• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    M- (Sm, Pr, Ga)摻雜TiO2帶隙及電子結構的第一原理研究

    2019-03-19 09:21:20房玉真孔祥晉劉軍海崔守鑫王東亭
    原子與分子物理學報 2019年1期
    關鍵詞:帶隙化工學院聊城

    房玉真, 孔祥晉, 劉軍海, 崔守鑫, 王東亭

    (1.聊城大學 化學化工學院,聊城 252059; 2.聊城大學 物理科學與信息工程學院,聊城 252059)

    1 Introduction

    Titanium dioxide (TiO2) has drawn intense interest as promising material for photochemical applications[1-3]. It has excellent characteristics, such as long term stability and non-toxicity. Whereas factors that limit the usefulness of titania are its wide band-gaps (Eg= 3.20 eV for the anatase phase and 3.00 eV for the rutile phase), which can only be excited by UV light irradiation, i.e. only about 5% of the solar spectrum can be absorbed by TiO2[4-6]. Therefore, reducing the band gap of TiO2to make it photosensitive to the visible-light region has become one of the most important goals in photo-catalyst studies. In recent years, doping with non-metals and metal ions into the semiconductor matrix of TiO2have been used widely[7-9]. Doping with non-metal dopants (C, S, N, Br, Cl, etc.) can shift the top of the valence band to higher energies to reduce their forbidden band gaps[10-12]. On the other hand, a series of metal ions such as W6+, V5+, Ce4+, Zr4+, Fe3+, Cu2+, La3+, Pd2+, Cr3+, Ag+and Nd3+have been investigated[13-15], which promote the separation of photo-generated electrons and holes, and reduce electron-hole recombination. Some of them are manifested in experimental studies as significantly enhanced photo-catalytic activity in the visible region[16-19]. Although the optical properties of several doped TiO2systems have been studied, a number of questions arise simultaneously, including dopant metal ions type, the doping amounts and the dopant states on the doped TiO2. Lanthanides with special electronic layer structure (4fn6s2or 4fn- 15d6s2), rich level, and easy to produce more electronic configuration, doping TiO2lattice by lanthanide elements can increase the separation efficiency of photo-generated electron hole, and to improve the photo-catalytic activity[20]. According to the published literature, Ga doping will induce oxygen vacancies and create defect levels near conduction band in TiO2, which act as electron traps and enhance the separation of photo generated electron-hole pairs[21, 22]. It’s quite difficult to obtain the configuration, energy, electronic structure and the electronic distribution of different types of dopants in TiO2by experimental means. Meanwhile, a detailed study is necessary to understand the fundamental mechanism of chemical bonds in doped TiO2. As well as the first-principles electronic structure theory has played a crucial role in understanding various physical and chemical properties of TiO2[23, 24].

    Based on the above reasons,we choose Sm, Pr and Ga as the dopant metal ions type in this work, and a systematic analysis of the dopant characteristics of elements (Sm/Pr/Ga) in anatase TiO2were investigated by the first principles. The optimized lattice parameters and electronic structures, as well as the effects of different kinds of dopants on electronic structures and the chemical bonds were compared. The understanding of the chemical bond between the dopant and O (or Ti) will be critical to improve the optical performance of TiO2-based photo-catalysts.

    2 Computational methods

    To examine the impacts of doping with Sm, Pr, Ga (M) element on the photo-catalytic activity of TiO2, a super-cell with M-Ti15O32was built where the M element substitutes for the Ti atom. All the calculations were performed using the CASTEP code based on first-principles density functional theory. The exchange and correlation interactions were modeled using the generalized gradient approximation and the Perdew-Burke-Ernzerhof (PBE) functional. The cutoff kinetic energy of the electron wave function was 380 eV, and the k-point sampling set 7×3×3 division of the reciprocal unit cell based on the Monkhorst-Pack scheme was found to be converged. In the geometrical optimization, all forces on atoms were converged to less than 0.3 eV/? , the maximum ionic displacement was within 0.001 ? and the total stress tensor was reduced to the order of 0.5 GPa. In this work, the band gap calculated by GGA is lower than the experimental value, which has also been accepted internationally for the result of the function itself, and it can not be used to make accurate calculation of the absolute energy. But as an effective approximation method, the relative value is still very accurate, and it can be used to analyze the band structure and electronic properties.

    3 Results and discussion

    3.1 Optimized structures and electronic properties

    In this work, the pure,and the M- (Sm, Pr, Ga) doped anatase TiO2were studied. The calculated models are shown in Fig. 1, the green atom represents the substituted Ti atom, and their optimized lattice parameters and volumes are listed in Table 1.

    Fig. 1 The calculated models. (a) pure anatase TiO2; (b) M-doped anatase TiO2

    For the pure anatase phase of TiO2, our calculated lattice parameters area=7.5648,b=3.7824,c=9.5102 ?, which are in excellent agreement with the previously reported experimental values[25], and all of lattice parameters in the doped systems are larger than that of pure TiO2except for Ga-doped TiO2. This can be understood by the fact that the radii of impurity atoms Sm (1.80 ?) and Pr (1.83 ?) are larger than that of Ti (1.45 ? ) and the radii of impurity atoms Ga (1.40 ?) are shorter. Although doping with foreign elements results in the variation of lattice constants, the deformations of a and c are less 4%, considering the larger radius of dopant atoms, the calculated models of the pure and M-doped anatase TiO2are structurally stable.

    Table 1 The lattice parameters and volumes of the doped anatase TiO2supercells

    TiO2Lattice parameters(?)Volume (?3)abcPure7.56483.78249.5102272.1163Pureexp[25]7.56963.78489.5124272.5248Sm-doped7.57503.78759.8713283.2107Pr-doped7.58623.79319.8858284.4660Ga-doped7.55883.77949.5667273.2989

    To further understand the chemical bond characteristic, we calculated theMulliken populations. The results for M-doped anatase TiO2are summarized in Table 2. For the pure anatase TiO2structure, the average Ti-O bond length is 1.947 ?, there is also a tiny change compared with those of the Sm-, Pr-and Ga-doped structures, and their average Ti-O bond lengths are 1.972 ?, 1.957 ? and 1.961 ?, respectively. In the case of doped TiO2systems, the lengths of all these Ti-O bonds have an increase due to the dopant atoms locating on the geometry optimization, which may relax oxygen atom away from the surface of titanium atom and into the dopants atoms. The longer distance of Ti-O bond length results in a weaker interaction between titanium and oxygen atom and hence the covalent bond is weakened and the ionic bond enhanced, and the Ti-O bond in Sm-doped case has ion bond characteristics. The average Sm-O, Pr-O, and Ga-O bond lengths are 2.216 ?, 2.409 ? and 1.992 ? respectively, considering the different radius of metal atoms, the Sm-O, Pr-O and Ga-O bonds have higher ion bond characteristics than Ti-O bond.

    The bond strength is also judged by the population value, as a general rule, the larger population is, the stronger covalent bond is, and vice versa.The average Mulliken populations of Ti-O are 0.407, 0.419, 0.419 and 0.422 for the pure, Sm-, Pr- and Ga-doped structures, respectively, their corresponding values of Sm-O, Pr-O and Ga-O are 0.228, 0.264 and 0.292. As a result, the covalence of Ti-O bond enhanced after doping metal elements, and M-O bond has ion bond characteristics, which have been proved by the bond length discussed above.

    Table 2 Average Mulliken populations (MP), bond length (BL) and net charge (NC) in the pure, and the M-doped (M= Sm, Pr, or Ga) anatase TiO2.

    TiO2BL(?)MPNC (electron)Ti-OTi-OTi-OM-OTiOMPure1.9471.9470.4071.34-0.67Sm-O1.9721.9720.4190.2281.28-0.641.43Pr-O1.9571.9570.4190.2641.26-0.651.57Ga-O1.9611.9610.4220.2921.28-0.671.77

    The atomic charge are also shown in Table 2, the net charges on Ti, Sm, Pr, and Ga are 1.34, 1.43, 1.57 and 1.77 e, respectively. Their corresponding values of O atom are -0.67, -0.64, -0.65 and -0.67 e in the pure Sm-, Pr- and Ga-doped structures. The most negatively charged atoms are the oxygen sites, which is slightly lower in pure anatase TiO2than those in Sm-doped and Pr-doped structures. The charge density near the dopants M is shown in Fig. 2 intuitively (only showing one plane[110]). From Fig. 2, we can see that the covalent bond strengths between the metal atom and adjacent O atoms increase in order of Ti-O, Pr-O, Sm-O and Ga-O. There is a covalent bonding behavior in the former two cases, but ionic bonding characteristic in the latter two case. These imply that more electron transfer from the Ga or Sm atom to an adjacent O atom rather than the sharing of electrons between Ti or Pr and O atoms.

    Fig. 2 The charge density of the M-doped anatase TiO2 (a) pure anatase TiO2; (b) Sm-doped; (c) Pr-doped; (d) Ga-doped.

    As stated above,the doped atoms change the center of the positive charge centers to form internal dipole moment, which is conducive to the separation of photo-generated electron hole pairs, especially in the Sm-doped case. This result is in agreement with the following conclusion from the band structure and DOS analysis.

    3.2 Band structure and DOS

    To analyze the modifications of electronic properties and discover the origin reason of enhanced visible-light photocatalytic activity, the band structures and density of states (DOS) including projected density of states (PDOS) of pure and M-doped anatase TiO2were calculated. The calculated band gap structures are given in Fig. 3, the DOS and PDOS results are plotted in Fig. 4.

    Fig.3 Band structures for all the simulated systems. (a) pure anatase TiO2; (b) Sm-doped; (c) Pr-doped; (d) Ga-doped.

    As seen in Fig.3, the modification of Sm to TiO2introduces new states below the conduction band edge compared to the original TiO2, meanwhile, the dopant of Pr introduces both the conduction band and valence band to low edge, and the electronic gap between the highest occupied and lowest unoccupied electronic states is modified. As a result, the band gaps of Sm-doped (0.280 eV) and Pr-doped (2.000 eV) systems were reduced by 1.866 and 0.146 eV compared with that of pure TiO2(2.146 eV) respectively, which led to the red shift of the optical absorption edge and visible light could be absorbed by doped systems. Similar phenomena have been found by other groups both theoretically and experimentally[26, 27]. Whereas, the band gap increases by 0.051 eV when the dopant element being of Ga (2.197 eV).

    Although the DFT method underestimates the band gap due to a self-interaction error, and the actual band gap of TiO2should be slightly larger than the calculated values, but the relative order and trend are credible.

    The conduction and valence orbitals changes could be analyzed based on the DOS and PDOS of all systems. As shown in Fig. 4a, the valence bands are mainly made up of O-2p between -5.04 and 0 eV, and the small part of which is made up of Ti-3d orbitals between -5.01 eV and 0 eV. Meanwhile, the O-2p orbital hybridized with Ti-3d orbitals between 0 and -5.04 eV in the valence band, and the O-2p orbital hybridized with the Ti-3d orbital between 2.146 and 7.543 eV in the conduction band.

    Fig. 4 Density of states for all the simulated systems: (a) pure anatase TiO2; (b) Sm-doped; (c) Pr-doped; (d) Ga-doped.

    As shown in Fig.4b, Fig. 4c and Fig. 4d, the compositions of the conduction band and valence band in doped systems are homologous with the pure one. However, the conduction band moved towards the Fermi level, which resulted in the reduction of band gap in Sm-doped and Pr-doped systems. The dopants actually create new energy levels between the conduction and valence bands, known as inter-levels, in the TiO2band-gap. Meanwhile, Ga-doped TiO2behaves differently, when an Ga atom was introduced into TiO2, Ga-4p and Ga-3d orbitals hybridized with the O-2p orbital between -6.88 and 0.102 eV in the valence band and the Ga-4d orbital hybridized with the O-2p orbital between 2.299 and 4.42 eV in the conduction band. The conduction bands moved towards higher energy compared to pure TiO2, which caused the band gap increasing 0.051 eV.

    4 Conclusions

    In summary, the anatase TiO2systems doped with elements of Sm, Pr, and Ga were studied by first principles calculations. The band gaps of Sm-doped and Pr-doped systems were reduced by 1.866 and 0.146 eV compared with that of pure TiO2respectively, whereas the band gap increases 0.051 eV when the dopant element being of Ga. Anatase TiO2doped by Sm and Pr can be possible efficacy for the visible light photo-catalysis and solar energy conversion. The reasons may be that more electrons transfer from the Sm or Pr atom to adjacent O atoms to affect the strength of the hybrid orbital of M-O, and the hybridized orbitals can form some impurity energy levels, which can reduce the recombination rate of photo-excited carrier and improve the visible-light absorption performance of TiO2gradually.

    猜你喜歡
    帶隙化工學院聊城
    使固態(tài)化學反應100%完成的方法
    密度泛函理論計算半導體材料的帶隙誤差研究
    國家開放大學石油和化工學院學習中心列表
    【鏈接】國家開放大學石油和化工學院學習中心(第四批)名單
    聊城高新區(qū)多措并舉保障貧困戶“居住無憂”
    一種基于BJT工藝的無運放低溫度系數(shù)的帶隙基準源
    聊城 因水而生 有水則靈
    走向世界(2018年11期)2018-12-26 01:12:44
    聊城,宛在水中央
    走向世界(2018年11期)2018-12-26 01:12:44
    新動能,新聊城
    走向世界(2018年11期)2018-12-26 01:12:32
    間距比對雙振子局域共振軸縱振帶隙的影響
    制服诱惑二区| 亚洲欧美精品综合一区二区三区| 亚洲成人免费av在线播放| 国产欧美日韩精品亚洲av| a级毛片在线看网站| 一级毛片 在线播放| 久久综合国产亚洲精品| 亚洲三区欧美一区| 蜜桃在线观看..| 性色av乱码一区二区三区2| 国产麻豆69| 久久青草综合色| 国产精品久久久久久精品电影小说| 高清欧美精品videossex| 最新的欧美精品一区二区| 欧美精品人与动牲交sv欧美| 麻豆av在线久日| 久9热在线精品视频| 免费不卡黄色视频| 国产精品免费大片| 精品少妇久久久久久888优播| 黑人欧美特级aaaaaa片| 久久国产亚洲av麻豆专区| 一本综合久久免费| 欧美国产精品va在线观看不卡| av线在线观看网站| 欧美日韩亚洲综合一区二区三区_| 国产欧美日韩综合在线一区二区| 女警被强在线播放| 亚洲成人手机| 在线观看人妻少妇| 国产福利在线免费观看视频| 欧美另类一区| 韩国高清视频一区二区三区| 久久久欧美国产精品| av网站免费在线观看视频| 色综合欧美亚洲国产小说| 一本大道久久a久久精品| 亚洲国产精品国产精品| 亚洲七黄色美女视频| 一本—道久久a久久精品蜜桃钙片| 国产免费一区二区三区四区乱码| 在线亚洲精品国产二区图片欧美| 国产av精品麻豆| 国产一区二区在线观看av| 亚洲精品久久午夜乱码| 999久久久国产精品视频| 国产在线视频一区二区| 国产精品秋霞免费鲁丝片| 日日爽夜夜爽网站| 精品人妻1区二区| 亚洲成色77777| 操出白浆在线播放| 一区二区三区乱码不卡18| 十八禁高潮呻吟视频| 国产免费现黄频在线看| 国产一区亚洲一区在线观看| 亚洲欧美一区二区三区国产| 人妻一区二区av| 大香蕉久久成人网| 国产99久久九九免费精品| 蜜桃国产av成人99| 岛国毛片在线播放| 日本wwww免费看| 大片免费播放器 马上看| 99久久人妻综合| 亚洲av电影在线进入| 精品国产一区二区久久| 十八禁人妻一区二区| 午夜激情久久久久久久| 99热全是精品| 美女高潮到喷水免费观看| 99热国产这里只有精品6| av国产精品久久久久影院| 在线亚洲精品国产二区图片欧美| 肉色欧美久久久久久久蜜桃| 男女边吃奶边做爰视频| 秋霞在线观看毛片| 十八禁网站网址无遮挡| 久久这里只有精品19| 99久久综合免费| 国产日韩欧美亚洲二区| a级毛片在线看网站| 国产人伦9x9x在线观看| 好男人电影高清在线观看| 亚洲av日韩精品久久久久久密 | 欧美日韩视频高清一区二区三区二| 激情视频va一区二区三区| 午夜福利,免费看| 香蕉国产在线看| 啦啦啦中文免费视频观看日本| 久久久久久久国产电影| 狠狠婷婷综合久久久久久88av| 18禁裸乳无遮挡动漫免费视频| 老司机影院成人| 午夜免费观看性视频| 亚洲av国产av综合av卡| 国精品久久久久久国模美| 嫩草影视91久久| 久久中文字幕一级| 一本色道久久久久久精品综合| 久久精品亚洲熟妇少妇任你| a级片在线免费高清观看视频| 久久九九热精品免费| 脱女人内裤的视频| 亚洲国产精品国产精品| 亚洲av日韩在线播放| 国产男女内射视频| 国产成人欧美| 免费观看av网站的网址| 在线观看国产h片| 亚洲精品国产区一区二| 精品国产一区二区三区久久久樱花| 各种免费的搞黄视频| 亚洲精品日本国产第一区| 久久久精品免费免费高清| 国产精品偷伦视频观看了| 脱女人内裤的视频| 日本欧美视频一区| 中文欧美无线码| av在线播放精品| 午夜免费成人在线视频| 亚洲欧美一区二区三区黑人| 色视频在线一区二区三区| 日韩制服丝袜自拍偷拍| 久久久久久久久久久久大奶| 国产高清videossex| 亚洲欧美一区二区三区久久| 午夜视频精品福利| 亚洲av美国av| 1024视频免费在线观看| 最新在线观看一区二区三区 | 国产在线一区二区三区精| 精品人妻熟女毛片av久久网站| 午夜福利在线免费观看网站| 欧美日韩成人在线一区二区| 成人三级做爰电影| 精品少妇内射三级| 激情视频va一区二区三区| 男女无遮挡免费网站观看| 精品国产乱码久久久久久男人| 国产欧美日韩综合在线一区二区| 91老司机精品| 午夜激情久久久久久久| 真人做人爱边吃奶动态| 亚洲精品成人av观看孕妇| 天天影视国产精品| 大陆偷拍与自拍| 人人妻人人澡人人看| 啦啦啦中文免费视频观看日本| 超碰97精品在线观看| 熟女av电影| 天天添夜夜摸| 精品国产超薄肉色丝袜足j| 韩国精品一区二区三区| 亚洲av美国av| 欧美激情高清一区二区三区| 一区二区av电影网| 高潮久久久久久久久久久不卡| 亚洲欧美一区二区三区国产| 国产野战对白在线观看| 九草在线视频观看| 日本猛色少妇xxxxx猛交久久| 亚洲精品国产区一区二| 国产女主播在线喷水免费视频网站| 成人18禁高潮啪啪吃奶动态图| 韩国精品一区二区三区| 超色免费av| 国产成人a∨麻豆精品| 国产日韩欧美在线精品| 男人操女人黄网站| 亚洲午夜精品一区,二区,三区| 久久精品aⅴ一区二区三区四区| 国产女主播在线喷水免费视频网站| 日韩伦理黄色片| 亚洲精品久久午夜乱码| 麻豆乱淫一区二区| 男人添女人高潮全过程视频| 99re6热这里在线精品视频| 久久女婷五月综合色啪小说| 欧美日韩成人在线一区二区| 亚洲欧洲日产国产| 热99国产精品久久久久久7| 精品人妻1区二区| 九草在线视频观看| 麻豆国产av国片精品| 亚洲av电影在线观看一区二区三区| a 毛片基地| 天天影视国产精品| 狠狠婷婷综合久久久久久88av| e午夜精品久久久久久久| 午夜日韩欧美国产| av线在线观看网站| 欧美日韩综合久久久久久| 性少妇av在线| 国产精品久久久久久精品电影小说| 男女床上黄色一级片免费看| 男女边吃奶边做爰视频| 日本91视频免费播放| 欧美亚洲 丝袜 人妻 在线| 91精品伊人久久大香线蕉| 精品视频人人做人人爽| 国产成人91sexporn| 侵犯人妻中文字幕一二三四区| 视频区欧美日本亚洲| 欧美中文综合在线视频| 亚洲少妇的诱惑av| 99精品久久久久人妻精品| 在现免费观看毛片| 久久久国产精品麻豆| 丰满人妻熟妇乱又伦精品不卡| 嫩草影视91久久| 日韩av在线免费看完整版不卡| 美女福利国产在线| 亚洲国产精品999| 18禁裸乳无遮挡动漫免费视频| 国产亚洲一区二区精品| 国产免费福利视频在线观看| 大片免费播放器 马上看| 午夜免费男女啪啪视频观看| 777米奇影视久久| 999精品在线视频| 成年美女黄网站色视频大全免费| 欧美久久黑人一区二区| 亚洲第一av免费看| 久久这里只有精品19| 亚洲欧美日韩另类电影网站| 成年美女黄网站色视频大全免费| 好男人视频免费观看在线| 国产91精品成人一区二区三区 | 久久人妻福利社区极品人妻图片 | 国产精品一区二区在线观看99| 欧美国产精品一级二级三级| 亚洲 国产 在线| 母亲3免费完整高清在线观看| 啦啦啦在线免费观看视频4| avwww免费| 午夜老司机福利片| 天堂俺去俺来也www色官网| 亚洲九九香蕉| 日日摸夜夜添夜夜爱| 午夜福利乱码中文字幕| 男人操女人黄网站| 亚洲欧美一区二区三区国产| 成在线人永久免费视频| 国产av国产精品国产| 午夜免费观看性视频| 国产成人91sexporn| 国产无遮挡羞羞视频在线观看| 大话2 男鬼变身卡| 咕卡用的链子| 岛国毛片在线播放| 久久久久久久精品精品| 国产av一区二区精品久久| 桃花免费在线播放| 不卡av一区二区三区| 性色av一级| 久久99热这里只频精品6学生| 国产片特级美女逼逼视频| 亚洲精品久久成人aⅴ小说| 1024视频免费在线观看| 黄片播放在线免费| 欧美日韩亚洲高清精品| 女性生殖器流出的白浆| 99热网站在线观看| 欧美性长视频在线观看| 久久亚洲精品不卡| 久久精品成人免费网站| 人人妻人人添人人爽欧美一区卜| 欧美 日韩 精品 国产| 成人亚洲欧美一区二区av| 亚洲免费av在线视频| 国产精品久久久久久精品电影小说| 亚洲视频免费观看视频| 另类亚洲欧美激情| 亚洲免费av在线视频| 午夜视频精品福利| 麻豆国产av国片精品| 久久久久国产精品人妻一区二区| 成年美女黄网站色视频大全免费| 最近手机中文字幕大全| a级片在线免费高清观看视频| 国产女主播在线喷水免费视频网站| 18禁国产床啪视频网站| kizo精华| 香蕉丝袜av| 成人国产av品久久久| 在线亚洲精品国产二区图片欧美| 久久鲁丝午夜福利片| 国产极品粉嫩免费观看在线| 精品少妇内射三级| 国产无遮挡羞羞视频在线观看| 欧美人与善性xxx| 久9热在线精品视频| 99久久综合免费| 亚洲男人天堂网一区| av网站在线播放免费| 97在线人人人人妻| 免费不卡黄色视频| 精品人妻一区二区三区麻豆| 国产麻豆69| 悠悠久久av| 国产成人影院久久av| 亚洲一区中文字幕在线| 你懂的网址亚洲精品在线观看| 免费一级毛片在线播放高清视频 | 美女午夜性视频免费| 久久这里只有精品19| 晚上一个人看的免费电影| 只有这里有精品99| 亚洲熟女毛片儿| 老鸭窝网址在线观看| 又黄又粗又硬又大视频| 国产有黄有色有爽视频| 99久久99久久久精品蜜桃| 久久久久精品人妻al黑| 亚洲 欧美一区二区三区| 日韩精品免费视频一区二区三区| 中文精品一卡2卡3卡4更新| 亚洲国产精品国产精品| 亚洲av男天堂| 国产深夜福利视频在线观看| 99精品久久久久人妻精品| 久久久久久免费高清国产稀缺| 麻豆av在线久日| 老司机在亚洲福利影院| av网站免费在线观看视频| 热99国产精品久久久久久7| 亚洲中文av在线| 啦啦啦在线观看免费高清www| 精品久久久精品久久久| 国产99久久九九免费精品| 婷婷色av中文字幕| 美女脱内裤让男人舔精品视频| 精品第一国产精品| 国产日韩欧美在线精品| av福利片在线| 亚洲精品国产av成人精品| 欧美变态另类bdsm刘玥| 久久久亚洲精品成人影院| cao死你这个sao货| 又粗又硬又长又爽又黄的视频| 成年人午夜在线观看视频| 亚洲国产看品久久| 亚洲精品国产一区二区精华液| 免费在线观看黄色视频的| 免费在线观看视频国产中文字幕亚洲 | 婷婷色麻豆天堂久久| 精品国产国语对白av| av视频免费观看在线观看| bbb黄色大片| 老司机在亚洲福利影院| 国产一区二区激情短视频 | 色视频在线一区二区三区| 少妇精品久久久久久久| 久久性视频一级片| 亚洲欧美一区二区三区久久| 性高湖久久久久久久久免费观看| 色视频在线一区二区三区| 亚洲,欧美精品.| 亚洲欧洲精品一区二区精品久久久| 考比视频在线观看| av天堂久久9| 免费看不卡的av| 国产高清videossex| 久久久欧美国产精品| 国产高清videossex| 亚洲视频免费观看视频| 欧美日韩视频高清一区二区三区二| 欧美黑人欧美精品刺激| 国精品久久久久久国模美| 国产在线免费精品| 99久久99久久久精品蜜桃| 久久国产精品大桥未久av| 欧美日韩国产mv在线观看视频| 成人亚洲精品一区在线观看| 亚洲中文日韩欧美视频| 女性生殖器流出的白浆| 女人爽到高潮嗷嗷叫在线视频| 大陆偷拍与自拍| 国语对白做爰xxxⅹ性视频网站| 精品国产一区二区三区久久久樱花| 一级毛片我不卡| 精品国产乱码久久久久久男人| 高清欧美精品videossex| 精品免费久久久久久久清纯 | 免费观看a级毛片全部| 国产高清视频在线播放一区 | 中文字幕高清在线视频| 大陆偷拍与自拍| 日韩免费高清中文字幕av| 精品国产乱码久久久久久男人| 免费在线观看视频国产中文字幕亚洲 | 亚洲一区二区三区欧美精品| 国产无遮挡羞羞视频在线观看| 免费观看a级毛片全部| 18禁观看日本| 精品熟女少妇八av免费久了| 日韩中文字幕欧美一区二区 | 嫁个100分男人电影在线观看 | 国产精品久久久久久精品电影小说| 久久亚洲国产成人精品v| 国产成人91sexporn| 国产无遮挡羞羞视频在线观看| 人成视频在线观看免费观看| 亚洲中文日韩欧美视频| 熟女av电影| 国产男女内射视频| 精品亚洲乱码少妇综合久久| 欧美日韩视频精品一区| 中文乱码字字幕精品一区二区三区| 啦啦啦 在线观看视频| 久久久久精品国产欧美久久久 | 精品少妇一区二区三区视频日本电影| 你懂的网址亚洲精品在线观看| 日本欧美国产在线视频| 亚洲一区二区三区欧美精品| 丝袜在线中文字幕| 国产成人91sexporn| 免费高清在线观看日韩| 一级毛片我不卡| 51午夜福利影视在线观看| 中文乱码字字幕精品一区二区三区| 日韩一本色道免费dvd| 建设人人有责人人尽责人人享有的| 国产精品成人在线| 久久久久久久国产电影| 亚洲精品乱久久久久久| 亚洲人成网站在线观看播放| 看免费av毛片| 欧美日韩亚洲综合一区二区三区_| 精品久久久精品久久久| 亚洲av日韩在线播放| 亚洲精品一卡2卡三卡4卡5卡 | 色婷婷av一区二区三区视频| 国产免费又黄又爽又色| 久久影院123| 男人添女人高潮全过程视频| 国产精品人妻久久久影院| 国产淫语在线视频| 久久人人爽av亚洲精品天堂| 日韩熟女老妇一区二区性免费视频| 一区二区三区乱码不卡18| 最近最新中文字幕大全免费视频 | 亚洲人成电影免费在线| 波多野结衣av一区二区av| 2018国产大陆天天弄谢| 高清视频免费观看一区二区| 精品少妇内射三级| 国产成人精品无人区| 一边摸一边做爽爽视频免费| 亚洲一卡2卡3卡4卡5卡精品中文| 人人妻,人人澡人人爽秒播 | 国产成人系列免费观看| 搡老乐熟女国产| 在线天堂中文资源库| 女人爽到高潮嗷嗷叫在线视频| 欧美在线一区亚洲| 亚洲精品国产区一区二| 亚洲免费av在线视频| 午夜免费观看性视频| 91老司机精品| 成人亚洲欧美一区二区av| 一边摸一边抽搐一进一出视频| 免费人妻精品一区二区三区视频| 亚洲av成人不卡在线观看播放网 | 亚洲欧美中文字幕日韩二区| 只有这里有精品99| 国产在线一区二区三区精| 啦啦啦在线观看免费高清www| 亚洲成人国产一区在线观看 | 国产福利在线免费观看视频| 热re99久久精品国产66热6| 人人妻人人澡人人看| 国产又爽黄色视频| 黄片播放在线免费| 国产精品av久久久久免费| 亚洲欧美中文字幕日韩二区| 日本午夜av视频| 十八禁高潮呻吟视频| 男女边吃奶边做爰视频| www.av在线官网国产| 最近手机中文字幕大全| 欧美亚洲 丝袜 人妻 在线| 自线自在国产av| 亚洲综合色网址| 高清视频免费观看一区二区| 一区二区三区乱码不卡18| 天天躁夜夜躁狠狠久久av| 少妇粗大呻吟视频| 一本色道久久久久久精品综合| 国产又色又爽无遮挡免| 99久久综合免费| 男的添女的下面高潮视频| 超碰97精品在线观看| 桃花免费在线播放| 1024香蕉在线观看| 国产精品一区二区免费欧美 | 黄色毛片三级朝国网站| 日韩精品免费视频一区二区三区| 亚洲天堂av无毛| 国产精品99久久99久久久不卡| 母亲3免费完整高清在线观看| 欧美日韩av久久| 久久99一区二区三区| 色婷婷久久久亚洲欧美| 久久久久久久久久久久大奶| 国产精品熟女久久久久浪| 国产精品av久久久久免费| 99国产精品99久久久久| 99国产精品免费福利视频| 国产精品一区二区在线不卡| 久久毛片免费看一区二区三区| 国产片内射在线| 国产不卡av网站在线观看| 中文字幕最新亚洲高清| 1024香蕉在线观看| 国产一区二区 视频在线| 人人妻人人爽人人添夜夜欢视频| 久久午夜综合久久蜜桃| 亚洲成人国产一区在线观看 | 考比视频在线观看| 欧美另类一区| 18禁国产床啪视频网站| 黄片播放在线免费| 精品少妇黑人巨大在线播放| 日本av手机在线免费观看| 一二三四社区在线视频社区8| 亚洲 欧美一区二区三区| 黄色视频不卡| av不卡在线播放| 久久精品亚洲av国产电影网| av在线老鸭窝| 亚洲精品久久午夜乱码| 纵有疾风起免费观看全集完整版| 午夜精品国产一区二区电影| 夫妻午夜视频| 久久国产精品大桥未久av| 一边摸一边做爽爽视频免费| 最新在线观看一区二区三区 | 免费久久久久久久精品成人欧美视频| 国产精品九九99| 一边摸一边抽搐一进一出视频| 欧美日韩福利视频一区二区| 日韩欧美一区视频在线观看| 亚洲av片天天在线观看| 十八禁人妻一区二区| 在线观看人妻少妇| 天堂8中文在线网| 国产伦人伦偷精品视频| 美女视频免费永久观看网站| 大片电影免费在线观看免费| 女人久久www免费人成看片| 亚洲欧美一区二区三区国产| 性少妇av在线| 一本一本久久a久久精品综合妖精| 一区二区三区乱码不卡18| 国产黄频视频在线观看| 国产精品麻豆人妻色哟哟久久| 久久久久久久精品精品| 亚洲黑人精品在线| 99久久人妻综合| 久久国产精品人妻蜜桃| 性色av乱码一区二区三区2| 悠悠久久av| 男女边吃奶边做爰视频| 成人亚洲欧美一区二区av| 丰满饥渴人妻一区二区三| 大码成人一级视频| 国产一区二区三区综合在线观看| 曰老女人黄片| 日本wwww免费看| 亚洲,欧美精品.| 在现免费观看毛片| 女警被强在线播放| 热99久久久久精品小说推荐| 无限看片的www在线观看| 亚洲天堂av无毛| 精品人妻在线不人妻| 亚洲av片天天在线观看| 久久性视频一级片| 亚洲国产看品久久| 午夜日韩欧美国产| 久久九九热精品免费| 男人添女人高潮全过程视频| 大片免费播放器 马上看| 国产黄频视频在线观看| 美女中出高潮动态图| 精品少妇内射三级| 91国产中文字幕| 久久狼人影院| 午夜福利视频精品| 国产精品偷伦视频观看了| 亚洲 国产 在线| 亚洲精品乱久久久久久| av天堂在线播放| 两个人免费观看高清视频| 国产精品欧美亚洲77777| 免费在线观看完整版高清| 亚洲欧美日韩高清在线视频 | 好男人视频免费观看在线| 最近最新中文字幕大全免费视频 | 国产黄色免费在线视频| 午夜视频精品福利| 一本—道久久a久久精品蜜桃钙片| 日韩欧美一区视频在线观看| 精品一区二区三区av网在线观看 | 日日爽夜夜爽网站| 男女之事视频高清在线观看 | 精品少妇黑人巨大在线播放| 热re99久久国产66热| 最近最新中文字幕大全免费视频 | 美女扒开内裤让男人捅视频| 亚洲人成77777在线视频| 美女视频免费永久观看网站|