• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    運(yùn)動訓(xùn)練中補(bǔ)充抗氧化劑:有益還是有害?

    2019-03-22 02:17:50
    體育科研 2019年1期
    關(guān)鍵詞:氧化應(yīng)激

    康 杰(美)

    0 前言

    在運(yùn)動過程中,由于新陳代謝增加,氧利用率升高,從而導(dǎo)致高活性氧從線粒體滲漏[1]。除此之外,肌肉收縮本身也會激活磷脂酶A2,啟動一系列酶,從而引起活性物質(zhì)的增加[2]?;钚匝鯐淖兗?xì)胞結(jié)構(gòu)和功能,并導(dǎo)致肌肉損傷、免疫功能障礙和身體疲勞[3]。在過去的40年中,我們對運(yùn)動所引起的氧化應(yīng)激生物學(xué)意義的討論迅速增加?,F(xiàn)在我們認(rèn)識到,雖然高水平的自由基會損傷細(xì)胞成分,但中低水平的氧化劑在細(xì)胞中發(fā)揮多種調(diào)節(jié)作用,如控制基因表達(dá)、調(diào)節(jié)細(xì)胞信號通路和調(diào)節(jié)骨骼肌力量輸出[4],同時(shí)也可以刺激糖原再合成[5]、降低感染的風(fēng)險(xiǎn)[6],甚至可以通過啟動和促進(jìn)對訓(xùn)練的適應(yīng)性反應(yīng)來提高運(yùn)動成績[7-10]?;钚晕镔|(zhì)有害還是有益,取決于個(gè)體的運(yùn)動持續(xù)時(shí)間、運(yùn)動強(qiáng)度、身體屬性和營養(yǎng)狀況[11]。

    無論是專業(yè)運(yùn)動員還是運(yùn)動愛好者,攝入抗氧化劑都是常見的做法。盡管并沒有證據(jù)證明其益處,但各種營養(yǎng)補(bǔ)充劑的市場依舊十分巨大[12]。事實(shí)上,抗氧化劑是專業(yè)運(yùn)動員和運(yùn)動愛好者最常使用的運(yùn)動補(bǔ)充劑之一[13-14]。雖然這些產(chǎn)品已被吹捧為預(yù)防運(yùn)動引起的氧化損傷和提高運(yùn)動表現(xiàn)的手段,但對于其功效依舊缺乏證據(jù)。此外,一些研究表明抗氧化劑對受過訓(xùn)練者的健康和運(yùn)動表現(xiàn)有不良影響[15-16]。越來越多的證據(jù)表明,自由基在細(xì)胞中扮演重要的生理功能,并且抗氧化劑和自由基之間的平衡是獲得生理適應(yīng)性的必要前提[17-20]。因此,我們有必要評估如何謹(jǐn)慎使用抗氧化劑,特別是在專業(yè)運(yùn)動員中。

    本綜述旨在提供研究證據(jù),證明抗氧化劑在改善健康和運(yùn)動表現(xiàn)方面的功效。文章開篇是有關(guān)活性物質(zhì)、抗氧化防御系統(tǒng)和運(yùn)動誘導(dǎo)的氧化應(yīng)激的概述。接下來是關(guān)于活性物質(zhì)在調(diào)節(jié)訓(xùn)練導(dǎo)致的適應(yīng)性中的作用以及抗氧化劑對運(yùn)動表現(xiàn)影響的文獻(xiàn)綜述。文章最后還提供了有實(shí)際證據(jù)支撐的建議,從而幫助專業(yè)運(yùn)動員或運(yùn)動愛好者在補(bǔ)充抗氧化劑上作出明智的決定。

    1 細(xì)胞內(nèi)主要活性物質(zhì)的產(chǎn)生

    自由基一詞是指活性氧和氮類物質(zhì),由于攜帶未配對的價(jià)電子而具有高活性。在動物肌肉纖維中,5種主要自由基具有生物學(xué)影響。第一種是過氧化物(O2-),在線粒體和細(xì)胞質(zhì)中形成,通過線粒體中電子傳遞鏈的少量氧分子提前釋放為O2-[21]。在黃嘌呤轉(zhuǎn)化為尿酸過程中,還原型輔酶Ⅰ,或黃嘌呤氧化酶(XO)也可在細(xì)胞外間隙形成O2-。XO主要存在于微血管內(nèi)皮細(xì)胞中,但也存在于白細(xì)胞中,劇烈運(yùn)動后可能滲入肌纖維[22]。第二種是過氧化氫(H2O2),可以在XO轉(zhuǎn)化次黃嘌呤-黃嘌呤尿酸過程中釋放,也可以通過線粒體、胞質(zhì)溶膠和細(xì)胞外間隙中的過氧化物歧化酶(SOD)亞型由O2-形成[23-24]。第三種是羥基自由基(OH),通過O2-或H2O2與金屬離子如鐵或銅反應(yīng)形成[24]。第四種是一氧化氮(NO),由L-精氨酸通過一氧化氮合酶(NOS)形成,主要是骨骼肌中的神經(jīng)元亞型(nNOS)與內(nèi)皮型 NOS(eNOS)[25-26]。 最后一種是過氧自由基過氧亞硝酸鹽(ONOO-),當(dāng)O2-與NO反應(yīng)時(shí)在胞質(zhì)溶膠中形成[27]。因?yàn)樗鼈兊钠鹪词蔷o密相連的,運(yùn)動時(shí)電子傳遞鏈和NOS的活化導(dǎo)致這5種自由基各自的數(shù)量增加。

    底物消耗會導(dǎo)致谷胱甘肽還原酶活性下降,高溫會加速線粒體解偶聯(lián)。這兩者也可能促進(jìn)運(yùn)動過程中自由基的產(chǎn)生。此外,會導(dǎo)致酸中毒的無氧運(yùn)動帶來的短暫缺氧,可能增加氧化應(yīng)激反應(yīng)[28]。最后,運(yùn)動的機(jī)械應(yīng)力本身,如外部沖擊,肌肉對骨骼的牽拉,肌肉的離心收縮和肌肉之間的摩擦等,也可以促進(jìn)自由基的形成[29]。

    2 活性物質(zhì)的利弊

    細(xì)胞和細(xì)胞外空間暴露在來自外源和內(nèi)源的大量活性物質(zhì)中。外源性活性物質(zhì)來源包括氧氣、輻射、空氣污染物、異生素、藥物、酒精、重金屬、細(xì)菌、病毒、日光、食物和運(yùn)動等。盡管如此,內(nèi)源性活性物質(zhì)來源更重要也更廣泛,因?yàn)樵谡紊^程中它會持續(xù)產(chǎn)生。

    作為正常代謝的一部分,所有需氧細(xì)胞都會產(chǎn)生活性物質(zhì)。活性物質(zhì)在疾病的發(fā)生、發(fā)展中發(fā)揮著重要作用[30]?;钚匝鹾突钚缘捎诰哂懈呋钚?,能夠使其他生物學(xué)層面上重要的分子發(fā)生變形,從而損傷細(xì)胞結(jié)構(gòu),阻礙細(xì)胞功能的實(shí)現(xiàn)。O2-、H2O2和OH能夠獲得不飽和脂肪酸中與雙鍵相鄰的質(zhì)子,如細(xì)胞膜中的質(zhì)子。于是這些脂肪酸形變的連鎖反應(yīng)開始,形成脂質(zhì)過氧化物。這個(gè)過程稱為 “脂質(zhì)過氧化”,會導(dǎo)致細(xì)胞膜功能不良[24]。脂質(zhì)雙分子層的破壞改變了細(xì)胞膜的流動性和通透性,并可能導(dǎo)致膜結(jié)合蛋白活性降低[31]。NO可以氧化蛋白質(zhì)并改變其結(jié)構(gòu),從而損害其功能并影響基因轉(zhuǎn)錄[25,32-35]。同樣,OH、NO和ONOO-可以氧化核苷酸,損傷DNA,從而導(dǎo)致腫瘤的出現(xiàn)[36]。NO也被認(rèn)為對肌纖維的收縮性有直接的抑制作用[37]。最后,氧化損傷也導(dǎo)致炎癥[38]和細(xì)胞凋亡[39],并可能最終導(dǎo)致細(xì)胞功能下降。

    雖然自由基一般只被看作是對細(xì)胞的威脅,但這種片面的想法也開始受到挑戰(zhàn)。越來越多的證據(jù)表明,自由基在調(diào)節(jié)肌肉適應(yīng)過程中對氧化還原敏感的信號通路發(fā)揮重要作用[40]。最近幾項(xiàng)動物研究以及一些涉及運(yùn)動員的研究提出了相關(guān)框架,涉及包括O2-、H2O2和NO在內(nèi)的活性物質(zhì)作為重要細(xì)胞信號的功能作用。有氧耐力訓(xùn)練后,絲裂原活化蛋白激酶信號通路的活化可增強(qiáng)線粒體生物合成和毛細(xì)血管化(血管生成)、肌肉增殖和葡萄糖轉(zhuǎn)運(yùn)能力[19,41]。人們已經(jīng)發(fā)現(xiàn),這些對訓(xùn)練的適應(yīng)可能依賴于自由基引起的細(xì)胞氧化還原電位的改變[40]或O2-的短暫出現(xiàn)[17-18],因?yàn)檫@些似乎刺激了該通路內(nèi)某些重要轉(zhuǎn)錄因子的上調(diào)。

    另外,胞外間隙中由O2-形成的H2O2起到血管擴(kuò)張劑的作用,可以優(yōu)化血流速度。一氧化氮合成酶在內(nèi)皮細(xì)胞中產(chǎn)生的NO也會帶來支持收縮肌的動脈血管舒張[42],從而導(dǎo)致血流速度增加[43]。由此而引起的肌纖維微血管剪切應(yīng)力的增加可刺激肌肉血管生成[44]。內(nèi)源性氧化劑防御,特別是O2-,也因活性氧的負(fù)反饋而上調(diào)[19,45]。

    自由基也可能有急性積極作用。低濃度時(shí),它們有助于維持肌肉力量輸出[40]。此外,在吞噬作用的氧爆過程中,巨噬細(xì)胞釋放 O2-、H2O2和 NO,作為清除受損或死亡細(xì)胞物質(zhì)的一部分,這有助于加快修復(fù)過程[46]。

    3 抗氧化防御系統(tǒng)

    為了對抗活性物質(zhì),生命機(jī)體配備了高效的抗氧化防御系統(tǒng)。這些包括非酶、酶和膳食抗氧化劑。谷胱甘肽、尿酸、硫辛酸、膽紅素和輔酶Q10等都是非酶類抗氧化劑,這些抗氧化劑是內(nèi)源性的,通常是細(xì)胞代謝的副產(chǎn)物。主要的酶抗氧化劑是SOD,過氧化氫酶,谷胱甘肽過氧化物酶(GPX)和谷胱甘肽還原酶,而大多數(shù)已知的膳食抗氧化劑是生育酚(維生素 E)、抗壞血酸(維生素 C)和類胡蘿卜素(β-胡蘿卜素)。此外,各種多酚化合物近年來已被推廣為營養(yǎng)抗氧化劑。在涉及抗氧化劑的研究中,α-硫辛酸和藥物如N-乙酰半胱氨酸和別嘌呤醇也受到了評估。

    在人體骨骼肌纖維中,幾種內(nèi)源性酶和底物共同作用從而清除自由基。SOD將O2-還原成H2O2。在細(xì)胞溶質(zhì)中,H2O2隨后可以通過GPX轉(zhuǎn)化為水,或通過硫氧還蛋白而形成過氧化物氧還酶。H2O2也可能通過過氧化氫酶轉(zhuǎn)化為水和分子氧[26]。二肽肌肽和絲氨酸也通過清除O2-和OH[47]起到抗氧化劑的作用。

    不在人體內(nèi)合成的非酶促抗氧化劑,必須從外源獲得,包括維生素A(β-胡蘿卜素)、維生素C(抗壞血酸)和維生素 E(α-生育酚),這些維生素也被稱為膳食抗氧化劑。這些物質(zhì)能夠通過質(zhì)子捐贈清除各種自由基。維生素A屬于一組稱為類胡蘿卜素的紅色、橙色和黃色色素[48]。其他包括α-胡蘿卜素、β-隱黃質(zhì)、番茄紅素、葉黃素和玉米黃質(zhì)。β-胡蘿卜素是活性最強(qiáng)、最活躍的類胡蘿卜素,被食用后,它轉(zhuǎn)化為視黃醇,這是一種易于使用的維生素A。除了其維生素A原功能外,β-胡蘿卜素還被認(rèn)為具有抗氧化特性[49],并可能對免疫系統(tǒng)有積極影響[50],且有抗癌作用[51]。維生素C是一種抗氧化劑,是人類一系列基本代謝反應(yīng)(包括膠原合成)的輔助因子[52]。除了人類,這種水溶性維生素幾乎在所有生物中都是內(nèi)源性的??箟难岬碾x子形式L-抗壞血酸是一種強(qiáng)還原劑,其氧化形式被酶和谷胱甘肽還原。維生素E是指包括生育酚和生育三烯酚的一組脂溶性化合物。α-生育酚是最具生物活性的形式,已被證明可以保護(hù)細(xì)胞免受脂質(zhì)過氧化[53-54],并預(yù)防與氧化應(yīng)激相關(guān)的慢性疾病[51,55]。其氧化形式可被其他抗氧化劑如維生素C、視黃醇、泛醇、谷胱甘肽、半胱氨酸和α-硫辛酸循環(huán)回活性形式[56]。

    非酶促抗氧化劑還包括輔酶Q10、多酚、α-硫辛酸和N-乙酰半胱氨酸。輔酶Q10也稱為泛醌,是一種脂溶性維生素樣物質(zhì),存在于大多數(shù)真核細(xì)胞中,主要存在于線粒體中[57]。它是電子傳遞鏈的一個(gè)組成部分,在細(xì)胞的能量產(chǎn)生中起著一定的作用。其還原形式泛醇,是體內(nèi)重要的抗氧化劑。多酚是一組水溶性植物源物質(zhì),其特征是有一個(gè)以上的酚基[58]。對于已經(jīng)鑒定出的幾千種多酚,可以根據(jù)它們的結(jié)構(gòu)和復(fù)雜性分成不同的類型,即黃酮類、木脂素類、芪類、香豆素類和單寧類。黃酮類化合物是最大的一類酚類化合物。水果和蔬菜中有豐富的多酚。例如,紅葡萄酒含有多種多酚類化合物,已被證明具有治療慢性疾病的藥理學(xué)特性[59-60]。α-硫辛酸是由辛酸衍生而來的有機(jī)硫化合物。它是4種線粒體酶復(fù)合物的重要輔助因子,因此,它是有氧代謝的關(guān)鍵。α-硫辛酸可能具有強(qiáng)大的抗氧化潛力,可以循環(huán)利用維生素E[61];然而,它在組織中的積累是有限的。N-乙酰半胱氨酸是內(nèi)源性合成的抗氧化劑谷胱甘肽的副產(chǎn)物,它是一種半胱氨酸衍生物,在谷胱甘肽維持和代謝中發(fā)揮作用。鑒于其抗氧化特性,N-乙酰半胱氨酸已被用作營養(yǎng)補(bǔ)劑[43]。

    內(nèi)源性和外源性抗氧化劑均可保護(hù)機(jī)體免受氧化應(yīng)激的影響。更具體地說,酶和非酶抗氧化劑的協(xié)調(diào)網(wǎng)絡(luò)存在于胞內(nèi)和胞外,從而在自由基損傷蛋白質(zhì)、脂質(zhì)或DNA之前清除自由基。酶抗氧化劑是細(xì)胞蛋白質(zhì),可以催化去除活性物質(zhì)從而防止氧化應(yīng)激。非酶促抗氧化劑,如食物中所含的谷胱甘肽或抗氧化劑,可通過催化反應(yīng)以外的方式消除自由基。為了最大程度免受自由基介導(dǎo)的損傷,酶促和非酶促抗氧化劑有策略地在整個(gè)細(xì)胞中將細(xì)胞區(qū)室化 (例如,細(xì)胞器vs.膜vs.胞質(zhì)溶膠)[4]??寡趸瘎┖脱趸瘎醋杂苫┲g的平衡通常被稱為 “氧化還原平衡”,如圖1所示。氧化應(yīng)激是抗氧化劑和氧化劑失衡的結(jié)果;這發(fā)生在自由基的產(chǎn)生超過抗氧化能力時(shí)。相反,當(dāng)抗氧化能力大大超過自由基產(chǎn)生速率時(shí),就會發(fā)生還原性應(yīng)激。

    圖1 自由基與抗氧化劑的關(guān)系Figure 1 Relationship between Radicals and Antioxidants

    4 運(yùn)動導(dǎo)致的氧化應(yīng)激

    在收縮過程中,骨骼肌是活性物質(zhì)的主要來源,也是其主要靶標(biāo)之一[4]。運(yùn)動使攝氧量(VO2)比靜息值高20倍[62]。在運(yùn)動肌肉細(xì)胞的線粒體中,這意味著氧氣使用量增加了200倍[62]。20世紀(jì)70年代后期首次有了針對運(yùn)動導(dǎo)致的氧化應(yīng)激的描述,在運(yùn)動的人的呼出氣體中[33]和運(yùn)動的大鼠的組織[63]中發(fā)現(xiàn)脂質(zhì)過氧化產(chǎn)物的水平增加。1982年Davies等首次提供直接證據(jù),證明高強(qiáng)度運(yùn)動會顯著增加大鼠肌肉和肝臟自由基生成并造成線粒體膜損傷[64]。有人認(rèn)為這可以同時(shí)對線粒體生物合成產(chǎn)生刺激作用。然而,大多數(shù)早期研究集中于氧化劑在肌肉中的破壞作用,并尋找抗氧化劑的潛在益處。

    在過去的30年中,人們對運(yùn)動相關(guān)的活性物質(zhì)的來源和后果的認(rèn)識有了顯著提高。新出現(xiàn)的證據(jù)表明,肌肉收縮導(dǎo)致的自由基產(chǎn)生主要發(fā)生在肌肉的胞質(zhì)溶膠中,并且其數(shù)量多少受諸如環(huán)境條件、運(yùn)動強(qiáng)度和持續(xù)時(shí)間等因素的影響[65-66]。具體而言,骨骼肌自由基的產(chǎn)生隨著運(yùn)動強(qiáng)度和持續(xù)時(shí)間的增加而增加。此外,在炎熱的環(huán)境中和在高海拔地區(qū)(即約4 000 m)工作期間,收縮骨骼肌會產(chǎn)生更多的自由基[67-68]。因此,運(yùn)動導(dǎo)致的肌肉自由基產(chǎn)生的幅度在很大程度上取決于運(yùn)動條件。

    雖然收縮骨骼肌會產(chǎn)生自由基,但運(yùn)動并不總是會對骨骼肌造成氧化損傷。例如,低強(qiáng)度和短時(shí)間運(yùn)動通常不會促進(jìn)骨骼肌的氧化應(yīng)激[4]。盡管如此,在中等強(qiáng)度到高強(qiáng)度下進(jìn)行的長時(shí)間耐力運(yùn)動往往會導(dǎo)致未經(jīng)訓(xùn)練的個(gè)體的骨骼肌的氧化損傷。此外,重復(fù)性離心收縮,尤其是當(dāng)運(yùn)動員試圖適應(yīng)新的運(yùn)動強(qiáng)度時(shí),會使骨骼肌承受相當(dāng)大的壓力,可能會導(dǎo)致肌肉的氧化損傷[69-70]。損傷性運(yùn)動也會誘發(fā)炎癥反應(yīng),進(jìn)一步增加活性物質(zhì)的形成[71]。然而,這些研究往往缺乏關(guān)于受試者氧化還原狀態(tài)的信息,因此未能提供證據(jù)來證明活性物質(zhì)在肌肉損傷中所起到的作用。在訓(xùn)練有素的耐力運(yùn)動員的骨骼肌中,具有適應(yīng)良好的內(nèi)源性抗氧化緩沖系統(tǒng),可以抵抗運(yùn)動引起的氧化應(yīng)激[4]。因此,運(yùn)動是否導(dǎo)致氧化應(yīng)激取決于幾個(gè)因素,包括運(yùn)動強(qiáng)度、持續(xù)時(shí)間以及個(gè)體的運(yùn)動訓(xùn)練狀態(tài)。

    5 活性物質(zhì)和運(yùn)動訓(xùn)練適應(yīng)

    細(xì)胞適應(yīng)自由基數(shù)量的增加,從而更能抵抗氧化應(yīng)激的不利影響[72]。然而,必須強(qiáng)調(diào)的是,單次運(yùn)動和定期運(yùn)動的效果是完全不同的。定期運(yùn)動能帶來許多有益的影響,身體適應(yīng)氧化劑水平升高,而在單次劇烈運(yùn)動時(shí),適應(yīng)性的變化是微不足道的。劇烈運(yùn)動帶來的調(diào)整涉及增加血管舒張以增強(qiáng)血流和能量轉(zhuǎn)運(yùn),以及通過酶的變構(gòu)活性發(fā)生動力學(xué)轉(zhuǎn)變,但這些可能不足以恢復(fù)氧化劑-抗氧化劑的動態(tài)平衡[20]。內(nèi)源性防御機(jī)制的長期刺激需要持續(xù)存在的生理刺激來維持一定程度的促氧化環(huán)境,并有效地使抗氧化系統(tǒng)超負(fù)荷[73]。在運(yùn)動訓(xùn)練,身體適應(yīng)運(yùn)動導(dǎo)致的氧化應(yīng)激,并變得更能抵抗之后的氧化應(yīng)激。這是通過多種不同的機(jī)制實(shí)現(xiàn)的,如上調(diào)氧化還原敏感基因表達(dá)和抗氧化酶水平[10,17],增加酶活性[14,74],刺激蛋白質(zhì)周轉(zhuǎn)[75],改善DNA修復(fù)系統(tǒng)[76-77],增加線粒體生物合成[8]和增加肌肉中熱休克蛋白的含量[78-79]。這些適應(yīng)可以正面影響損傷后骨骼肌的重塑,并減少炎癥和細(xì)胞凋亡現(xiàn)象[20,80-81]。

    中等水平的活性物質(zhì)似乎是各種生理過程所必需的,而過量的自由基產(chǎn)生會導(dǎo)致氧化損傷。這可以用激素的概念來描述,激素是一種劑量-反應(yīng)關(guān)系,其中低劑量的物質(zhì)是刺激性的或有益的,高劑量是抑制性的或有毒性的[82]。為了適應(yīng)活性物質(zhì)增加,線粒體的適應(yīng)性反應(yīng)也符合如此的毒物興奮效應(yīng),因此被稱為線粒體毒物興奮效應(yīng)或線粒體效應(yīng)[83]。活性物質(zhì)的激效作用,可能是定期運(yùn)動對身體健康和運(yùn)動表現(xiàn)有益的機(jī)制[82]。從活性物質(zhì)作為骨骼肌功能內(nèi)源性調(diào)節(jié)因子發(fā)揮的作用,就可見一斑?;钚晕镔|(zhì)是達(dá)到最佳收縮運(yùn)動效果是必需的。肌肉肌絲,如肌球蛋白和肌鈣蛋白,以及肌質(zhì)網(wǎng)中的蛋白質(zhì)是對氧化還原敏感的,這使活性物質(zhì)具有改變肌肉收縮的能力[84]。

    基于Reid關(guān)于氧化還原狀態(tài)對肌肉力量產(chǎn)生作用的模型,對活性物質(zhì)的反應(yīng)可用鐘形曲線描述,如圖2所示[85-86]。在基線時(shí),低水平的自由基對疲勞肌肉的收縮作用似乎不是很理想。來自Reid的研究數(shù)據(jù)表明,活性物質(zhì)的適度增加會導(dǎo)致肌肉力量增加,而抗氧化劑會消耗氧化劑水平并抑制力量。在較高的自由基濃度下,這種情況被逆轉(zhuǎn),力量輸出因時(shí)間和劑量的增加而減少[85-87]。

    圖2 自由基對肌肉性能的影響Figure 2 Effect of Free Radicals on Muscle Performance

    6 抗氧化劑是否有益

    運(yùn)動員使用抗氧化劑,通常是為了防止運(yùn)動引起的氧化應(yīng)激的有害作用,加速肌肉功能的恢復(fù),并提高運(yùn)動能力[12-13,88-91]。目前,含有抗氧化劑的營養(yǎng)補(bǔ)劑無論在零售店還是從互聯(lián)網(wǎng)廠商都能廣泛購買。生產(chǎn)補(bǔ)充劑的公司提供的常見抗氧化劑包括維生素E、維生素C和β-胡蘿卜素。其他抗氧化產(chǎn)品包括葡萄提取物、白藜蘆醇、葉黃素、番茄紅素、硫辛酸、綠茶復(fù)合物等。研究表明,抗氧化劑的使用因地區(qū)和人群的不同而不同。盡管如此,世界各地的抗氧化劑使用率很高,一項(xiàng)研究報(bào)告稱,約62%的初級田徑運(yùn)動員使用營養(yǎng)補(bǔ)劑,其中多種維生素和礦物質(zhì)是最受歡迎的[92]。

    支持耐力運(yùn)動員使用抗氧化劑的人認(rèn)為,由于嚴(yán)格的運(yùn)動訓(xùn)練導(dǎo)致骨骼肌損傷性自由基產(chǎn)生增加,抗氧化劑對保護(hù)骨骼肌纖維免受氧化損傷至關(guān)重要。這一觀點(diǎn)得到了實(shí)驗(yàn)證據(jù)的支持,其證明補(bǔ)充維生素C足以鈍化運(yùn)動導(dǎo)致的自由基產(chǎn)生[93]。另一個(gè)支持使用抗氧化劑的論點(diǎn)是,許多耐力運(yùn)動員的飲食缺乏抗氧化劑[94]。那些長期限制能量攝入、經(jīng)常從事體重控制或減肥性運(yùn)動、刻意避免攝入某些食物類別或飲食不平衡的運(yùn)動員,缺乏維生素的風(fēng)險(xiǎn)最大。只有少數(shù)膳食抗氧化劑有指定的推薦每日膳食供給量(RDA)。這些抗氧化劑食物的RDA包括:維生素C—男性為90 mg,女性為75 mg,維生素E—15 mg,硒—55 μg。因此,對于飲食中一種或多種抗氧化劑含量較少的運(yùn)動員來說,補(bǔ)充抗氧化劑可能對他們有益,但是,建議在開始補(bǔ)充治療前咨詢營養(yǎng)師。

    反對耐力運(yùn)動員使用抗氧化劑的原因有以下幾點(diǎn)。首先,沒有證據(jù)表明運(yùn)動導(dǎo)致的骨骼肌自由基對人體健康有害。定期運(yùn)動可降低各種原因的死亡率,因此,運(yùn)動導(dǎo)致的自由基增加似乎不太可能是不健康的[95]。此外,定期耐力運(yùn)動訓(xùn)練可促進(jìn)肌纖維中酶促抗氧化劑的增加,從而改善內(nèi)源性保護(hù),抵抗運(yùn)動介導(dǎo)的氧化損傷[4]。因此,這種訓(xùn)練導(dǎo)致的內(nèi)源性抗氧化劑的增加足以防止來自其他來源的氧化損傷。最后,如果耐力運(yùn)動員保持營養(yǎng)均衡的等熱量飲食,他們應(yīng)該不需要飲食以外的抗氧化劑。這些考慮因素已得到該領(lǐng)域和美國運(yùn)動醫(yī)學(xué)學(xué)院專家的認(rèn)可[96-97]。

    也許對于耐力運(yùn)動員使用抗氧化劑,最強(qiáng)烈的反對論點(diǎn)如下。首先,新的研究表明,抗氧化劑可以防止運(yùn)動引起的骨骼肌適應(yīng)[8,10]。令人信服的證據(jù)表明,運(yùn)動導(dǎo)致的活性物質(zhì)的產(chǎn)生是促進(jìn)包括抗氧化酶、線粒體蛋白和熱休克蛋白在內(nèi)的眾多骨骼肌蛋白表達(dá)的必需信號[4,65]。另一個(gè)反對運(yùn)動員使用抗氧化劑的觀點(diǎn)是,目前的許多研究都不支持抗氧化劑補(bǔ)充對人體健康有益的觀點(diǎn)。例如,對68項(xiàng)隨機(jī)抗氧化劑試驗(yàn)(共232 606名參與者)的薈萃分析得出結(jié)論,膳食補(bǔ)充β-胡蘿卜素、維生素A和維生素E不能改善健康狀況,并可能提高死亡率[98]。這份詳細(xì)報(bào)告的結(jié)論是,維生素C和硒對人類死亡率的作用尚不清楚,需要進(jìn)一步研究才能提出建議。

    7 研究證據(jù)——抗氧化劑作為運(yùn)動增補(bǔ)劑

    當(dāng)調(diào)查抗氧化劑在運(yùn)動表現(xiàn)中的作用時(shí),結(jié)果普遍不一致,大多數(shù)研究稱其沒有益處。20世紀(jì)70年代初,Sharman等人的研究表明補(bǔ)充維生素E對青少年男性游泳運(yùn)動員的耐力表現(xiàn)沒有有益的影響[99]。而且,與抗氧化劑組相比,安慰劑組在運(yùn)動訓(xùn)練中表現(xiàn)出更大的心肺功能改善作用,這可能是對于補(bǔ)充劑不利影響的首次報(bào)道。在隨后的研究中,維生素E在提高游泳運(yùn)動員[100]、專業(yè)自行車運(yùn)動員[101-103]、非耐力訓(xùn)練男子[104]、大學(xué)運(yùn)動員[105]和馬拉松運(yùn)動員[106]的成績方面被證明無效。此外,在對從事有氧訓(xùn)練的久坐老年人群的研究中,補(bǔ)充維生素E未能進(jìn)一步提高受試者的身體機(jī)能指標(biāo)[107]。輔酶Q10的補(bǔ)充劑對男性[108-110]的運(yùn)動表現(xiàn)沒有任何明顯的影響,無論其年齡和訓(xùn)練狀態(tài)如何。雖然有人假設(shè)多種抗氧化劑協(xié)同作用或許能更有效地對抗氧化應(yīng)激,但事實(shí)上維生素E、維生素C、輔酶Q10和其他維生素和礦物質(zhì)的組合未能改善競技男子運(yùn)動員[111]、自行車運(yùn)動員[112-113]、鐵人三項(xiàng)運(yùn)動員[114-115]、足球運(yùn)動員[116-117]、抗阻訓(xùn)練男子[118]、超耐力運(yùn)動員[119]和中等訓(xùn)練男子[120]的運(yùn)動表現(xiàn)。

    另一方面,已有多項(xiàng)研究顯示抗氧化劑對身體表現(xiàn)有積極但有限的影響。輔酶Q10可以提高專業(yè)越野滑雪運(yùn)動員的最大攝氧量(VO2max)和有氧、無氧閾,從而增加運(yùn)動能力和加快恢復(fù)速度[121]。同樣,在導(dǎo)致疲勞的運(yùn)動試驗(yàn)期間,無論是未經(jīng)訓(xùn)練[122-123]還是受過訓(xùn)練的個(gè)體[124-125],補(bǔ)充輔酶Q10對運(yùn)動表現(xiàn)、疲勞感覺和恢復(fù)都有有益的影響。維生素E補(bǔ)充劑也被證明對登山者在高海拔地區(qū)的表現(xiàn)[126]和雪橇狗的耐力表現(xiàn)[127]有益。在兩項(xiàng)早期研究中,補(bǔ)充維生素C可以提高未受過訓(xùn)練的男性學(xué)生[128]和運(yùn)動員[129]的運(yùn)動能力。在Aguilo等人的一項(xiàng)研究中,補(bǔ)充維生素E、維生素C和β-胡蘿卜素組合后的男性運(yùn)動員在最大運(yùn)動試驗(yàn)后表現(xiàn)出較低的血乳酸水平,運(yùn)動訓(xùn)練3個(gè)月后VO2max較對照組增加更多[130]。

    已有多項(xiàng)調(diào)查顯示多酚具有增強(qiáng)運(yùn)動表現(xiàn)的作用,包括槲皮素[31-34]、白藜蘆醇[135],以及來自葡萄提取物[136]和甜菜根汁的多酚化合物[137-140]。新的證據(jù)表明,酚類化合物的抗氧化能力應(yīng)該不是其保護(hù)作用的唯一機(jī)制,其保護(hù)作用也可以是它們與細(xì)胞信號級聯(lián)反應(yīng)中的各種關(guān)鍵蛋白相互作用所介導(dǎo)的[141]。然而,這些發(fā)現(xiàn)遠(yuǎn)未達(dá)成共識,很多研究的結(jié)果是相互矛盾。例如,槲皮素補(bǔ)充劑已被證明對久坐的人[142-143]或騎自行車的人[144]沒有增強(qiáng)運(yùn)動表現(xiàn)的作用。另外還有研究發(fā)現(xiàn),對于受電刺激等長收縮的小鼠,白藜蘆醇不能改善它們的肌力輸出和肌肉疲勞性[145]。有趣的是,在Marshall等人的一項(xiàng)研究中,維生素C被證明會減緩賽狗的速度[146]。

    最近有人提出,在長時(shí)間亞極量運(yùn)動時(shí),N-乙酰半胱氨酸急性給藥可能會延緩人體肌肉疲勞。Medved等人研究了N-乙酰半胱氨酸對未經(jīng)訓(xùn)練的男性的肌肉疲勞和運(yùn)動表現(xiàn)的影響。雖然N-乙酰半胱氨酸在高強(qiáng)度間歇運(yùn)動中表現(xiàn)出可以調(diào)節(jié)血液氧化還原狀態(tài),但對于疲勞的出現(xiàn)時(shí)間沒有影響[147]。同一研究小組也觀察到,在一組混合訓(xùn)練和未訓(xùn)練但經(jīng)常運(yùn)動的個(gè)體中,長時(shí)間運(yùn)動時(shí),N-乙酰半胱氨酸輸液對疲勞的出現(xiàn)時(shí)間沒有影響[148]。然而,在同一項(xiàng)研究中,抗氧化劑改善了血漿K+濃度的調(diào)節(jié)機(jī)制,并提出N-乙酰半胱氨酸的作用取決于個(gè)體的訓(xùn)練狀態(tài)[148]。最后,據(jù)報(bào)道,長時(shí)間亞極量運(yùn)動時(shí)N-乙酰半胱氨酸輸液可延后一組訓(xùn)練有素的人疲勞的出現(xiàn)時(shí)間,這可能是通過增加肌肉半胱氨酸和谷胱甘肽的利用率而完成的[149]。攝入N-乙酰半胱氨酸帶來的副作用是會讓某些人覺得惡心。因此,對于那些在使用該補(bǔ)充劑時(shí)出現(xiàn)惡心癥狀的運(yùn)動員,N-乙酰半胱氨酸可能不會改善他們的耐力表現(xiàn)。重要的是,補(bǔ)充N-乙酰半胱氨酸對于健康的長期影響仍然未知。

    抗氧化劑在運(yùn)動員中的普及導(dǎo)致了該領(lǐng)域出現(xiàn)大量小型研究。然而,這些研究在研究設(shè)計(jì)、運(yùn)動方案、人群、補(bǔ)充方案和分析方法等方面差異很大,這使得這個(gè)問題仍然沒有定論。許多評估抗氧化劑對運(yùn)動表現(xiàn)影響的研究質(zhì)量低,受試者人數(shù)少,其中一些研究沒有堅(jiān)持高質(zhì)量的試驗(yàn)要求(例如對照、雙盲和隨機(jī)化)。因此,將抗氧化劑作為一種有效的助劑,評估其功效時(shí),需要謹(jǐn)慎。

    8 研究證據(jù)——訓(xùn)練中使用抗氧化劑面臨的干擾

    最近,人們對高劑量外源性抗氧化劑如維生素C和維生素E在耐力訓(xùn)練中的療效提出了疑問,一些研究表明這些抗氧化劑實(shí)際上可能會適得其反[18,20,41,111]。如前所述,人們一直認(rèn)為活性氧對內(nèi)源性抗氧化系統(tǒng)的適應(yīng)以及線粒體和血管生成起著重要的信號作用。當(dāng)自由基生成被過度抑制時(shí),這些信號可能因此被削弱或消除。

    對與運(yùn)動相關(guān)的氧化應(yīng)激升高的一種反應(yīng)是通過上調(diào)強(qiáng)大的抗氧化酶如SOD和GPX來加強(qiáng)氧化劑防御。然而,抗氧化劑可能會通過干擾自由基介導(dǎo)的信號來阻止這種適應(yīng)[17,41]。尤其是運(yùn)動員參與高強(qiáng)度訓(xùn)練時(shí),自由基的產(chǎn)生水平特別高。Knez等人的研究顯示,那些服用了抗氧化劑的運(yùn)動員,在半鐵人三項(xiàng)或全鐵人三項(xiàng)運(yùn)動后,其氧化損傷明顯大于未服用抗氧化劑的運(yùn)動員,且能量生產(chǎn)系統(tǒng)在訓(xùn)練過程中面臨同樣多的挑戰(zhàn),會通過增加肌纖維的線粒體質(zhì)量、毛細(xì)血管密度以及改善底物的供應(yīng)和利用,來增強(qiáng)運(yùn)動能力[14]。在這里,動物和人類的對照研究也提供了強(qiáng)有力的證據(jù),表明包括維生素C在內(nèi)的口服抗氧化劑可以干擾運(yùn)動導(dǎo)致的信號傳導(dǎo)和隨后線粒體酶細(xì)胞色素C的表達(dá),線粒體酶細(xì)胞色素C代表線粒體體積[8],并可以改善胰島素敏感性[138]。此外,在參與耐力訓(xùn)練計(jì)劃的個(gè)體中,急性補(bǔ)充維生素C(1g)和維生素E(600 IU)似乎可防止運(yùn)動引起的血管舒張[150],后者可鈍化血流帶來的血管生成刺激。如果eNOS的NO釋放被阻斷,血管生成也可以被阻止[44,151]。在 Gomez-Cabrera等人的研究中,對照組的人VO2max大約是每天攝入1 g維生素C的人的兩倍[8]。

    另一個(gè)抗氧化劑干擾訓(xùn)練的例子,出現(xiàn)在進(jìn)行劇烈運(yùn)動、不習(xí)慣的運(yùn)動,特別是離心運(yùn)動后的肌肉損傷時(shí)。維生素C和維生素E已被證明可延緩愈合和力量恢復(fù),并在這種肌肉損傷性運(yùn)動后增加氧化應(yīng)激[36,152-154]。

    總的來說,強(qiáng)勢的自由基清除行為實(shí)際上會通過抑制依賴自由基的適應(yīng)信號來減少訓(xùn)練刺激和有效性(圖3)。從希望通過訓(xùn)練提高能力的運(yùn)動員和教練員的角度來看,這些發(fā)現(xiàn)很有趣。難道很多人在不知不覺中通過普通的做法來抵消訓(xùn)練效果,比如在耐力訓(xùn)練后飲用富含抗氧化劑的恢復(fù)飲料或每天服用多種維生素。

    圖3 目前關(guān)于運(yùn)動訓(xùn)練中補(bǔ)充抗氧化劑的共識Figure 3 Current Consensus on Antioxidant Supplementation during Exercise Training

    9 實(shí)際意義和建議

    關(guān)于補(bǔ)充劑的研究結(jié)果對營養(yǎng)學(xué)家、醫(yī)生、從業(yè)者、運(yùn)動訓(xùn)練師、教練和運(yùn)動員以及普通人群都有重要意義。有證據(jù)表明高劑量抗氧化劑會排除運(yùn)動訓(xùn)練的健康促進(jìn)作用并干擾自由基介導(dǎo)的生理適應(yīng),因此在使用抗氧化劑時(shí)要謹(jǐn)慎。以下建議是根據(jù)當(dāng)前的研究證據(jù)制定的,可以指導(dǎo)那些想通過服用抗氧化劑以維持健康或增強(qiáng)運(yùn)動表現(xiàn)的人。

    (1)經(jīng)常運(yùn)動的人需要優(yōu)化他們的營養(yǎng)結(jié)構(gòu),而不是使用補(bǔ)充劑。

    (2)他們應(yīng)通過食用多種水果、蔬菜、全谷物和堅(jiān)果來獲得富含抗氧化劑的飲食結(jié)構(gòu)。

    (3)比起膠囊,全食中的抗氧化劑比例更優(yōu),而且含有眾多的植物化學(xué)物質(zhì),可以協(xié)同作用,從而優(yōu)化抗氧化劑的效果。

    (4)抗氧化劑少量存在于食物中,因此,食用富含水果和蔬菜的飲食不太可能會導(dǎo)致抗氧化劑 “過量”。然而,如果通過膳食補(bǔ)充劑攝入大量抗氧化劑,便會有更大的中毒風(fēng)險(xiǎn)或者影響健康狀況。

    (5)當(dāng)個(gè)體有較高水平的氧化應(yīng)激、能量攝入受限、從事大量減肥行為、飲食中去除了一個(gè)或多個(gè)食物群、飲食不平衡導(dǎo)致攝入微量營養(yǎng)素密度低時(shí),可能需要補(bǔ)充抗氧化劑。

    (6)在某些情況下,補(bǔ)充抗氧化劑可能是有利的,如過度訓(xùn)練、肌肉損傷、比賽和高海拔訓(xùn)練營,因?yàn)樽杂苫漠a(chǎn)生得到了強(qiáng)化,內(nèi)源性防御被削弱。

    (7)普通膳食抗氧化劑(即維生素E和維生素C)已被證明不會改善運(yùn)動表現(xiàn)或加速運(yùn)動恢復(fù)。

    (8)使用抗氧化劑N-乙酰半胱氨酸治療可改善亞極量運(yùn)動時(shí)的人體運(yùn)動表現(xiàn)。然而,N-乙酰半胱氨酸可能讓某些人出現(xiàn)惡心癥狀,補(bǔ)充N-乙酰半胱氨酸的長期影響仍然未知。

    (9)在采用抗氧化劑方案之前,需要進(jìn)行仔細(xì)的產(chǎn)品評估,該方案應(yīng)該是有臨床監(jiān)督的,而且這只是短期的解決方案。

    10 結(jié)論

    運(yùn)動促進(jìn)肌肉中自由基的產(chǎn)生,長時(shí)間/劇烈運(yùn)動會導(dǎo)致自由基產(chǎn)生與肌肉抗氧化劑之間的不平衡,從而導(dǎo)致氧化應(yīng)激。為了防止自由基介導(dǎo)的損傷,肌肉細(xì)胞含有內(nèi)源性抗氧化劑來清除自由基。此外,從飲食中獲得的外源性抗氧化劑與內(nèi)源性抗氧化劑一起工作,形成一個(gè)細(xì)胞保護(hù)網(wǎng)絡(luò)來對抗自由基介導(dǎo)的氧化應(yīng)激。運(yùn)動員是否應(yīng)該使用抗氧化劑仍然是一個(gè)重要且備受爭議的話題。目前,想向通過飲食攝入推薦營養(yǎng)素的運(yùn)動員或經(jīng)常運(yùn)動的人推薦抗氧化劑,可以依賴的科學(xué)證據(jù)很有限。事實(shí)上,高劑量的抗氧化劑可能會妨礙運(yùn)動訓(xùn)練對健康的促進(jìn)作用,并干擾自由基介導(dǎo)的生理適應(yīng)。抗氧化劑補(bǔ)充劑通常不能改善運(yùn)動成績,幾乎沒有證據(jù)證明它們在預(yù)防運(yùn)動引起的肌肉損傷和增強(qiáng)恢復(fù)方面能起到作用。那些想增加抗氧化劑攝入量的人,應(yīng)該考慮各種天然食品,而不是膠囊補(bǔ)充劑,并且應(yīng)該意識到過量的抗氧化劑可能對健康和運(yùn)動表現(xiàn)有害。

    0 Introduction

    During exercise,metabolism increases and oxygen utilization is elevated,leading to leakage of highly reac tive oxygen species from mitochondria[1].Aside from mitochondrial leakage,contraction itself activates phospholipase A2,initiating a cascade of enzymes and thereby increasing reactive species[2].Reactive oxygen species alter cell structure and function,and contribute to muscle damage,immune dysfunction,and fatigue[3].During the past four decades,our knowledge about the biological implications of exercise-induced oxidative stress has expanded rapidly.It is now appreciated that while high levels of free radicals can damage cellular components,low-to-moderate levels of oxidants play multiple regulatory roles in cells such as the control of gene expression,regulation of cell signaling pathways,and modulation of skeletal muscle force production[4].They can also be involved in stimulating glycogen re-synthesis[5],reducing susceptibility to the risk of infection[6],and they may even enhance athletic performance by initiating and promoting adaptive responses to training[7-10].The extent to which reactive species are damaging or helpful depends on the exercise duration,intensity,fitness attributes and nutritional status of the individual[11].

    低溫配制工藝對虎杖膏中總二苯乙烯和總蒽醌含量的影響…………………………………………………… 王玉和等(21):2911

    Antioxidant supplementation is a common practice amongst both professional athletes and physically active individuals,and the market offering various nutrient supplements is immense despite the unclear evidence of their benefits[12].Indeed,antioxidants are among the most common sports supplements used by amateur and pro fessional athletes[13-14].Although these products have been touted as a means of preventing exercise-induced oxidative damage and enhancing performance,consistent evidence of their efficacy is lacking.Moreover,some studies suggest adverse effects of antioxidant supplementation on the health and performance of trained individuals[15-16].There is a growing body of evidence that the appearance of free radicals fulfils important physiological functions in cells,and that a balance between antioxidants and free radicals is necessary for desired physiological adaptations[17-20].Thus,it becomes necessary to evaluate the prudence of antioxidant supplementation,particularly among athletes.

    This review is to provide research evidence with regard to the efficacy of using antioxidant supplementation in improving health and sports performance.The article begins with an overview of reactive species,antioxidant defense systems,and the exercise-induced oxidative stress.This is then followed by a review of literature concerning the role reactive species play in mediating training-induced adaptations and the effect of antioxidantsupplementation on exercise performance.The article also offers evidence-based recommendations that help athletes or those who are physically active in making a wise decision on antioxidant supplementation.

    1 Production of Major Reactive Species in Cells

    The term free radical refers to reactive oxygen and nitrogen species,which are highly reactive because of an unpaired valence electron.In animal muscle fibers,five main radicals have a biological impact.The first,superoxide (O2-),is formed in mitochondria and in the cytosol.A small amount of molecular oxygen passing through the electron transport chain in mitochondria is prematurely released as O2-[21]Superoxide can also be formed in the extracellular space by nicotinamide adenine dinucleotide phosphate hydrogen oxidase or by the enzyme xanthine oxidase(XO)during the conversion of xanthine to uric acid.XO is found mostly in microvascular endothelial cells,but is also present in leucocytes,which may infiltrate muscle fibers following strenuous exercise[22].The second,hydrogen peroxide(H2O2),can be released during the hypoxanthine→xanthine→uric acid conversion by XO,or it can be formed from O2-by superoxide dismutase(SOD)isoforms in mitochondria,cytosol,and the extracellular space[23-24].Third,the hy droxyl radical(·OH)is formed when O2-or H2O2reacts with metal ions such as iron or copper[24].The fourth radical,nitric oxide (NO·),is formed from L-arginine by nitric oxide synthase (NOS),mainly the neuronal isoform (nNOS)in skeletal muscle,but also endothelial NOS (eNOS)[25-26].Lastly,the peroxyl radical,peroxynitrite(ONOO-),is formed in the cytosol when O2-reacts with NO·[27].Because their origins are closely linked,increased activation of the electron transport chain and NOS during exercise leads to elevated production of each of these five radicals.

    Substrate depletion,leading to a fall in glutathione reductase activity,and hyperthermia,which promotes mitochondrial uncoupling,may also contribute to free radical production during exercise.Furthermore,transient hypoxia during anaerobic exercise leading to acidosis may increase oxidative stress[28].Finally,mechanical stress of exercise,such as grinding,shearing,bending,and cutting,can itself increase free radical formation[29].

    2 Negative and Beneficial Roles of Reactive Species

    Cell s and extracellular spaces are exposed to a large variety of reactive species from both exogenous and endogenous sources.The exogenous sources include exposure to oxygen,radiation,air pollutants,xenobiotics,drugs,alcohol,heavy metals,bacteria,viruses,sunlight,food,and exercise.Nonetheless,exposure to endogenous sources is much more important and extensive because it is a continuous process during the life span.

    Reactive species are generated by all aerobic cells as part of normal metabolism.The effect of reactive species plays an important role in the development of diseases[30].Because of their high reactivity,reactive oxygen species and reactive nitrogen species are able to deform other biologically important molecules,thus causing damage to cell structure and obstructing cell function.Superoxide,H2O2,and·OH are able to acquire the protons adjacent to double bonds in unsaturated fatty acids,such as those in cell membranes.This begins a chain reaction of deformation to these fatty acids forming lipid peroxides.This process,called“l(fā)ipid peroxidation”,results in poorly functioning cell membranes[24].The disruption of the lipid bilayer changes fluidity and permeability of the cell membrane and may lead to inactivity of membrane bound proteins[31].NO·can oxidize proteins and alter their structure,thereby impairing their function and affecting genetic transcription[25,32-35].Similarly,·OH,NO·,and ONOO-can oxidize nucleotides causing damage to DNA,which can lead to tumors[36].NO·has also been suggested to have a direct inhibitory effect on contractility in muscle fibers[37].Finally,oxidative damage also promotes inflammation[38]and apoptosis[39]and may eventually lead to decreased cellular functioning.

    In addition,H2O2formed from O2-in the extracellular space acts as a vasodilator,which can optimize blood flow.NO·produced in endothelial cells by nitric oxide synthase also induces vasodilation in arteries that support the contracting muscle[42],leading to an increase in blood-flow velocity[43].The resulting increase in shear stress in the microvasculature of muscle fibers is an important stimulus for angiogenesis in muscle[44].Endoge nous oxidant-defense is also upregulated by negative feedback from reactive oxygen species,especially O2-[19,45].

    Free radicals may also have acute positive effects.In low concentrations,they help maintain muscle force production[40].Furthermore,during the oxidative burst of phagocytosis,macrophages release O2-,H2O2,and NO·as part of the clearing out of damaged or dead cell material,which helps speed the repair process[46].

    3 Antioxidant Defense Systems

    To counter reactive species,the body is equipped with highly effective antioxidantdefense systems.These include non-enzymatic,enzymatic,and dietary antioxidants.Glutathione,uric acid,lipoic acid,bilirubin,and coenzyme Q10 are examples of non-enzymatic antioxidants that originate from endogenous sources and are often by-products of cellular metabolism.Principal enzymatic antioxidants are superoxide dismutase(SOD),catalase,glutathione peroxidase(GPX)and glutathione reductase,while most known examples of dietary antioxidants are tocopherols(vitamin E),ascorbic acid(vitamin C)and carotenoids(b-carotene).In addition,various polyphenolic com pounds have recently been promoted as nutrient antioxidants.α-Lipoic acid and pharmaceuticals such as N-acetylcysteine and allopurinol have also been evaluated in studies that involve antioxi-dant supplementation.

    In human skeletal muscle fibers,several endogenous enzymes and substrates work together to scavenge free radicals.SOD reduces O2-to H2O2.In the cytosol,H2O2can thereafter be converted to water by glutathione peroxidase(GPX),which oxidizes glutathione(GSH),or one of several peroxiredoxins with the help of thioredoxin,or to water and molecular oxygen by catalase[26].The dipeptides carnosine and anserine also act as antioxidants by scavenging O2-and·OH[47].

    Non-enzymatic antioxidants,which are not synthesized in humans,must be obtained exogenously,and include the vitamins A(b-carotene),C(ascorbic acid),and E(a-tocopherol),and these vitamins are also referred to as dietary antioxidants.These substances are able to scavenge various free radicals by proton donation.Vitamin A belongs to a group of red,orange and yellow pigments called carotenoids[48].Others include α-carotene,β-cryptoxanthin,lycopene,lutein,and zeaxanthin.β-Carotene is the most active carotenoid;after consumption it converts to retinol,a readily usable form of vitamin A.In addition to its provitamin A function,β-carotene is believed to have antioxidant properties[49]and may positively impact the immune system[50]and exhibit anticancerogenic effects[51].Vitamin C is an antioxidant and aco-factorin arangeof essential metabolic reactions in humans including collagen synthesis[52].This water-soluble vitamin is produced endogenously by almost all organisms except humans.L-ascorbate,an ion form of ascorbic acid,is a strong reducing agent and its oxidized form is reduced back by enzymes and glutathione.Vitamin E refers to a group of fat-soluble compounds that include tocopherols and tocotrienols.α-Tocopherol is the most biologically active form,and has been shown to protect the cells from lipid peroxidation[53-54]and to prevent chronic diseases associated with oxidative stress[51,55].Its oxidized form can be recycled back to the active form by other antioxidants,such as vitamin C,retinol,ubiquinol,glutathione,cysteine and a-lipoic acid[56].

    Non-enzymatic antioxidants also include coenzyme Q10,polyphenols,α-Lipoic acid,and N-acetylcysteine.Coenzyme Q10,also known as ubiquinone,is a fat-soluble,vitamin-like substance,present in most eukaryotic cells,primarily in mitochondria[57].It is a component of the electron transport chain and plays a part in the energy production of a cell.Its reduced form,ubiquinol,acts as an important antioxidant in the body.Polyphenols are a group of water-soluble,plant-derived substances,characterized by the presence of more than one phenolic group[58].Several thousand polyphenols have been identified and they are divided into different groups according to their structure and complexity,i.e.,flavonoids,lignans,stilbenes,coumarins and tannins.Flavonoids are the largest group of phenolic compounds.Fruits and vegetables are a particularly rich source of polyphenols.For instance,red wine contains various polyphenolic compounds,which have been shown to possess pharmacological properties in the treatment of chronic diseases[59-60].α-Lipoic acid is an organosulfur compound derived from octanoic acid.It is an essential co-factor of the four mitochondrial enzyme complexes,therefore,is crucially involved in aerobic metabolism.α-Lipoic acid may have potent antioxidant potential and can recycle vitamin E[61];however,its accumulation in tissues is limited.N-acetylcysteine is a by-product of an endogenously synthesized antioxidant glutathione.It is a cysteine derivative and plays a role in glutathione maintenance and metabolism.Given its antioxidant property,N-acetylcysteine has been used as a nutritional supplement[43].

    The body is protected against oxidative stress by both endogenous and exogenous antioxidants.More specifically,a coordinated network of enzymatic and non-enzymatic antioxidants exists in both the intracellular and extracellular locations to remove radicals before they damage proteins,lipids,or DNA.Enzymatic antioxidants are cellular proteins that catalytically remove reactive species to protect against oxidative stress.Non-enzymatic antioxidants,such as glutathione or antioxidants contained in food,can eliminate radicals by means other than a catalytic reaction.To provide optimal protection against radical-mediated damage,both enzymatic and non-enzymatic antioxidants are strategically compartmentalized(e.g.,organelles vs.membrane vs.cytosol)throughout the cell[4].The balance between antioxidants and oxidants (i.e.,radicals)is commonly referred to as “redox balance” and is illustrated in Figure 1.Oxidative stress results from an imbalance between antioxidants and oxidants;this occurs when radi-cal pro duction exceeds the antioxidant capacity.In contrast,reductive stress occurs when the antioxidant capacity greatly exceeds the rate of radical production.

    4 Exercise-Induced Oxidative Stress

    During contraction,skeletal muscle is a major source of reactive species,as well as one of the main targets[4].Exercise increases VO2by up to 20 times above resting values[62].In the mitochondria of exercising muscle cells,this translates to a 200-fold greater oxygen usage[62].Exercise induced oxidative stress was first described in the late 1970s when increased levels of lipid peroxidation products were found in the expired air of exercising humans[33]and the tissues of exercised rats[63].In 1982,Davies et al.[64]provided the first direct evidence that high-intensity exercise significantly increased radical production in the muscles and liver of rats and caused damage to mitochondrial membranes.It was suggested that this could,at the same time,deliver a stimulus to mitochondrial biogenesis.However,the majority of early studies focused on the damaging effects of oxidants in muscle and looked for the potential benefits of antioxidants.

    Over the last 30 years,an understanding of the sources and consequences of exercise-related reactive species has advanced markedly.Emerging evidence indicates that contraction-induced radical production occurs primarily in the cytosol of the muscle and the magnitude of this production is influenced by factors,such as environmental conditions and the intensity and duration of exercise[65-66].Specifically,skeletal muscle radi cal production increases as a function of both the exercise intensity and duration. Moreover,contracting skeletal muscles produce more radicals during exercise in a hot environment and during work at high altitude(i.e.,~4 000 meters)[67-68].Therefore,the magnitude of exercise-induced muscle radical production can range widely depending upon the exercise conditions.

    Although contracting skeletal muscles produce radicals,exercise bouts do not always result in oxidative damage to skeletal muscles.For example,low-intensity and short-duration exercise does not generally promote oxidative stress in skeletal muscles[4].Nonetheless,prolonged enduranceexerciseperformed atmoderateto-high intensities often results in oxidative damage to skeletal muscles of untrained individuals.In addition,repetitive eccentric con tractions,if unaccustomed in particular,place skeletal muscle under considerable stress that may cause muscle damage[69-70].Damaging exercise also induces an inflammatory response,which further increases formation of reactive species[71].However,these studies often lack the information about the subjects’redox status and therefore fail to provide evidence for the causal role of reactive species in muscle damage.Highly-trained endurance athletes have welladapted endogenous antioxidant buffer systems in their skeletal muscles that can resist exercise-induced oxida tive stress[4].Therefore,whether an exercise bout results in oxidative stress is dependent upon several factors,including the intensity and duration of exercise as well as the exercise training status of the individual.

    5 Rea ctive Species and Exercise Training Adaptations

    Cells adapt to increased free radicals production to become more resistant to the adverse effects of oxidative stress[72].It has to be emphasized,however,that the effects of a single bout of exercise and regular exercise are quite different.Regular physical activity brings about numerous beneficial effects and the body adapts to elevated oxidant levels,whilst with acute exercise,the adaptation is only marginal.Acute adjustment involves increased vasodilation to enhance blood flow and fuel transport and a kinetic shift via the allosteric activity of enzymes,which may not be sufficient to restore oxidant-antioxidant homeostasis[20].Long-term stimula tion of endogenous defense mechanisms requires the continuous presence of physiological stimuli that maintain a certain degree of pro-oxidative milieu,and effectively overload the antioxidant systems[73].With exer cise training,the body adapts to exercise-induced oxidative stress and becomes more resis tant to subsequent oxidative challenges.This is achieved through a number of different mechanisms,such as upregulation of redox-sensitive gene expression and antioxidant enzymes levels[10,17],an increase in enzyme activity[14,74],stimulation of protein turnover[75],improvement in DNA-repair systems[76-77],increased mitochondrial biogenesis[8],and increased muscle content of heat shock proteins[78-79].These adaptation can positively affects remodeling of skeletal muscle after injury and attenuate inflammation and apoptosis[20,80-81].

    Moderate levels of reactive species appear necessary for various physiological processes,whereas an excessive radical production can cause oxidative damage.This may be described by the concept of hormesis,a dose-response relationship in which a low dose of a substance is stimulatory or beneficial and a high dose is inhibitory or toxic[82].The adaptive response of mito chondria to increased formation of reactive species is termed mitochondrial hormesis or mitohormesis[83].The hormetic action of reactive species could represent a mechanism underlying the health and performance benefits of regular physical activity[82].This can be seen in the role of reactive species as endogenous regulators of skeletal muscle function.Reactive species appear obligatory for optimal contractile activity.Muscle myofilaments,such as myosin and troponin,and proteins in the sarcoplasmic reticulum are redox-sensitive,which gives reactive species the ability to alter muscle contraction[84].

    Based on Reid’s model for the role of redox state on muscle force production,responsesto reactive species can be described by a bell-shaped curve as shown in Figure 2[85-86].At baseline,low levels of free radicals appear to be suboptimal for the contraction of unfatigued muscle.The data from Reid’s studies suggest modest augmentation in reactive species causes muscle force to increase,while antioxidants deplete oxidant levels and depress force.At higher radical concentrations,this is reversed and force production decreases in a time-and dose-dependent manner[85-87].

    6 Is Antioxidant Supplementation Beneficial?

    It is common practice for athletes to use antioxidant supplements with the notion that they prevent the deleterious effects of exercise-induced oxidative stress,hasten recovery of muscle function,and improve performance[12-13,88-91].At the present,nutritional supplements containing antioxidants are widely available for purchase both in retail stores and from Internet vendors.Common antioxidants offered by supplement companies include vitamin E,vitamin C and β-carotene.Many other antioxidant products exist including grape extracts,resveratrol,lutein,lycopene,alpha lipoic acid,green tea complexes and numerous others.Studies re-veal that the incidence of antioxidant supplementation varies from country-to-country and across different segments of the population.Nonetheless,the use of antioxidant supplements is high around the world,as one study reported that~62%of junior track and field athletes use nutritional supplements,with multivitamins and minerals being the most popular[92].

    Supporters of antioxidant supplementation for endurance athletes reason that because rigorous exercise training results in increased damaging radical production in skeletal muscles,antioxidant supplementation is essential to protect skeletal muscle fibers against oxidative damage.This notion is supported by experimental evidence demonstrating that vitamin C supplementation sufficiently blunts exercise-induced free radical production[93].Another argument used to support antioxidant supplementation is that many endurance athletes have diets that are deficient in antioxidants[94].Athletes who regularly restrict energy intake,have severe weight-loss practices,eliminate certain food groups or consume unbalanced diets are at the greatest risk for vitamin deficiency.Only a handful of dietary antioxidants have a designated Recommended Dietary Allowance(RDA).The RDAs for these include:vitamin C-90 mg for men and 75 mg for women,vitamin E-15 mg,and selenium-55 μg.Therefore,supplementation with an antioxidant could be beneficial for individuals who consume a diet low in one or more of these antioxidants;however,consultation with a dietitian before beginning a supplementation regimen is advised.

    There are several arguments against antioxidant supplementation for endurance athletes.First,there is no evidence that exercise-induced radical production in skeletal muscle is harmful to human health.It is well established that regular exercise reduces all-cause mor tality and therefore,it seems unlikely that exercise-induced radical production is unhealthy[95].Further,regular endurance exercise training promotes increased enzymatic antioxidants in muscle fibers resulting in improved endogenous protection against exercise-mediated oxidative damage[4].Hence,this training-induced in crease in endogenous antioxidants may be adequate to protect against oxidative damage from other sources.Finally,if an endurance athlete maintains an isocaloric diet that is nutritionally well-balanced,it is likely that the individual does not need supplementary antioxidants above those consumed in the diet.These considerations have been acknowledged by experts in this field and American College of Sports Medicine[96-97].

    Perhaps the strongest arguments against antioxidant supplementation for endurance athletes are the following.First,new studies reveal that antioxidant supplementation can prevent exercise-induced adaptations in skeletal muscle[8,10].Compelling evidence indicates that exercise-induced production of reactive species serves as a required signal to promote the expression of numerous skeletal muscle proteins including antioxidant enzymes,mitochondrial proteins,and heat shock proteins[4,65].Another argument against antioxidant supplementation in athletes is that much of the current research does not support the notion that antioxidant supplementation is beneficial to human health.For example,a meta-analysis of 68 randomized antioxidant supplement trials(total of 232 606 human participants)concluded that dietary supplementation with beta-carotene,vitamin A,and vitamin E does not improve health out comes and may increase mortality[98].This detailed report concluded that the roles of vitamin C and selenium on human mortality are unclear and require further study before a recommendation can be rendered.

    7 Research Evidence-Antioxidant Supplements as Ergogenic Aids

    There ha s been a general inconsistency of outcomes when investigating the role of antioxidant supplementation in exercise performance with the majority of the studies reporting no benefits.In the early 1970s,Sharman et al.[99]showed that supplementation with vitamin E had no beneficial effect on endurance perfor mance of adolescent male swimmers.Moreover,the placebo group demonstrated greater improvements of cardiorespiratory function with exercise training com pared with the antioxidant group,which may be the first report of the unfavorable effect of supplementation.In the studies that followed,vitamin E proved ineffective in improving performance in swimmers[100],profes sional cyclists[101-103],nonresistance-trained men[104],college athletes[105],and marathon runners[106].Furthermore,vitamin E supplements had no additive effect beyond that of aerobic training on indices of physical perfor mance in a group of older sedentary adults[107].Supplementation with coenzyme Q10 did not exhibit any significant effects on exercise performance of men[108-110])regardless of their age and training status.Despite the presumption that antioxidants work synergistically and may therefore be more efficient in combating oxidative stress,combinations of vitamins E,C,coenzyme Q10 and other vitamins and minerals failed to improve the exercise performance of competitive male runners[111],cyclists[112-113],triathletes[114-115],soccer players[116-117],resis tance-trained men[118],ultra-endurance runners[119],and moderately trained men[120].

    On the other hand,there have been a number of studies showing positive but modest effects of antioxidant supplementation on physical performance.Coenzyme Q10 was associated with improved VO2maxand aerobic and anaerobic threshold of professional cross-country skiers that resulted in an increased exer cise capacity and a faster recovery rate[121].Similarly,supplementation with coenzyme Q10 indicated beneficial effects on performance,fatigue sensation,and recovery during fatigue-inducing exercise trials in both untrained volunteers[122-123]and trained individuals[124-125].Vitamin E supplementation was also shown to have a beneficial effect on the performance of climbers at high altitude[126]and endurance performance of sled dogs[127].In two early studies,supplementation with vitamin C was associated with an improved exercise capacity of untrained male students[128]and athletes[129].In a study by Aguilo et al.[130],male athletes supplemented with a combination of vitamin E,C and β-carotene exhibited lower blood lactate levels after a maximal exercise test and a greater increase in VO2maxafter 3 months of exercise training than the placebo group.

    There have been a number of investigations showing the performance enhancing effects of polyphenols,including quercetin[31-34],resveratrol[135],and polyphenolic compounds from grape extract[136]and beetroot juice[137-140].Emerging evidence suggests that the antioxidant potential of phenolic compounds is unlikely to be the sole mechanism responsible fortheirprotective action,which could also be mediated by their interaction with various key proteins in the cell-signaling cascades[141].These findings,however,are far from reaching a consensus as there are studies showing conflicting results.Forexample,quercetin supplementation has been shown to have no ergogenic effects in sedentary individuals[142-143]or cyclists[144].It was also found that resveratrol did not improve muscle force output and muscle fatigability in mice subjected to electrically stimulated isometric contractions[145].Interestingly,in a study by Marshall et al.[146],vitamin C was shown to slow racing greyhounds.

    More recently,it has been suggested that acute administration of N-acetylcysteine may delay human muscle fatigueduring prolonged submaximalexercise.Medved et al.[147]have studied the effect of N-acetylcysteine on muscle fatigue and performance in untrained men.Although N-acetylcysteine was shown to modulate blood redox status during high-intensity intermittent exercise,it did not affect time to fatigue.This same research group also observed no effect of NAC infusion on time to fatigue during prolonged exercise in a group of mixed trained and untrained but physically active in dividuals[148].In this same study,however,the antioxidant improved regulation of plasma K+concentration and it was suggested the ergogenic effect of N-acetylcysteine depends on an individual’s training status[148].Finally,N-acetylcysteine infusion during prolonged submaximal exercise was reported to augment time to fatigue in a group of well-trained individuals,possibly by increasing muscle cysteine and glutathione availability[149].A potential side effect is that the consumption of NAC can produce nausea in some individuals.Therefore,N-acetylcysteine supplementation may not improve endurance performance in those athletes who experience nausea when using this supplement.Importantly,the long-term health effects of supplementation with N-acetylcysteine remain unknown.

    The popularity of antioxidant supplements with athletes has led to a plethora of small research studies in this area.However,these studies varied considerably in terms of research design,exercise protocol,population groups,supplementation regimen and analysis methods,which made this issue still remained inconclusive.Many of the studies evaluating the effects of antioxidants on exercise performance were of low quality with small subject numbers,and some of them did not adhere to all the accepted features of a high-quality trial(e.g.placebo-controlled,double-blind,and randomization).As such,caution is needed when evaluating the efficacy of using an antioxidant supplement as an ergogenic aid.

    8 Research Evidence-Interferences of Antioxidant Supplementation with Training

    Recently,questions have been raised about the efficacy of high doses of exogenous antioxidants such as vitamins C and E during endurance training,with several studies suggesting that these may actually be counterproductive[18,20,41,111].As mentioned earlier,it has been considered that reactive oxygen species play an important signaling role for adaptation of endogenous antioxidant systems and for mitochondrial genesis and angiogenesis.When radical appearance is overly suppressed,these signals may therefore be weakened or abolished.

    One response to the elevated oxidative stress associated with exercise is increased oxidant defense via upregulation of powerful antioxidant enzymes like SOD and GPX.However,antioxidant supplementation may discourage such adaptations by interfering with the radical-mediated signal[17,41].This is especially the case when athletes are involved in high-intensity training during which radical production is particularly high.Knez et al.[14]reported significantly greater oxidative damage following half or full ironman triathlons in athletes who took antioxidant supplements than in those who did not.Similarly,the challenges faced by energy production systems during training stimulate enhance exercise capacity through increased mitochondrial mass and capillary density of muscle fibers and improved provision and utilization of substrate.Here,too,place bo-controlled studies with animals and humans have provided strong evidence that oral antioxidants including vitamin C can interfere with exercise-induced signaling and subsequent expression of the mitochondrial enzyme cytochrome c,which is representative of mito chondrial volume[8],and improvements to insulin sensitivity[138].Additionally,in humans involved in an endurance training program,acute supplementation of vitamins C(1 g)and E (600 IU)seemed to prevent exercise-induced va sodilation[150],which can blunt the blood flow-induced stimulus for angiogenesis.Angiogenesis can also be prevented if NO·release from eNOS is blocked[44,151].In the study by Gomez-Cabrera et al.[8],mean improve-ment in VO2max was about twice as great in humans who received a placebo than in those who received vitamin C at 1 g·day-1.

    Another instance of antioxidant supplementation interfering with training is when muscle injury occurs,such as after intense,unaccustomed,and especially eccentric exercise.Vitamins C and E have been shown to delay healing and recovery of strength,and increase oxidative stress after such muscle-damaging exercise[36,152-154].

    Collectively,it appears that over-dominant radical scavenging can actually reduce training stimuli and effectiveness by suppressing the radical-dependent signal for adaptation (Figure 3).Such findings are intriguing from the standpoint of athletes and coaches who wish to improve performance capacity through training.Could it be that many are unknowingly counteracting training effectiveness through ordinary practices such as consuming an antioxidant-rich recovery drink after an endurance training session or taking a daily multivitam in?

    9 Practical Implications

    The outcomes of supplementation studies have important implications for nutritionists,physicians,practitioners,athletic trainers,coaches,and athletes,as well as for the general population.Evidence that high doses of antioxidants preclude health-promoting effects of exercise training and interfere with radical-mediated physiological adaptations suggest caution in the use of antioxidant supplements.The following recommendations are developed based on the current research evidence and should help guide those who consider taking antioxidant supplements for maintaining health or enhancing performance:

    (1)Physically active individuals need to optimize their nutrition rather than use supplements.

    (2)Diets rich in antioxidants should be attained by consuming a variety of fruits,vegetables,whole grains,and nuts.

    (3)Whole foods,rather than capsules,contain antioxidants presented in beneficial ratios and numerous phytochemicals that may act in synergy to optimize the effect of antioxidants.

    (4)Antioxidants exist in small quantities in foods and therefore,there is limited risk of an antioxidant“overdose” by consuming a diet rich in fruits and vegetables.However,the ingestion of megadose of antioxidant via dietary supplements can increase the risk of toxicity and negative health consequences.

    (5)Antioxidant supplementation may be warranted when individuals are exposed to high levels of oxidative stress,restrict their energy intake,use severe weight loss practices,eliminate one or more food groups from their diet,or consume unbalanced diets with low micronutrient density.

    (6)There are certain circumstances in which an tioxidant supplementation is probably advantageous,such as overtraining,muscle injury,tournaments,competitions,and high-altitude training camps,since radical production is intensified and endogenous defense weakened.

    (7)It has been demonstrated that supplementation with common dietary antioxidants(i.e.,vitamins E and C)does not improve exercise performance or accelerate recovery from exercise.

    (8)Treatment with the antioxidant N-acetylcys teine has been shown to improve human exercise performance during submaximal exercise.However,N-acetylcysteine is associated with nausea in some individuals and the long-term effects of supplementation with N-acetylcysteine remains unknown.

    (9)Careful product evaluation is required prior to adopting an antioxidant regimen,which should be clinically supervised and should only represent a short-term solution.

    10 Conclusions

    Exercise promotes radical production in the working muscles and prolonged/intense exercise can produce an imbalance between radical production and muscle antioxidants resulting in oxidative stress.To protect against the radical-mediated damage,muscle cells contain endogenous antioxidants to scavenge radi cals.Moreover,exogenous antioxidants obtained from the diet work with endogenous antioxidants to form a supportive network of cellular pro tection against radical-mediated oxidative stress.The question of whether or not athletes should use antioxidant supplements remains an important and highly debated topic.At present,there is limited scientific evidence to recommend antioxidant supplements to athletes or physically active individuals who consume the recommended nutrients through diet.In fact,high doses of antioxidants may preclude health-promoting effects of exercise training and interfere with radical-mediated physiological adaptations.Antioxidant supplements generally do not improve sports performance and there is little proof to support their role in prevention of exercise-induced muscle damage and enhance ment of recovery.Those who seek to augment their antioxidant intake should consider whole foods rather than capsules and should be aware of the fact that an overdose of antioxidants can be detrimental to health and performance.

    猜你喜歡
    氧化應(yīng)激
    熊果酸減輕Aβ25-35誘導(dǎo)的神經(jīng)細(xì)胞氧化應(yīng)激和細(xì)胞凋亡
    中成藥(2021年5期)2021-07-21 08:39:04
    基于炎癥-氧化應(yīng)激角度探討中藥對新型冠狀病毒肺炎的干預(yù)作用
    戊己散對腹腔注射甲氨蝶呤大鼠氧化應(yīng)激及免疫狀態(tài)的影響
    中成藥(2018年6期)2018-07-11 03:01:24
    基于氧化應(yīng)激探討參附注射液延緩ApoE-/-小鼠動脈粥樣硬化的作用及機(jī)制
    中成藥(2018年5期)2018-06-06 03:11:43
    植物化學(xué)物質(zhì)通過Nrf2及其相關(guān)蛋白防護(hù)/修復(fù)氧化應(yīng)激損傷研究進(jìn)展
    氧化應(yīng)激與糖尿病視網(wǎng)膜病變
    尿酸對人肝細(xì)胞功能及氧化應(yīng)激的影響
    DNA雙加氧酶TET2在老年癡呆動物模型腦組織中的表達(dá)及其對氧化應(yīng)激中神經(jīng)元的保護(hù)作用
    從六經(jīng)辨證之三陰病干預(yù)糖調(diào)節(jié)受損大鼠氧化應(yīng)激的實(shí)驗(yàn)研究
    乙肝病毒S蛋白對人精子氧化應(yīng)激的影響
    午夜福利视频在线观看免费| 国产1区2区3区精品| 久久久久久久久久久免费av| 日本91视频免费播放| 亚洲一区中文字幕在线| 丝袜美足系列| 男女边吃奶边做爰视频| 成人手机av| 一级,二级,三级黄色视频| av.在线天堂| 亚洲av日韩精品久久久久久密 | 久久久国产一区二区| 欧美人与性动交α欧美精品济南到| 男的添女的下面高潮视频| 国产精品香港三级国产av潘金莲 | 在线亚洲精品国产二区图片欧美| 久久久久久久大尺度免费视频| 日韩一区二区三区影片| 无限看片的www在线观看| 久久97久久精品| 可以免费在线观看a视频的电影网站 | 国产又色又爽无遮挡免| 18禁观看日本| 青春草国产在线视频| 少妇人妻精品综合一区二区| av国产久精品久网站免费入址| 国产精品一区二区在线不卡| 别揉我奶头~嗯~啊~动态视频 | 两个人看的免费小视频| 最近最新中文字幕免费大全7| 交换朋友夫妻互换小说| 90打野战视频偷拍视频| 人人妻人人爽人人添夜夜欢视频| 亚洲,欧美,日韩| 亚洲精华国产精华液的使用体验| 亚洲欧美色中文字幕在线| 亚洲av成人不卡在线观看播放网 | 欧美精品一区二区大全| 国产熟女欧美一区二区| 久久天堂一区二区三区四区| 亚洲伊人色综图| 97在线人人人人妻| 国产免费又黄又爽又色| tube8黄色片| 丝袜喷水一区| 国产在视频线精品| 人人澡人人妻人| 国产成人av激情在线播放| www.熟女人妻精品国产| 国产亚洲欧美精品永久| 国产欧美日韩综合在线一区二区| 交换朋友夫妻互换小说| 色网站视频免费| av有码第一页| 一级爰片在线观看| 亚洲国产精品国产精品| 久久久久久人人人人人| 欧美日韩av久久| 咕卡用的链子| 亚洲综合精品二区| 亚洲精品av麻豆狂野| 好男人视频免费观看在线| 亚洲自偷自拍图片 自拍| 老司机影院成人| 一级黄片播放器| 男人爽女人下面视频在线观看| 99久国产av精品国产电影| 亚洲精品国产av成人精品| 曰老女人黄片| 欧美成人午夜精品| 热re99久久精品国产66热6| 美女视频免费永久观看网站| 高清在线视频一区二区三区| 免费黄频网站在线观看国产| 秋霞伦理黄片| 亚洲第一青青草原| 国产一区二区激情短视频 | 毛片一级片免费看久久久久| 好男人视频免费观看在线| 一本大道久久a久久精品| 高清欧美精品videossex| 久久久久国产精品人妻一区二区| 飞空精品影院首页| av线在线观看网站| 男人添女人高潮全过程视频| 男女无遮挡免费网站观看| 人人妻人人爽人人添夜夜欢视频| 国产毛片在线视频| 看十八女毛片水多多多| 国产一区二区激情短视频 | 欧美 亚洲 国产 日韩一| 国产亚洲av高清不卡| 9热在线视频观看99| 国产一级毛片在线| 新久久久久国产一级毛片| 亚洲少妇的诱惑av| 美女中出高潮动态图| 两个人免费观看高清视频| 久久天堂一区二区三区四区| 捣出白浆h1v1| 最近中文字幕2019免费版| 最近中文字幕2019免费版| 亚洲欧美一区二区三区黑人| 天天躁夜夜躁狠狠久久av| 哪个播放器可以免费观看大片| 日韩大片免费观看网站| 亚洲欧美成人综合另类久久久| av又黄又爽大尺度在线免费看| 各种免费的搞黄视频| 国产视频首页在线观看| 在线观看免费高清a一片| 制服人妻中文乱码| 国产av国产精品国产| 我要看黄色一级片免费的| 欧美日韩国产mv在线观看视频| 丝袜美足系列| 久久久久精品性色| 建设人人有责人人尽责人人享有的| 久久久久久人人人人人| 精品视频人人做人人爽| 一区福利在线观看| 热99久久久久精品小说推荐| 亚洲精品美女久久久久99蜜臀 | 两个人免费观看高清视频| 人妻一区二区av| 黄色一级大片看看| 亚洲成色77777| 久久久久久久久久久久大奶| 久久99精品国语久久久| 99热国产这里只有精品6| 国产男人的电影天堂91| 国产成人啪精品午夜网站| 久久久久久久久免费视频了| 高清欧美精品videossex| 秋霞在线观看毛片| 亚洲精品国产区一区二| 十八禁高潮呻吟视频| 国产xxxxx性猛交| 国产欧美亚洲国产| 永久免费av网站大全| 波多野结衣一区麻豆| 狂野欧美激情性xxxx| 成人漫画全彩无遮挡| av国产久精品久网站免费入址| 中文天堂在线官网| 这个男人来自地球电影免费观看 | 国产精品嫩草影院av在线观看| 欧美精品亚洲一区二区| 色婷婷久久久亚洲欧美| 亚洲一区中文字幕在线| 亚洲欧美激情在线| 新久久久久国产一级毛片| kizo精华| 中文字幕另类日韩欧美亚洲嫩草| 51午夜福利影视在线观看| 男女下面插进去视频免费观看| 香蕉国产在线看| 国产97色在线日韩免费| 搡老乐熟女国产| 黄色毛片三级朝国网站| 一级毛片我不卡| 蜜桃国产av成人99| h视频一区二区三区| 熟女av电影| videosex国产| 丝袜人妻中文字幕| 国产男人的电影天堂91| 久久人人爽av亚洲精品天堂| 毛片一级片免费看久久久久| 国产亚洲av高清不卡| 国产野战对白在线观看| 久久毛片免费看一区二区三区| 亚洲精品美女久久av网站| 你懂的网址亚洲精品在线观看| 观看av在线不卡| 美女扒开内裤让男人捅视频| 国产成人a∨麻豆精品| 韩国av在线不卡| 亚洲精品一区蜜桃| 性高湖久久久久久久久免费观看| 1024视频免费在线观看| e午夜精品久久久久久久| 久久人人爽av亚洲精品天堂| 亚洲精品国产av成人精品| 久久精品国产a三级三级三级| 国产午夜精品一二区理论片| 亚洲国产精品一区二区三区在线| 最黄视频免费看| 成人漫画全彩无遮挡| 女人爽到高潮嗷嗷叫在线视频| 青春草国产在线视频| 久久狼人影院| 久久久国产精品麻豆| 精品国产露脸久久av麻豆| 91aial.com中文字幕在线观看| 久久久精品国产亚洲av高清涩受| 日韩av免费高清视频| 9191精品国产免费久久| 另类精品久久| 波多野结衣av一区二区av| 日韩,欧美,国产一区二区三区| 最近最新中文字幕大全免费视频 | 亚洲精品久久久久久婷婷小说| 婷婷色综合大香蕉| 中文精品一卡2卡3卡4更新| 成人18禁高潮啪啪吃奶动态图| 国产在视频线精品| 日韩中文字幕欧美一区二区 | 伊人久久大香线蕉亚洲五| 另类亚洲欧美激情| 亚洲在久久综合| 天堂中文最新版在线下载| 香蕉国产在线看| 国产亚洲欧美精品永久| 99久久综合免费| 热re99久久精品国产66热6| 国产又爽黄色视频| 99国产精品免费福利视频| 中文字幕人妻丝袜制服| 又大又爽又粗| 午夜激情久久久久久久| 美国免费a级毛片| 婷婷色av中文字幕| 一区福利在线观看| 亚洲中文av在线| 久久天躁狠狠躁夜夜2o2o | 看非洲黑人一级黄片| 久久午夜综合久久蜜桃| 高清欧美精品videossex| 久久久久久免费高清国产稀缺| 精品亚洲成a人片在线观看| 欧美激情极品国产一区二区三区| 天天操日日干夜夜撸| 青草久久国产| 日本猛色少妇xxxxx猛交久久| 99久久综合免费| 最近的中文字幕免费完整| 纯流量卡能插随身wifi吗| 蜜桃在线观看..| 午夜福利网站1000一区二区三区| 亚洲天堂av无毛| 2018国产大陆天天弄谢| 精品卡一卡二卡四卡免费| 日韩中文字幕欧美一区二区 | 97在线人人人人妻| 九草在线视频观看| 亚洲av成人精品一二三区| 日日摸夜夜添夜夜爱| 女的被弄到高潮叫床怎么办| 亚洲人成网站在线观看播放| 精品福利永久在线观看| 国产97色在线日韩免费| 我要看黄色一级片免费的| 91成人精品电影| 你懂的网址亚洲精品在线观看| 人人妻人人澡人人爽人人夜夜| 亚洲天堂av无毛| 久久影院123| 国产日韩欧美视频二区| 精品人妻在线不人妻| 久久人妻熟女aⅴ| 免费不卡黄色视频| 久久99热这里只频精品6学生| 最近的中文字幕免费完整| 巨乳人妻的诱惑在线观看| 国产成人精品久久二区二区91 | 人人妻人人添人人爽欧美一区卜| 一边摸一边做爽爽视频免费| 日日啪夜夜爽| 看免费成人av毛片| 久久性视频一级片| av一本久久久久| 国产精品嫩草影院av在线观看| 精品亚洲乱码少妇综合久久| 国产一区二区三区综合在线观看| 香蕉国产在线看| 亚洲色图综合在线观看| 亚洲精品国产av蜜桃| 看免费成人av毛片| 人人妻人人澡人人看| 丁香六月欧美| 熟妇人妻不卡中文字幕| 国产成人精品福利久久| 18在线观看网站| 成人18禁高潮啪啪吃奶动态图| 国产精品一二三区在线看| 精品视频人人做人人爽| 欧美精品人与动牲交sv欧美| 亚洲精品国产一区二区精华液| 超碰成人久久| 日韩 欧美 亚洲 中文字幕| av网站免费在线观看视频| 一级片'在线观看视频| 女性被躁到高潮视频| 男人添女人高潮全过程视频| 亚洲av日韩在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 无限看片的www在线观看| 乱人伦中国视频| 国产男女超爽视频在线观看| 18禁裸乳无遮挡动漫免费视频| 美女福利国产在线| 男女午夜视频在线观看| 午夜福利免费观看在线| 大片电影免费在线观看免费| a 毛片基地| 亚洲视频免费观看视频| 午夜日本视频在线| 看免费av毛片| 韩国精品一区二区三区| av.在线天堂| 国产亚洲欧美精品永久| 午夜91福利影院| 国产深夜福利视频在线观看| 99国产综合亚洲精品| 精品久久蜜臀av无| 在线 av 中文字幕| 欧美变态另类bdsm刘玥| 一区二区三区精品91| 9色porny在线观看| 丰满饥渴人妻一区二区三| 欧美黄色片欧美黄色片| 国产国语露脸激情在线看| 中文字幕高清在线视频| av在线老鸭窝| 精品福利永久在线观看| 久久午夜综合久久蜜桃| 婷婷成人精品国产| 90打野战视频偷拍视频| 亚洲欧洲国产日韩| netflix在线观看网站| 精品亚洲成国产av| 久久99一区二区三区| 久久久精品94久久精品| 丰满饥渴人妻一区二区三| 色94色欧美一区二区| av又黄又爽大尺度在线免费看| 久久久久国产精品人妻一区二区| 高清视频免费观看一区二区| 亚洲熟女精品中文字幕| 亚洲国产欧美网| 久久国产精品男人的天堂亚洲| 中文字幕另类日韩欧美亚洲嫩草| 在线观看三级黄色| 欧美精品亚洲一区二区| 国产一区二区激情短视频 | 纯流量卡能插随身wifi吗| 老司机影院毛片| 一级片'在线观看视频| 亚洲av综合色区一区| 19禁男女啪啪无遮挡网站| 十分钟在线观看高清视频www| 不卡av一区二区三区| 考比视频在线观看| 国产片内射在线| 热re99久久精品国产66热6| 深夜精品福利| 99热国产这里只有精品6| 又黄又粗又硬又大视频| 一区福利在线观看| 一区二区三区精品91| 久久精品国产综合久久久| 免费少妇av软件| 欧美精品一区二区免费开放| 制服人妻中文乱码| 女人被躁到高潮嗷嗷叫费观| 精品国产露脸久久av麻豆| 国产精品三级大全| 热re99久久精品国产66热6| 天天添夜夜摸| 精品午夜福利在线看| 黄网站色视频无遮挡免费观看| av有码第一页| e午夜精品久久久久久久| 日韩 亚洲 欧美在线| 久久久久精品人妻al黑| 成人国语在线视频| www日本在线高清视频| 欧美人与善性xxx| 各种免费的搞黄视频| 一区二区三区激情视频| 亚洲成人av在线免费| 香蕉国产在线看| 国语对白做爰xxxⅹ性视频网站| 1024香蕉在线观看| 一级毛片 在线播放| 国产精品一二三区在线看| 免费观看人在逋| 91老司机精品| 久久久国产欧美日韩av| 亚洲av中文av极速乱| 国产精品女同一区二区软件| 日本91视频免费播放| 18在线观看网站| 亚洲欧美一区二区三区久久| 深夜精品福利| 成人国产av品久久久| 超碰成人久久| 久久毛片免费看一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 一级毛片我不卡| 久久精品熟女亚洲av麻豆精品| 99热国产这里只有精品6| 黄色视频在线播放观看不卡| 在线精品无人区一区二区三| 在线观看三级黄色| 久久久久久人人人人人| 国产成人精品久久久久久| 制服人妻中文乱码| 精品亚洲成a人片在线观看| 欧美日韩视频精品一区| 超碰成人久久| 国产成人精品福利久久| 在线观看国产h片| 丝袜喷水一区| 香蕉国产在线看| 丝袜脚勾引网站| 亚洲精华国产精华液的使用体验| 母亲3免费完整高清在线观看| 国产激情久久老熟女| 在线亚洲精品国产二区图片欧美| 美女大奶头黄色视频| 久久韩国三级中文字幕| 1024香蕉在线观看| 可以免费在线观看a视频的电影网站 | 在线观看免费高清a一片| 悠悠久久av| 国产熟女欧美一区二区| 大片电影免费在线观看免费| 亚洲精品国产av蜜桃| 亚洲欧美精品自产自拍| 国产成人91sexporn| 韩国av在线不卡| 日本黄色日本黄色录像| 中文欧美无线码| 免费在线观看视频国产中文字幕亚洲 | 在线观看免费午夜福利视频| 男人爽女人下面视频在线观看| 女人久久www免费人成看片| 精品久久蜜臀av无| 狠狠精品人妻久久久久久综合| 制服丝袜香蕉在线| 日日爽夜夜爽网站| 国产不卡av网站在线观看| 成人三级做爰电影| 乱人伦中国视频| 亚洲天堂av无毛| 亚洲精品日本国产第一区| 人人妻人人澡人人爽人人夜夜| 青春草亚洲视频在线观看| 国产爽快片一区二区三区| 在线观看免费日韩欧美大片| 女性被躁到高潮视频| 午夜福利在线免费观看网站| 天堂8中文在线网| 成年动漫av网址| 精品国产一区二区久久| 成年女人毛片免费观看观看9 | 亚洲精品国产av蜜桃| 少妇精品久久久久久久| 久久久国产精品麻豆| 免费久久久久久久精品成人欧美视频| 欧美成人午夜精品| 精品免费久久久久久久清纯 | 久久99精品国语久久久| 人妻人人澡人人爽人人| 老汉色av国产亚洲站长工具| www.精华液| 丁香六月天网| av在线观看视频网站免费| 一本大道久久a久久精品| 日韩,欧美,国产一区二区三区| 男女边吃奶边做爰视频| 日日啪夜夜爽| 别揉我奶头~嗯~啊~动态视频 | 在线观看免费日韩欧美大片| 免费日韩欧美在线观看| 看免费成人av毛片| 日本猛色少妇xxxxx猛交久久| 亚洲成人免费av在线播放| 99香蕉大伊视频| 亚洲五月色婷婷综合| 男女免费视频国产| 欧美乱码精品一区二区三区| 精品少妇黑人巨大在线播放| 熟女少妇亚洲综合色aaa.| www.自偷自拍.com| 超色免费av| 国产精品熟女久久久久浪| 成人免费观看视频高清| 成人影院久久| 亚洲欧美色中文字幕在线| bbb黄色大片| 国产精品一二三区在线看| 成年美女黄网站色视频大全免费| 国产免费视频播放在线视频| 秋霞伦理黄片| 大码成人一级视频| 丝瓜视频免费看黄片| 一区二区三区精品91| 久热爱精品视频在线9| 久久精品aⅴ一区二区三区四区| 各种免费的搞黄视频| 新久久久久国产一级毛片| 日本vs欧美在线观看视频| 国产深夜福利视频在线观看| 别揉我奶头~嗯~啊~动态视频 | 亚洲免费av在线视频| 伊人久久大香线蕉亚洲五| 免费人妻精品一区二区三区视频| 一边摸一边抽搐一进一出视频| 亚洲第一区二区三区不卡| 国产免费一区二区三区四区乱码| 黄色视频不卡| 欧美日韩视频高清一区二区三区二| 人妻一区二区av| 一级毛片电影观看| 精品一品国产午夜福利视频| 99久久精品国产亚洲精品| av线在线观看网站| bbb黄色大片| 中文字幕制服av| 一区在线观看完整版| 妹子高潮喷水视频| 免费高清在线观看视频在线观看| 亚洲精品成人av观看孕妇| 亚洲精品自拍成人| 9热在线视频观看99| 成年美女黄网站色视频大全免费| 一区二区三区乱码不卡18| 亚洲成人av在线免费| 色播在线永久视频| 国产精品一区二区在线观看99| 啦啦啦视频在线资源免费观看| 日本黄色日本黄色录像| 日本爱情动作片www.在线观看| 午夜福利,免费看| 9色porny在线观看| 午夜福利,免费看| 人人澡人人妻人| 欧美激情 高清一区二区三区| 激情五月婷婷亚洲| 久热这里只有精品99| 日本猛色少妇xxxxx猛交久久| 久久婷婷青草| 国产精品免费大片| 在线观看免费视频网站a站| 免费久久久久久久精品成人欧美视频| 少妇精品久久久久久久| 日韩大片免费观看网站| 亚洲欧美色中文字幕在线| 在线观看三级黄色| 国产日韩欧美在线精品| 一级毛片 在线播放| 国产亚洲精品第一综合不卡| 性少妇av在线| 精品亚洲成a人片在线观看| 最近最新中文字幕免费大全7| 亚洲国产成人一精品久久久| 午夜福利免费观看在线| 亚洲,一卡二卡三卡| 高清视频免费观看一区二区| 久久久久久久精品精品| 19禁男女啪啪无遮挡网站| 少妇猛男粗大的猛烈进出视频| 成人免费观看视频高清| 亚洲欧美一区二区三区久久| 你懂的网址亚洲精品在线观看| 国产在视频线精品| 国产精品久久久久久人妻精品电影 | 1024视频免费在线观看| 亚洲欧美激情在线| 制服诱惑二区| 伊人久久大香线蕉亚洲五| 精品国产一区二区久久| 丁香六月天网| 亚洲成国产人片在线观看| 国产精品麻豆人妻色哟哟久久| 大片电影免费在线观看免费| 人妻 亚洲 视频| 久久ye,这里只有精品| 亚洲精华国产精华液的使用体验| 日韩成人av中文字幕在线观看| 国产精品.久久久| 天天躁日日躁夜夜躁夜夜| 亚洲七黄色美女视频| 曰老女人黄片| 免费人妻精品一区二区三区视频| 悠悠久久av| 日本vs欧美在线观看视频| 在线观看一区二区三区激情| 多毛熟女@视频| 高清视频免费观看一区二区| 国精品久久久久久国模美| 久久国产精品大桥未久av| 日韩免费高清中文字幕av| 最近最新中文字幕大全免费视频 | 亚洲精品成人av观看孕妇| 午夜av观看不卡| av线在线观看网站| 自拍欧美九色日韩亚洲蝌蚪91| 另类亚洲欧美激情| 91老司机精品| 性高湖久久久久久久久免费观看| 亚洲综合精品二区| 久久精品aⅴ一区二区三区四区| 亚洲精品国产色婷婷电影| 久久亚洲国产成人精品v| 啦啦啦中文免费视频观看日本| 亚洲,欧美精品.| 男女高潮啪啪啪动态图| 久久久欧美国产精品| 精品少妇久久久久久888优播| 老司机影院毛片| 亚洲欧美中文字幕日韩二区|