| 久久久久久免费高清国产稀缺| 欧美午夜高清在线| 大型av网站在线播放| 老司机午夜十八禁免费视频| 精品国内亚洲2022精品成人| 日韩免费高清中文字幕av| 国产高清激情床上av| 亚洲人成电影免费在线| 午夜91福利影院| 99re在线观看精品视频| 日韩高清综合在线| 国产成人av激情在线播放| 精品人妻1区二区| a级毛片在线看网站| 人妻丰满熟妇av一区二区三区| 神马国产精品三级电影在线观看 | 久久国产精品影院| 免费在线观看完整版高清| 99香蕉大伊视频| 精品高清国产在线一区| 日韩成人在线观看一区二区三区| 18禁美女被吸乳视频| 欧洲精品卡2卡3卡4卡5卡区| 亚洲成人免费电影在线观看| 成年人免费黄色播放视频| 两人在一起打扑克的视频| 欧美日韩精品网址| 亚洲久久久国产精品| 又大又爽又粗| 最近最新中文字幕大全电影3 | 久久国产亚洲av麻豆专区| 天天躁夜夜躁狠狠躁躁| 日本a在线网址| 男女高潮啪啪啪动态图| 色哟哟哟哟哟哟| 欧美日韩中文字幕国产精品一区二区三区 | 18禁美女被吸乳视频| 熟女少妇亚洲综合色aaa.| 欧美乱色亚洲激情| 国产精品久久久av美女十八| 亚洲一区二区三区欧美精品| 两个人看的免费小视频| 欧美日韩黄片免| 99精国产麻豆久久婷婷| 国产精品 欧美亚洲| 精品国产超薄肉色丝袜足j| 亚洲中文av在线| 久久久久国产一级毛片高清牌| 欧美精品亚洲一区二区| 成年人免费黄色播放视频| 精品久久久久久电影网| 不卡av一区二区三区| 久久久国产欧美日韩av| 老鸭窝网址在线观看| 亚洲色图综合在线观看| 免费看a级黄色片| 国产伦人伦偷精品视频| 伦理电影免费视频| 久热爱精品视频在线9| 国产午夜精品久久久久久| 精品久久久久久电影网| 久久精品亚洲熟妇少妇任你| 一二三四社区在线视频社区8| av片东京热男人的天堂| 少妇 在线观看| 亚洲九九香蕉| 久久人人爽av亚洲精品天堂| 免费看a级黄色片| 嫁个100分男人电影在线观看| av电影中文网址| 日本精品一区二区三区蜜桃| 夜夜夜夜夜久久久久| 在线观看免费视频日本深夜| videosex国产| 老司机午夜福利在线观看视频| netflix在线观看网站| 国产三级在线视频| 18美女黄网站色大片免费观看| 看黄色毛片网站| 久热这里只有精品99| 日本vs欧美在线观看视频| 久久国产精品影院| 免费高清视频大片| 久久草成人影院| 国产成人欧美| 欧美激情高清一区二区三区| 国产在线精品亚洲第一网站| 嫩草影视91久久| 黄片大片在线免费观看| 好看av亚洲va欧美ⅴa在| 国产免费av片在线观看野外av| 精品无人区乱码1区二区| 纯流量卡能插随身wifi吗| 国内久久婷婷六月综合欲色啪| 欧美+亚洲+日韩+国产| 日韩有码中文字幕| 久久婷婷成人综合色麻豆| 一边摸一边抽搐一进一小说| 日韩国内少妇激情av| 啦啦啦 在线观看视频| 久久伊人香网站| 波多野结衣av一区二区av| 别揉我奶头~嗯~啊~动态视频| 欧美激情久久久久久爽电影 | 国产真人三级小视频在线观看| 亚洲人成电影免费在线| 麻豆成人av在线观看| 亚洲七黄色美女视频| 女人爽到高潮嗷嗷叫在线视频| 天堂√8在线中文| 久久人妻av系列| 另类亚洲欧美激情| www.精华液| 国产主播在线观看一区二区| 久久伊人香网站| av视频免费观看在线观看| 夫妻午夜视频| 两个人免费观看高清视频| 级片在线观看| 美女高潮喷水抽搐中文字幕| 黄色怎么调成土黄色| 黄色视频不卡| 啦啦啦在线免费观看视频4| 久久香蕉国产精品| 在线观看免费高清a一片| 一个人免费在线观看的高清视频| 亚洲av片天天在线观看| 黄色视频,在线免费观看| 亚洲午夜理论影院| 19禁男女啪啪无遮挡网站| 精品国内亚洲2022精品成人| 五月开心婷婷网| 中文字幕高清在线视频| 成人亚洲精品一区在线观看| 午夜日韩欧美国产| videosex国产| 在线国产一区二区在线| 琪琪午夜伦伦电影理论片6080| 人妻丰满熟妇av一区二区三区| 成年人免费黄色播放视频| 午夜免费鲁丝| 亚洲精品美女久久av网站| 久久青草综合色| 国产精品九九99| 色播在线永久视频| 国产av精品麻豆| 亚洲自偷自拍图片 自拍| 男女下面插进去视频免费观看| 亚洲专区国产一区二区| 两个人免费观看高清视频| 人人澡人人妻人| 免费高清视频大片| 日日摸夜夜添夜夜添小说| 亚洲av日韩精品久久久久久密| 色播在线永久视频| 欧美激情高清一区二区三区| 在线十欧美十亚洲十日本专区| 大型av网站在线播放| av免费在线观看网站| 午夜免费激情av| 亚洲精品在线美女| 欧美精品一区二区免费开放| 999久久久精品免费观看国产| 如日韩欧美国产精品一区二区三区| 老汉色∧v一级毛片| 免费在线观看黄色视频的| 日韩欧美国产一区二区入口|