湯武裝,李杰
核轉(zhuǎn)錄因子紅細(xì)胞系相關(guān)因子-2干擾質(zhì)粒構(gòu)建及鑒定
湯武裝,李杰
目的 設(shè)計(jì)及構(gòu)建小鼠核轉(zhuǎn)錄因子紅細(xì)胞系相關(guān)因子-2(Nrf2)基因的干擾質(zhì)粒,并篩選出效果最好的干擾質(zhì)粒。方法 設(shè)計(jì)3組針對(duì)Nrf2基因的核糖核酸干擾(RNAi)序列,應(yīng)用基因重組技術(shù)克隆入載體中構(gòu)建短發(fā)夾RNA(shRNA),分別為shRNA1、shRNA2及shRNA3,通過基因測序鑒定,經(jīng)Lipofectamine 2000轉(zhuǎn)染至BV2細(xì)胞, 實(shí)時(shí)PCR檢測Nrf2 mRNA的表達(dá),Western Blot法檢測Nrf2蛋白的表達(dá)。結(jié)果 測序表明,克隆入載體中的Nrf2干擾序列及讀碼框完全正確,實(shí)時(shí)PCR及Western Blot顯示shRNA3干擾效果最強(qiáng)。結(jié)論 成功構(gòu)建小鼠Nrf2的有效干擾質(zhì)粒,為Nrf2信號(hào)通路在腦卒中領(lǐng)域的功能研究奠定了基礎(chǔ)。
核轉(zhuǎn)錄因子紅細(xì)胞系相關(guān)因子-2;RNA干擾;BV2細(xì)胞
腦卒中目前已成為世界上導(dǎo)致死亡的主要病因,其具有高死亡率、高致殘率及高復(fù)發(fā)率等特點(diǎn),同時(shí)嚴(yán)重危害了人類的健康,并給社會(huì)帶來了巨大的損失。目前,普遍認(rèn)為缺血性卒中的損傷機(jī)制是由多種因素共同參與的。這是一個(gè)復(fù)雜的過程,其發(fā)病機(jī)制主要包括腦組織能量代謝紊亂、興奮性氨基酸中毒、氧化應(yīng)激損傷、炎癥反應(yīng)等多個(gè)環(huán)節(jié),其中氧化應(yīng)激是眾多發(fā)病機(jī)制中的重要環(huán)節(jié)。越來越多的證據(jù)證明刺激內(nèi)源性抗氧化系統(tǒng)的表達(dá)將會(huì)是治療腦卒中的主要措施[1]。核轉(zhuǎn)錄因子紅細(xì)胞系相關(guān)因子-2(Nrf2) 是細(xì)胞內(nèi)重要的抗氧化應(yīng)激調(diào)控因子,其能夠調(diào)控細(xì)胞內(nèi)一系列保護(hù)基因的表達(dá)[2-4]。因此,以Nrf2作為腦卒中的治療靶點(diǎn)已成為當(dāng)前一大熱門話題。破壞基因的結(jié)構(gòu)或者抑制基因的表達(dá)是研究靶基因功能的主要手段,常用的一種技術(shù)就是RNA干擾(RNAi)技術(shù)[5-7]。本研究擬采用基因克隆技術(shù),通過設(shè)計(jì)針對(duì)小鼠Nrf2基因的干擾序列,構(gòu)建相應(yīng)短發(fā)夾RNA(shRNA)的干擾質(zhì)粒,并將相應(yīng)的干擾質(zhì)粒轉(zhuǎn)染小鼠BV2細(xì)胞,從而篩選出干擾效果最佳的shRNA,為進(jìn)一步觀察Nrf2信號(hào)通路對(duì)于腦卒中的作用奠定實(shí)驗(yàn)基礎(chǔ)。
1.1 材料 Top10化學(xué)感受態(tài)細(xì)胞購自上海吉?jiǎng)P基因化學(xué)技術(shù)有限公司;BV2細(xì)胞購自中科院上海生命科學(xué)院細(xì)胞庫;胎牛血清(FBS)購自美國Hyclone公司;DMEM高糖培養(yǎng)液購自美國GiBco公司;胰蛋白酶購自Invitrogen 公司;Lipofectamine 2000購自Invitrogen 公司;引物序列由上海吉?jiǎng)P基因化學(xué)技術(shù)有限公司合成;實(shí)時(shí)PCR(RT-PCR)試劑盒購自Takara公司;質(zhì)粒小量提取試劑盒購自O(shè)MEGA公司;BCA蛋白濃度測定試劑盒購自碧云天生物技術(shù)研究所;兔源β-actin抗體購自美國Bioworld公司;兔源Nrf2抗體購自美國Bioworld公司;抗兔二抗購自美國Santa Cruz公司。
1.2 方法
1.2.1 質(zhì)粒的構(gòu)建 從基因庫中查找出針對(duì)小鼠Nrf2的核苷酸序列(NM_010902),并按照相應(yīng)的設(shè)計(jì)原則構(gòu)建針對(duì)目的基因(Nrf2)的干擾片段(由上海吉?jiǎng)P基因化學(xué)技術(shù)有限公司設(shè)計(jì)合成)。分別設(shè)計(jì)3條靶序列,各條靶序列如下:靶序列1:CTT ACT CTC CCA GTG AAT A;靶序列2:TGA AGT CTT CAG CAT GTT A;靶序列3:TCG CAT TGA TCC GAG ATA T。此外還設(shè)計(jì)了1條陰性對(duì)照組,其靶序列為:TTC TCC GAA CGT GTC ACG T。最后將設(shè)計(jì)成功的各組質(zhì)粒各自命名為shRNA1質(zhì)粒、shRNA2質(zhì)粒、shRNA3質(zhì)粒及NC質(zhì)粒,并據(jù)此分組。
1.2.2 干擾質(zhì)粒的轉(zhuǎn)化與測序分析 將三組shRNA質(zhì)粒轉(zhuǎn)化Top10化學(xué)感受態(tài)細(xì)胞,然后接種于篩選平板(含氨芐青霉素),次日隨機(jī)挑選陽性單克隆菌落,將陽性菌落培養(yǎng)擴(kuò)增,最后每0.8 ml菌液加入0.2 ml無菌甘油,混勻后放入-70℃冰箱凍存。取1管菌液送至生物公司進(jìn)行測序分析。
1.2.3 細(xì)胞培養(yǎng)與轉(zhuǎn)染 用含10%FBS的DMEM高糖培養(yǎng)液培養(yǎng)BV2細(xì)胞,細(xì)胞按一定密度鋪12孔板,待BV2細(xì)胞生長至90%融合度時(shí),按照Lipofec-tamine 2000脂質(zhì)體轉(zhuǎn)染試劑盒使用說明書,分別轉(zhuǎn)染四組質(zhì)粒:NC組(NC質(zhì)粒)、shRNA1組(shNRA1質(zhì)粒)、shRNA2組(shNRA2質(zhì)粒)及shRNA3組(shNRA3質(zhì)粒),轉(zhuǎn)染后在37℃、5%CO2條件下培養(yǎng)4 h,然后移去無血清無抗生素培養(yǎng)液,加入完全DMEM無抗生素培養(yǎng)基繼續(xù)培養(yǎng)至轉(zhuǎn)染后48 h。
1.2.4 RT-PCR檢測BV2細(xì)胞中Nrf2 mRNA的表達(dá)
按照Trizol說明書提取各組BV2細(xì)胞中的總RNA。Nrf2引物[8]:上游:5′-TCT CCT CGC TGG AAA AAG AA-3′,下游:5′-AAT GTG CTG GCT GTG CTT TA-3′;內(nèi)參β-actin引物:上游:5′-TTC GTT GCC GGT CCA CAC CC-3′,下游:5′-GCT TTG CAC ATG CCG GAG CC-3′。用逆轉(zhuǎn)錄試劑盒按照說明書將RNA逆轉(zhuǎn)錄為cDNA。按照RT-PCR試劑盒說明書操作,反應(yīng)體系為: SYBR Premix Ex TaqTM(2×) 10 μl;上游引物0.4 μl ;下游引物0.4 μl ;Rox Reference Dye Ⅱ(50×)0.4 μl;cDNA 2.0 μl,加水至總體積20 μl。反應(yīng)體系于ABI7500 PCR儀上進(jìn)行反應(yīng)。反應(yīng)采用PCR兩步法反應(yīng)程序:第一步:預(yù)變性:95℃ 30 s;第二步:95℃ 5 s,60℃ 34 s,40個(gè)PCR循環(huán)。
1.2.5 Western Blot檢測BV2細(xì)胞中Nrf2蛋白的表達(dá) 將轉(zhuǎn)染的各組BV2細(xì)胞加入適量的蛋白裂解液,4℃ 15000 r/min離心5 min,收集上清液,采用BCA蛋白濃度測定試劑盒檢測蛋白含量。蛋白樣品加入相應(yīng)的SDS凝膠上樣緩沖液置于沸水中加熱5 min使蛋白變性。變性的蛋白樣品經(jīng)SDS-聚丙烯酰氨凝膠電泳后,轉(zhuǎn)膜(100 V,120 min)至PVDF膜上,再經(jīng)脫脂奶粉室溫封閉3 h,依次加入稀釋好的一抗4℃孵育過夜,TBST洗膜3遍后加入稀釋好的二抗室溫孵育2 h,TBST洗膜3遍,加入發(fā)光液,暗室曝光。
2.1 靶向Nrf2干擾質(zhì)粒構(gòu)建成功 將干擾片段與載體連接后形成的各組干擾質(zhì)粒轉(zhuǎn)化Top10化學(xué)感受態(tài)細(xì)胞,然后小提質(zhì)粒,送上海吉?jiǎng)P基因化學(xué)技術(shù)有限公司基因測序,結(jié)果表明各組序列無誤,具體結(jié)果見圖1~圖3。
圖1 shRNA1靶向Nrf2干擾質(zhì)?;驕y序圖
圖2 shRNA2靶向Nrf2干擾質(zhì)粒基因測序圖
圖3 shRNA3靶向Nrf2干擾質(zhì)?;驕y序圖
2.2 靶向Nrf2干擾質(zhì)粒的篩選
2.2.1 各組Nrf2基因mRNA表達(dá)水平的比較 見圖4。與NC組比較,shRNA1組、shRNA2組及shRNA3組Nrf2基因mRNA表達(dá)水平明顯降低(均P<0.05),且shRNA3組Nrf2基因mRNA水平最低,該質(zhì)粒為最佳干擾片段。
圖4 各組Nrf2基因mRNA表達(dá)水平的比較。注:與NC組相比*P<0.05,**P<0.01
2.2.2 各組Nrf2基因蛋白表達(dá)水平的比較 見圖5。與NC組比較,shRNA1組、shRNA2組及shRNA3組Nrf2基因蛋白表達(dá)水平明顯降低(均P<0.05),且shRNA3組Nrf2基因蛋白水平最低,該質(zhì)粒為最佳干擾片段。
圖5 各組Nrf2基因蛋白表達(dá)水平的比較。注:與NC組相比**P<0.01
Nrf2屬于CNC-bZIP,即CNC亮氨酸拉鏈轉(zhuǎn)錄激活因子家族[9]。通過上調(diào)Nrf2的表達(dá),激活Nrf2信號(hào)通路,可以進(jìn)一步增加細(xì)胞活性,同時(shí)可以通過抑制氧化應(yīng)激反應(yīng),進(jìn)而起到神經(jīng)保護(hù)作用,因此Nrf2可能成為卒中治療過程中的一個(gè)有效治療靶點(diǎn)[10-13]。
RNAi技術(shù)主要通過抑制宿主細(xì)胞mRNA轉(zhuǎn)錄后的基因表達(dá)從而發(fā)揮作用。隨著RNAi技術(shù)的不斷成熟和發(fā)展,可以通過沉默目的基因從而研究目的基因的各項(xiàng)功能[5-7]。本實(shí)驗(yàn)設(shè)計(jì)并合成了針對(duì)Nrf2基因的干擾質(zhì)粒,同時(shí)經(jīng)基因測序證實(shí)各組干擾質(zhì)粒與設(shè)計(jì)的靶向鏈完全一致,說明目的基因被準(zhǔn)確地插入到相應(yīng)的載體中。RT-PCR定量分析結(jié)果提示各組干擾質(zhì)粒對(duì)Nrf2基因mRNA水平均有抑制作用,其中shRNA3的干擾作用最強(qiáng)。此外,Western Blot的結(jié)果也證實(shí)了各組干擾質(zhì)粒能一定程度地抑制靶基因蛋白水平的表達(dá),其中shRNA3對(duì)目的基因的干擾作用最強(qiáng),因而其為最佳靶點(diǎn)。本實(shí)驗(yàn)成功構(gòu)建了針對(duì)Nrf2基因的干擾質(zhì)粒,并篩選出了具有最強(qiáng)抑制作用的干擾質(zhì)粒,為后期研究Nrf2基因在腦卒中發(fā)病機(jī)制中的作用及治療機(jī)制打下了堅(jiān)實(shí)的實(shí)驗(yàn)基礎(chǔ)。
[1]張宇,張兵.Nrf2-Keap1信號(hào)通路與腦卒中[J].中風(fēng)與神經(jīng)疾病雜志,2014,31:372.
[2]Wells PG, Bhatia S, Drake DM. Fetal oxidative stress mechanisms of neurodevelopmental deficits and exacerbation by ethanol and methamphetamine[J]. Birth Defects Res C Embryo Today, 2016, 108: 108.
[3]Shi CL, Zhou XE, Zhang JY, et al. Alpha-Lipoic acid protects against the cytotoxicity and oxidative stress induced by Cadmium in HepG2 cells through regeneration of glutathione by glutathione reductase via Nrf2/ARE signaling pathway[J]. Environ Toxicol Pharmacol, 2016, 45: 274.
[4]Kim J, Keum YS. NRF2, a key regulator of antioxidants with two faces towards cancer[J]. Oxid Med Cell Longev, 2016, 2016: 2746457.
[5]Man DK, Chow MY, Casettari LA, et al. Potential and development of inhaled RNAi therapeutics for the treatment of pulmonary tuberculosis[J]. Adv Drug Deliv Rev, 2016, 102: 21.
[6]Dyawanapelly S, Ghodke SB, Vishwanathan R, et al. RNA Interference-Based therapeutics: molecular platforms for infectious diseases[J]. J Biomed Nanotechnol, 2014, 10: 1998.
[7]Kim YH, Issa MS, Cooper AM, et al. RNA interference: Applications and advances in insect toxicology and insect pest management[J]. Pestic Biochem Physiol, 2015, 120: 109.
[8]Zhang JQ, Shi L, Xu XN, et al. Therapeutic detoxification of quercetin against Carbon tetrachloride-induced acute liver injury in mice and its mechanism[J]. J Zhejiang Univ Sci B, 2014, 15: 1039.
[9]Moi P, Chan K, Asunis I, et al. Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region[J]. Proc Natl Acad Sci USA, 1994, 91: 9926.
[10]Han J, Xiao Q, Lin YH, et al. Neuroprotective effects of salidroside on focal cerebral ischemia/reperfusion injury involve the nuclear erythroid 2-related factor 2 pathway[J]. Neural Regeneration Research, 2015, 10: 1989.
[11] Jiang S, Deng C, Lv J, et al. Nrf2 Weaves an Elaborate Network of Neuroprotection Against Stroke[J]. Mol Neurobiol, 2016.doi 10.1007/s12035-016-9707-7.
[12]Mao J, Li Z, Lin R, et al. Preconditioning with Gua Lou Gui Zhi decoction enhances H2O2-induced Nrf2/HO-1 activation in PC12 cells[J]. Exp Ther Med, 2015, 10: 877.
[13]Mann GE. Nrf2-mediated redox signalling in vascular health and disease[J]. Free Radical Bio Med, 2014, 75: S1.
Construction and identification of nuclear factor erythroid-2-related factor 2 gene RNA interference recombinant plasmid
TANGWu-zhuang,LIJie.
DepartmentofNeurology,YixingHospitalAffiliatedtoJiangsuUniversity,Yixing214200,China
Objective To construct and identify the shRNA plasmid vector targeting nuclear factor erythroid-2-related factor 2 (Nrf2), and to collect the strongest RNAi effect of Nrf2 shRNA sequence. Methods Nrf2 gene was targeted gene. Three shRNA sequences were designed by software and synthesized by chemical method: shRNA-1, shRNA-2 and shRNA-3. The double strand shRNA oligo was ligated to the vector. The construct was verified by sequencing analysis. BV2 cells were transfected with expressing shRNA plasmid vectors using Lipofectamine 2000. The expression of Nrf2 in the levels of mRNA was detected by real-time PCR, and Western Blot was adopted to abserve the expression of Nrf2 protein. Results Sequencing analysis suggested that the shRNA vectors targeting Nrf2 possessed correct nucleotide sequence and read frame. The result of Real-time PCR and Western Blot showed that the sequence of shRNAi-3 could more effectively knockdown the expression level of Nrf2 than the others. Conclusions The shRNA vectors targeting Nrf2 are successfully constructed and the shRNA can signidicantly inhibit the expression of Nrf2. These findings could provide an experimental basis for further study on Nrf2 signaling pathway in stroke field.
nuclear factor erythroid-2-related factor 2;RNA interference;BV2 cells
江蘇省科技廳自然科學(xué)基金面上項(xiàng)目(BK20141121);無錫市衛(wèi)生局青年基金 (Q201301;Q201625)
214200江蘇大學(xué)附屬宜興醫(yī)院(揚(yáng)州大學(xué)醫(yī)學(xué)院宜興臨床學(xué)院)神經(jīng)內(nèi)科
李杰
R363
A
1004-1648(2017)02-0120-04
2016-08-15
2016-08-29)