• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Endpoints for contractive multi-valued maps on the metric space of partially ordered module with monotonic laws

    2019-03-02 13:17:22,,

    , ,

    (College of Mathematics and Systems Science, Shenyang Normal University, Shenyang 110034, China)

    Abstract: The problem of endpoints is a new study line of the fixed point theory. The fixed point theory is very interesting and meaningful, which has a wide range of applications and profound theoretical value. The research area mainly studies the existence, uniqueness and solution method of fixed points of various mappings in different spaces. In 2007, Huang and Zhang introduced cone metrics paces, proved some fixed point theorems of contractive mappings on cone metric spaces. In recent years, the problem of developing different spaces and researching fixed points of various mappings in the developed spaces excited research enthusiasm of many scholars. In this paper we develop the metric space of partially ordered module with monotonic laws and the related convergence of sequences, which extend the cone metric space and the related convergence of sequences introduced by Huang and Zhang(2007). And establish three endpoint theorems for contractive multi-valued maps on such space, which cover some recent results of the fixed point theory. Our contributions not only vastly extend the range and the depth of the fixed point research area, but also strongly advance the mutual influences between the analysis and algebra.

    Key words: endpoint; metric space; partially ordered module; monotonic law; topological structure; multi-valued map

    0 Introduction

    LetXbe a set andT:X→2Xbe a multi-valued(set-valued) map. A pointxis called a fixed point ofTifx∈Tx. Define Fix(T)={x∈X:x∈Tx}. An elementx∈Xis said to be an endpoint (or stationary point) ofTifTx={x}. We denote the set of all endpoints ofTby End(T).

    In recent years, there has been an increasing interest in extending the study of fixed points. For example, Huang and Zhang[1](2007) replaced the real numbers by ordering Banach space and defined cone metric space. They also established some fixed point theorems for contractive type maps in a normal cone metric space. Subsequently, in the cone metric space, some other authors gave many results about fixed point, common fixed point and endpoint theory for maps and multi-valued maps, see e.g. [2-6]. In particular, by providing non-normal cones and omitting the assumption of normality, Rezapour and Hamlbarani[2](2008) generalize the major results of [1]. Lakshmikanthama and Ciric[7](2009) studied coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. Zhang[8](2010) studied fixed point theorems for multi-valued monotone mappings in ordered metric spaces. Subba Rao and Pant[9](2011) studied fixed point theorems in Boolean vector spaces. A. Amini-Harandi[10](2011) studied fixed point theorems for generalized quasi-contraction maps in vector modular spaces. Among many other studies, see e.g. [11-18] and the references therein.

    The investigation of endpoints of multi-valued mappings is an important extending of the study of fixed points, which was made as early as 30 years ago, and has received great attention in recent years, see e.g.[4,11-12] and the references therein.

    Following the trend stated above, thepresent work introduces the metric space of partially ordered module with monotonic laws, which extends the cone metric space, and established a few of endpoint theorems for the contractive type multi-valued maps on the metric space introduced by us.

    1 Preliminaries

    This section proposes necessary preliminaries for our posterior discussions.

    We first state, for a partial order ? of a set, we writeabto indicate thata?bbuta≠b, whereaandbare elements of the set.

    Definition1 LetRbe an integral ring with partial order ≤, andMbeR-module with partial order?. Let also

    M+={a∈M:a≥θ},M+={a∈M:a?θ},R+={r∈R:r≥0},R+={r∈R:r>0}.

    Hereθand 0 are respectively the null elements ofMandR. Assume≤and?satisfy the following laws. (m1) 1>0, where 1 is the unit element ofR. (m2)

    r≤s?r+t≤s+t,?r,s,t∈R; andr≤s?rt≤st,?r,s∈R, and?t∈R+.

    (m3)a?b?a+c?b+c,?a,b,c∈M. (m4)a?b?ra?rb,?a,b∈Mand ?r∈R+; andr≤s?ra?sa,?r,s∈Rand?a∈M+. Then we callMisa(R,≤,?)-partially ordered module with monotonic laws.

    Example1 LetEbe a Banach space of real fieldandPa subset ofE.Pis called a cone if and only if: 1)Pis closed, nonempty, andP≠{θ}; 2)r,s∈+,a,b∈P?ra+sb∈P; 3)a∈Pand -a∈P?a=θ. Here+denotes all the positive real numbers. For a given conePofE, define the partial order?byx?yif and only ify-x∈P, see [1]. Then it can be easily verified thatEis a (,≤,?)-partially ordered module with monotonic laws.

    In the following we always supposeMisa(R,≤,?)-partially ordered module with monotonic laws.

    Definition2 Let ? be a relation ofM.? is called a permissible topological structure ofMif it is satisfies: (t1)a?b?ab,?a,b∈M; (t2) (m3) And (m4); (t3)θ?a?b,?b?θ?a=θ; and (t4)a?b,b≤c?a?c.

    Remark1 In particular, when there exists nobsuch thatb?θ, we believe (t3) holds for everya∈M+, that is, in the case,M+={θ} actually.

    ‖u-(b-a)-(c-b)‖=‖u-(c-a)‖

    This impliesu-(b-a)∈N((c-b),r)?P. On the other hand, (b-a)∈Pfora?b. Sou=u-(b-a)+(b-a)∈P. NamelyN((c-a),r)?P. Henceθ?c-a,e.g.a?c, that is, (t4) holds. Therefore, ? is a permissible topological structure ofM.

    Definition3 Let ? be a permissible topological structure ofM. A sequence {an} ofMwithan≥θis said to be convergent toθ(in?) if ?ε?θ, there is a natural numberNsuch thatan?εfor alln>N, denoted byan→θ.

    Remark2 For moduleM, it is clear thatis a permissible topological structure. Let ? be another permissible topological structure and {an} be a sequence inM+. Then we can easily know thatan→θin ? ifan→θin. That is, the convergence inis stronger than in ?. So, the convergence in ? can be regarded as a kind of weak convergence.

    Remark3 For moduleEand the permissible topological structure ?of Example 2, let {an} be a sequence inE+andan→θin norm. Then,?ε?θ, there existsr∈+such thatN(ε,r)?P. Due toan→θin norm, there exists also a natural numberNsuch that ‖an‖N. Therefore, ‖(ε-an)-ε‖N. This implies thatan→θin? ifan→θin norm. Whetheran→θin norm ifan→θin ?is a topic for further research.

    Malways associates with a permissible topological structure ? and the mentioned convergence is in ? are assumed below.

    Lemma1 Let {an} and {bn} be two sequences ofMwithan→θandbn→θ. Thenan+bn→θ.

    ProofIf there is a natural numberNsuch thatan=θfor alln>N, then the result holds of course. Otherwise, we can complete the proof as follows. Letε?θ. Then we can choose anη∈Msuch thatη>θandε-η>θ. Hence, there are natural numbersN1andN2such thatan?η,?n>N1andbn?ε-η,?n>N2. PutN=max{N1,N2}. We have:an+bn?η+ε-η=ε,?n>N. So,an+bn→θ.

    Definition4 LetXbe a non-empty set. Suppose the mappingd:X×X→Msatisfies

    (d1)d(x,y)≥θfor allx,y∈Xandd(x,y) =θif and only ifx=y;

    (d2)d(x,y)=d(y,x) for allx,y∈X;

    (d3)d(x,y)?d(x,z)+d(z,y) for allx,y,z∈X.

    Thendis called a metric of partially ordered moduleM(with monotonic laws) onX, and (X,d) is called a metric space of moduleM(with monotonic laws).

    Next we always assume(X,d) is a metric space of moduleM.

    Definition5 Given (X,d), letx∈Xand {xn} be a sequence inX.

    ⅱ) {xn} is a Cauchy sequence if and only ifd(xn,xm)→θ, that is, ?ε?θ, there is a natural numberNsuch thatd(xn,xm)?εfor alln,m≥N.

    ⅲ) (X,d) is complete if and only if every Cauchy sequence is convergent.

    2 Endpoint theory

    Now we are ready to propose and prove our main results.

    We first extend Banach’s Contraction Principle of single maps in the usual metric space to multi-valued maps in the metric space of moduleMby the following Theorem 1.

    Lemma2 Assume (X,d) is complete andT:X→(2X-?) is a multi-valued map. Letx0∈X, andxn∈Txn-1for alln∈. If there exists ar∈Rwith 0≤r<1, such that

    d(xn+1,xn)?rd(xn,xn-1),?n∈,

    (1)

    andrn·d(x1,x0)→θ, then the iterative sequence {xn} is convergent.

    Proof. Firstly, by (1) we have

    d(xn+1,xn)?rd(xn,xn-1)?…?rnd(x1,x0).

    (2)

    Next, for arbitraryn,m∈, assumingn

    whereSm-n-1=1+r+…+rm-n-1. For 0≤r<1, this leads to

    (1-r)d(xn,xm)?(1-r)Sm-n-1rnd(x1,x0).

    (3)

    On the other hand, fromSm-n-1=1+r+…+rm-n-1, we have

    rSm-n-1=r+r2+…+rm-n,

    further

    (1-r)Sm-n-1=1-rm-n<1.

    (4)

    Combining (3) and (4), we obtain

    (1-r)d(xn,xm)?rnd(x1,x0).

    (5)

    Finally, letε?θ. Then (1-r)ε?θalso. Thus, forrnd(x1,x0)→θ, there exists a natural numberNsuch that

    rnd(x1,x0)?(1-r)ε

    (6)

    for alln>N. Combining (5) and (6), we have

    (1-r)d(xn,xm)?(1-r)ε?d(xn,xm)?ε

    for alln>m>N. That is, the sequence {xn} is a Cauchy sequence. Therefore, we can know that {xn} is convergent from (X,d) is complete. This ends the proof.

    Theorem1 Given (X,d), assumeT:X→(2X-?) be a multi-valued map. If there exists ar∈Rwith 0≤r<1, such that

    d(x′,y′)?rd(x,y),?x′∈Tx,?y′∈Ty,

    (7)

    for allx,y∈Xwithx≠y, then we have the following conclusions.

    ⅰ)Thas one fixed point at most. (|End(T)|≤|Fix(T)|≤1. Here |End(T)| denotes the cardinal number of End(T)).

    ⅱ) If(X,d) is complete andrn·a→θfor anya∈M+, then Thas a unique endpoint. (|End(T)|=1).

    Proof. 1) To prove (ⅰ), letx,y∈Fix(T) andx≠y. Then, by (7), we have

    d(x,y)?rd(x,y)?(1-r)d(x,y)?θ?d(x,y)?θ.

    Ford(x,y)±θ, this impliesd(x,y)=θ. Hence we havex=yfrom (d1). So |End(T)|≤|Fix(T)|≤1. (ⅰ) holds.

    2) To prove (ⅱ), we first assume|End(T)|<1. Then, for anyx0∈X, we can construct a sequence {xn} ofXsuch thatxn∈Txn-1andxn≠xn-1for alln∈. For the iterative sequence, by (7), we can easily know (1) holds. Hence, from Lemma 1, it converges to a pointxofXsince (X,d) is complete andrn·a→θfor anya∈M+. We showx∈End(T) next.

    Sincexn≠xn-1for alln∈, we can choose a subsequence {xni} of {xn} such thatxni≠xfor alli∈. Hence, without loss of generality, we assumexn≠xfor alln∈. Letx′∈Tx. Then

    Forxn→x, by Lemma 1, we haved(x,xn)+d(xn-1,x)→θ. Hence, from (8), we further know thatd(x,x′)?εfor anyε?θ. This yields tod(x,x′)=θdue tod(x,x′)±θ. That isx′=x. Sox∈End(T). For this contradicts |End(T)|<1, we have |End(T)|≥1.

    Finally, in terms of |End(T)|≥1 and (ⅰ), we have |End(T)|=1. (ⅱ) holds.

    The study to generalize and extend Banach’s Contraction Principle has been at the center of the research activity of fixed point theory for long time, and it has a wide range of applications in different areas such as nonlinear and adaptive control systems, fractal image decoding and convergence of recurrent networks. Recently, Huang and Zhang generalized the metric space by replacing real numbers with an ordered Banach space and obtained some fixed point theorems for mapping satisfying different contractive conditions, see[1]. Consequently, the research of fixed points in such spaces is followed by many other mathematicians, see e.g.[2-6] and the references therein. On the other hand, the investigations of endpoints of multi-valued maps, as is obviously an generalization of fixed points of single maps, have received much attention in recent years, see e.g.[11-12] and the references therein. Through the study of endpoints of multi-valued maps on the metric space of moduleM, we not only generalize some recent results, such as the Theorem 1 of [1] and the Theorem 2.3 of [2], but also extend the activity range of this research line.

    Next, we extend Theorem 2.6 and Theorem 2.7 of[2] (which generalize Theorem 3 and Theorem 4 of[1], respectively) to the Theorem 2 below, which discusses about endpoints of other types of contractive maps.

    Theorem2 Given (X,d), assumeT:X→(2X-?) be a multi-valued map. If there exists ak∈R+with 2k=(k+k)<1, such that

    d(x′,y′)?k[d(x′,x)+d(y′,y)],?x′∈Tx,?y′∈Ty;

    (9)

    or

    d(x′,y′)?k[d(x′,y)+d(y′,x)],?x′∈Tx,?y′∈Ty,

    (10)

    for allx,y∈Xwithx≠y. Then we have the following conclusions.

    ⅰ)Thas one fixed point at most. (|End(T)|≤|Fix(T)|≤1)

    ⅱ) If(X,d) is complete and (2k)n·a→θfor anya∈M+, thenThas a unique endpoint.

    (|End(T)|=1)}

    Proof1) To prove (ⅰ), letx,y∈Fix(T) andx≠y. Then, from (9) or (10), we have

    d(x,y)?k[d(x,x)+d(y,y)]=θ

    or

    d(x,y)?k[d(x,y)+d(x,y)]=2kd(x,y)?(1-2k)d(x,y)?θ?d(x,y)?θ.

    (Note 2k<1.) Hencex=y. (ⅰ) holds.

    2) To prove (ⅱ), we first assume|End(T)|<1. Then, for anyx0∈X, we can construct a sequence {xn} ofXsuch thatxn∈Txn-1andxn≠xn-1for all n∈. From (9) or (10), we have

    d(xn+1,xn)?k[d(xn+1,xn)+d(xn,xn-1)]

    (11a)

    or

    d(xn+1,xn)?k[d(xn+1,xn-1)+d(xn,xn)]?k[d(xn+1,xn)+d(xn,xn-1)].

    (11b)

    This leads to

    (1-k)d(xn+1,xn)?kd(xn,xn-1)

    (12)

    Note thatk+k<1, that is,k<1-k. From (12) we obtain

    kd(xn+1,xn)?kd(xn,xn-1)?d(xn+1,xn)?d(xn,xn-1).

    (13)

    Combine (11) and (13), we have

    d(xn+1,xn)?k[d(xn,xn-1)+d(xn,xn-1)]=2kd(xn,xn-1).

    (14)

    Note that (X,d) is complete and (2k)na→θfor anya∈M+. From (14) and Lemma 2, {xn} converges to a pointxofX. We showx∈End(T) next.

    Without loss of generality, assumexn≠xfor alln∈. Letx′∈Tx.

    Then, from (9) or (10), we have

    or

    Sincexn→xand 0≤2k<1, this implies tod(x,x′)=θ. That is,x′=x, or sayx∈End(T). So|End(T)|≥1.

    Finally, in terms of |End(T)|≥1 and (ⅰ), we have |End(T)|=1. (ⅱ) holds.

    Finally, we further extend Theorem 2.8 of [2] to the Theorem 3 below.

    Theorem3 Given (X,d), assumeT:X→(2X-?) be a multi-valued map. If there existr,s∈R+withr+s<1, such that

    d(x′,y′)?rd(x′,y)+sd(x,y′),?x′∈Tx,?y′∈Ty

    (15)

    for allx,y∈Xwithx≠y. Then we have the following conclusions.

    ⅰ)Thas at most one fixed point. (|End(T)|≤|Fix(T)|≤1)

    ⅱ) If (X,d) is complete and (r+s)n·a→θfor anya∈M+, thenThas a unique endpoint.

    (|End(T)|=1)

    Proof1) To prove (ⅰ), letx,y∈Fix(T) andx≠y. Then, by (15), we have

    d(x,y)?rd(x,y)+sd(x,y)=(r+s)d(x,y).

    Since (r+s)<1, this impliesd(x,y)=θ. (ⅰ) holds.

    2) To prove (ⅱ), we first assume |End(T)|<1. Then, for anyx0∈X, we can construct a sequence {xn} ofXsuch thatxn∈Txn-1andxn≠xn-1for alln∈. By (15), we have

    On the other hand,

    d(xn+1,xn)=d(xn,xn+1)?rd(xn,xn)+sd(xn+1,xn-1)?(1-s)d(xn+1,xn)?sd(xn,xn-1).

    (17)

    Combining (16) and (17), we obtain

    {1+[1-(r+s)]}d(xn+1,xn)?(r+s)d(xn,xn-1).

    Since 0≤r+s<1, this implies

    d(xn+1,xn)?(r+s)d(xn,xn-1).

    (18)

    Note that (X,d) is complete and (r+s)n·a→θfor anya∈M+. From (18) and Lemma 2, we know that {xn} converges to a pointxofX. Without loss of generality, assumexn≠xfor alln∈. Letx′∈Tx.

    Then

    Sincexn→xand 0≤r+s<1, we can easily knowd(x,x′)=θ, that is,x=x′. This implies |End(T)|≥1. Finally, we obtain |End(T)|=1 from (ⅰ). (ⅱ) holds.

    Remark4 Basing on the observation of Example 1 and Example 2, we can immediately derive the major results of[1] and[2] from our Theorem 1, Theorem 2 and Theorem 3, respectively. For example, we can immediately derive Theorem 2.3 of[2], which generalize Theorem 1 of[1], from our Theorem 1. So those are extended, or say are covered, by our results.

    On the other hand, we must state, the extension is never trivial. It can been easily seen from our results and their proofs.

    Finally, we hope that the present work will stimulate more contributions in the research area of the fixed point theory.

    Acknowledgements

    The author cordially thanks the anonymous referees for their valuable comments which lead to the improvement of this paper.

    欧美日韩亚洲高清精品| 18禁动态无遮挡网站| 久久综合国产亚洲精品| 精品99又大又爽又粗少妇毛片| 日韩av不卡免费在线播放| 一区福利在线观看| 久久影院123| 亚洲天堂av无毛| 久久久国产精品麻豆| 国产野战对白在线观看| 我要看黄色一级片免费的| 欧美日韩亚洲国产一区二区在线观看 | 国产亚洲精品第一综合不卡| 欧美 亚洲 国产 日韩一| 欧美精品国产亚洲| 伊人亚洲综合成人网| 午夜免费观看性视频| 黄网站色视频无遮挡免费观看| 青青草视频在线视频观看| 日韩伦理黄色片| 欧美日韩一区二区视频在线观看视频在线| 欧美精品高潮呻吟av久久| 亚洲精品日本国产第一区| 在线观看国产h片| 最黄视频免费看| 九草在线视频观看| 女人高潮潮喷娇喘18禁视频| 亚洲国产精品成人久久小说| 国产精品一区二区在线不卡| 午夜av观看不卡| 大陆偷拍与自拍| 午夜福利一区二区在线看| 建设人人有责人人尽责人人享有的| 少妇猛男粗大的猛烈进出视频| 看非洲黑人一级黄片| 黄色一级大片看看| 午夜影院在线不卡| 性色av一级| 日韩欧美精品免费久久| 午夜激情久久久久久久| 这个男人来自地球电影免费观看 | 国产日韩欧美在线精品| 欧美日韩精品网址| 综合色丁香网| 99久久中文字幕三级久久日本| 交换朋友夫妻互换小说| 亚洲精品美女久久av网站| 亚洲国产毛片av蜜桃av| 国产无遮挡羞羞视频在线观看| 王馨瑶露胸无遮挡在线观看| 在线观看三级黄色| 在线观看免费日韩欧美大片| 久久人妻熟女aⅴ| 两个人免费观看高清视频| 国产欧美日韩一区二区三区在线| 一本久久精品| 青春草亚洲视频在线观看| 日韩制服骚丝袜av| 人成视频在线观看免费观看| 久久久久精品人妻al黑| 美女中出高潮动态图| 老汉色∧v一级毛片| 亚洲,一卡二卡三卡| 亚洲综合色网址| 国产欧美日韩综合在线一区二区| 中文字幕人妻丝袜制服| 尾随美女入室| 久久久a久久爽久久v久久| 黄色 视频免费看| 夜夜骑夜夜射夜夜干| 久久午夜综合久久蜜桃| 亚洲国产av新网站| 久久久久久久久久久久大奶| 久久精品国产亚洲av涩爱| 国产日韩欧美在线精品| 久热久热在线精品观看| 国产黄色视频一区二区在线观看| 青青草视频在线视频观看| 最近最新中文字幕免费大全7| 男女边摸边吃奶| 国产精品av久久久久免费| 婷婷色麻豆天堂久久| 欧美变态另类bdsm刘玥| 成年av动漫网址| 韩国高清视频一区二区三区| 午夜老司机福利剧场| 成人影院久久| 桃花免费在线播放| 国产欧美日韩综合在线一区二区| 一级片免费观看大全| 国产精品一区二区在线观看99| 亚洲国产看品久久| 久久久久久人妻| 少妇熟女欧美另类| av电影中文网址| 国产综合精华液| 国产激情久久老熟女| 免费播放大片免费观看视频在线观看| 免费人妻精品一区二区三区视频| 成人免费观看视频高清| 国产探花极品一区二区| 秋霞伦理黄片| 国产在线一区二区三区精| 丰满饥渴人妻一区二区三| 丝袜脚勾引网站| 国产免费一区二区三区四区乱码| 成人18禁高潮啪啪吃奶动态图| 777米奇影视久久| 精品一区二区免费观看| 国产精品成人在线| 欧美精品一区二区大全| 国产精品av久久久久免费| 精品少妇黑人巨大在线播放| 国产色婷婷99| 伊人久久大香线蕉亚洲五| 最近的中文字幕免费完整| 国产在视频线精品| av在线播放精品| 亚洲内射少妇av| 免费观看av网站的网址| 亚洲男人天堂网一区| 看十八女毛片水多多多| 老汉色∧v一级毛片| 久久久久人妻精品一区果冻| 男人操女人黄网站| 一级片免费观看大全| 午夜福利在线观看免费完整高清在| 日韩,欧美,国产一区二区三区| 精品人妻在线不人妻| 女人高潮潮喷娇喘18禁视频| 国产乱来视频区| av女优亚洲男人天堂| 久久国产亚洲av麻豆专区| av一本久久久久| 777米奇影视久久| 中国三级夫妇交换| 日本午夜av视频| 这个男人来自地球电影免费观看 | 黄色配什么色好看| 免费在线观看完整版高清| 亚洲精品久久成人aⅴ小说| 涩涩av久久男人的天堂| 免费看av在线观看网站| 最近的中文字幕免费完整| 在线 av 中文字幕| 性色avwww在线观看| 99久久综合免费| 91在线精品国自产拍蜜月| 久久热在线av| 国产精品 欧美亚洲| 中文字幕色久视频| 日本vs欧美在线观看视频| 免费在线观看黄色视频的| 亚洲精品,欧美精品| 欧美精品人与动牲交sv欧美| 免费观看av网站的网址| 国产成人精品久久久久久| 美女脱内裤让男人舔精品视频| 在线天堂中文资源库| 老汉色av国产亚洲站长工具| 亚洲,欧美,日韩| 成年女人在线观看亚洲视频| 国产精品久久久av美女十八| 久久久国产欧美日韩av| 久久久久久久大尺度免费视频| 婷婷色av中文字幕| 青春草国产在线视频| 亚洲欧美精品综合一区二区三区 | 少妇人妻精品综合一区二区| 国产精品熟女久久久久浪| 天天躁日日躁夜夜躁夜夜| 久久精品国产综合久久久| 黄色毛片三级朝国网站| 成人亚洲精品一区在线观看| 99国产精品免费福利视频| 国产成人一区二区在线| kizo精华| 十八禁网站网址无遮挡| 亚洲第一青青草原| 免费在线观看完整版高清| 尾随美女入室| 亚洲,欧美,日韩| 捣出白浆h1v1| 国产一区二区激情短视频 | 亚洲国产精品999| 亚洲,欧美精品.| 精品少妇黑人巨大在线播放| 人妻一区二区av| 亚洲精品一二三| 高清视频免费观看一区二区| 亚洲国产精品999| 久久精品国产亚洲av涩爱| 亚洲国产日韩一区二区| 久久鲁丝午夜福利片| 国产在线免费精品| 美女高潮到喷水免费观看| 看免费成人av毛片| 亚洲中文av在线| 香蕉丝袜av| 一级毛片黄色毛片免费观看视频| 免费观看av网站的网址| 精品国产乱码久久久久久男人| 黄频高清免费视频| 2022亚洲国产成人精品| 亚洲精品视频女| 亚洲av国产av综合av卡| 中文欧美无线码| 国产一区二区三区av在线| 日韩精品有码人妻一区| 菩萨蛮人人尽说江南好唐韦庄| 精品一区二区三区四区五区乱码 | 最近中文字幕高清免费大全6| 国产激情久久老熟女| 人妻人人澡人人爽人人| 我要看黄色一级片免费的| 五月天丁香电影| 免费黄色在线免费观看| 精品国产超薄肉色丝袜足j| 伊人久久大香线蕉亚洲五| 女人高潮潮喷娇喘18禁视频| av在线老鸭窝| 国产精品久久久av美女十八| 日韩一区二区视频免费看| 亚洲人成网站在线观看播放| 尾随美女入室| 亚洲中文av在线| 免费观看av网站的网址| 一级片免费观看大全| 国产精品一国产av| 久久久久久伊人网av| 亚洲综合色惰| 亚洲国产欧美在线一区| 国产精品欧美亚洲77777| 两个人看的免费小视频| 中文字幕av电影在线播放| 日韩免费高清中文字幕av| 国产成人aa在线观看| 久久精品久久久久久久性| 黑人巨大精品欧美一区二区蜜桃| 精品亚洲乱码少妇综合久久| 亚洲av在线观看美女高潮| 精品一区二区三卡| 国产精品香港三级国产av潘金莲 | 少妇人妻久久综合中文| 18禁裸乳无遮挡动漫免费视频| 免费av中文字幕在线| 91精品国产国语对白视频| 欧美人与性动交α欧美软件| 亚洲欧美日韩另类电影网站| 成人二区视频| videos熟女内射| 欧美激情 高清一区二区三区| 免费大片黄手机在线观看| av.在线天堂| 亚洲av中文av极速乱| 欧美日韩精品成人综合77777| 可以免费在线观看a视频的电影网站 | 欧美老熟妇乱子伦牲交| 色94色欧美一区二区| 香蕉丝袜av| 青草久久国产| 亚洲国产av影院在线观看| 多毛熟女@视频| 免费观看无遮挡的男女| 男人爽女人下面视频在线观看| 久久精品久久久久久久性| 久久久久久久大尺度免费视频| 丁香六月天网| 18+在线观看网站| 国产精品一区二区在线观看99| 天天操日日干夜夜撸| 春色校园在线视频观看| 人妻少妇偷人精品九色| 18禁动态无遮挡网站| 欧美97在线视频| 国产精品.久久久| 精品国产露脸久久av麻豆| 欧美日韩成人在线一区二区| 亚洲av成人精品一二三区| 夫妻午夜视频| 国产成人免费无遮挡视频| 国产在视频线精品| 另类精品久久| 在线观看人妻少妇| 深夜精品福利| 寂寞人妻少妇视频99o| 欧美日韩视频精品一区| 国产一区二区在线观看av| 久久影院123| 国语对白做爰xxxⅹ性视频网站| 少妇人妻精品综合一区二区| 91成人精品电影| 国产又色又爽无遮挡免| 亚洲av电影在线进入| 亚洲精品aⅴ在线观看| 中文字幕人妻熟女乱码| 一边亲一边摸免费视频| 亚洲精品av麻豆狂野| 国产精品久久久久久精品电影小说| 中文字幕制服av| 欧美变态另类bdsm刘玥| 成人免费观看视频高清| 亚洲激情五月婷婷啪啪| 欧美日韩一级在线毛片| 啦啦啦在线观看免费高清www| 亚洲精品久久午夜乱码| 日本欧美国产在线视频| 婷婷色av中文字幕| 久久久精品免费免费高清| 精品酒店卫生间| 纵有疾风起免费观看全集完整版| 一区二区av电影网| 美女xxoo啪啪120秒动态图| 亚洲精品国产av成人精品| 亚洲三区欧美一区| 久久国产精品男人的天堂亚洲| 日韩熟女老妇一区二区性免费视频| 国产熟女欧美一区二区| 国产熟女欧美一区二区| 黄片无遮挡物在线观看| 美女国产视频在线观看| 黄色毛片三级朝国网站| a 毛片基地| 免费黄频网站在线观看国产| 亚洲精品美女久久av网站| 交换朋友夫妻互换小说| 最新中文字幕久久久久| 久久午夜综合久久蜜桃| 曰老女人黄片| 波多野结衣av一区二区av| 国产在线免费精品| 日韩一区二区三区影片| 国产老妇伦熟女老妇高清| 国产色婷婷99| 精品国产一区二区三区久久久樱花| 少妇被粗大猛烈的视频| 亚洲国产精品一区三区| 国语对白做爰xxxⅹ性视频网站| 亚洲三区欧美一区| 午夜福利一区二区在线看| 午夜福利网站1000一区二区三区| 夫妻午夜视频| 国产精品一二三区在线看| 亚洲,欧美,日韩| 日韩不卡一区二区三区视频在线| 国精品久久久久久国模美| 另类精品久久| 国产伦理片在线播放av一区| 天天躁夜夜躁狠狠久久av| 精品久久蜜臀av无| av电影中文网址| 久久精品国产a三级三级三级| 十八禁网站网址无遮挡| 街头女战士在线观看网站| 国产片内射在线| 曰老女人黄片| 一区二区日韩欧美中文字幕| 亚洲欧美一区二区三区黑人 | 亚洲三区欧美一区| 深夜精品福利| 如日韩欧美国产精品一区二区三区| 精品第一国产精品| 国产精品国产三级国产专区5o| 在线观看免费视频网站a站| 在线看a的网站| 日韩中文字幕视频在线看片| 亚洲欧美一区二区三区久久| 九九爱精品视频在线观看| 伦精品一区二区三区| 久久99蜜桃精品久久| 国产一区二区 视频在线| 亚洲成人一二三区av| 亚洲,欧美精品.| 一级,二级,三级黄色视频| 久久久精品国产亚洲av高清涩受| 黄片播放在线免费| 黄网站色视频无遮挡免费观看| 国产精品国产av在线观看| 国产精品国产三级专区第一集| 最近中文字幕高清免费大全6| 久久久久久免费高清国产稀缺| 亚洲,欧美精品.| 国产熟女午夜一区二区三区| 日本爱情动作片www.在线观看| 女人被躁到高潮嗷嗷叫费观| 91精品三级在线观看| 亚洲av电影在线观看一区二区三区| 黄色视频在线播放观看不卡| 成人午夜精彩视频在线观看| 大话2 男鬼变身卡| xxx大片免费视频| 超碰成人久久| 亚洲精品久久成人aⅴ小说| 美女大奶头黄色视频| www.精华液| 国产精品一二三区在线看| 欧美人与善性xxx| freevideosex欧美| 国产成人av激情在线播放| 欧美 日韩 精品 国产| 久久久久精品人妻al黑| 欧美人与性动交α欧美精品济南到 | 街头女战士在线观看网站| 人人澡人人妻人| 999久久久国产精品视频| 国产成人精品在线电影| 成年女人毛片免费观看观看9 | 街头女战士在线观看网站| 一级毛片电影观看| 一二三四在线观看免费中文在| 久久久精品免费免费高清| 国产极品天堂在线| 黄片播放在线免费| 老汉色∧v一级毛片| 看免费成人av毛片| av福利片在线| 丝袜美足系列| 国产亚洲精品第一综合不卡| 国产成人精品无人区| 亚洲av电影在线观看一区二区三区| 少妇 在线观看| 亚洲久久久国产精品| 免费av中文字幕在线| 在线观看人妻少妇| 观看av在线不卡| 国产黄色视频一区二区在线观看| 99国产综合亚洲精品| 国产精品免费大片| 如何舔出高潮| 99国产综合亚洲精品| 伦理电影免费视频| 自线自在国产av| 美女大奶头黄色视频| 日本爱情动作片www.在线观看| 丝袜喷水一区| 少妇被粗大猛烈的视频| 最近的中文字幕免费完整| 熟女av电影| 永久免费av网站大全| 国产精品欧美亚洲77777| 性色av一级| 肉色欧美久久久久久久蜜桃| 大码成人一级视频| 人妻少妇偷人精品九色| 国产一区有黄有色的免费视频| 国产成人一区二区在线| 久久精品亚洲av国产电影网| 曰老女人黄片| 婷婷色综合www| 日韩欧美一区视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品第二区| 99精国产麻豆久久婷婷| 久久ye,这里只有精品| 亚洲少妇的诱惑av| 亚洲一区二区三区欧美精品| 好男人视频免费观看在线| 亚洲精华国产精华液的使用体验| 国产97色在线日韩免费| 少妇熟女欧美另类| videosex国产| 久久久久人妻精品一区果冻| 国产精品麻豆人妻色哟哟久久| 美女主播在线视频| 侵犯人妻中文字幕一二三四区| 午夜福利在线免费观看网站| 亚洲内射少妇av| 欧美 日韩 精品 国产| 国产成人精品久久二区二区91 | 日韩一区二区视频免费看| 看非洲黑人一级黄片| 久久久久国产精品人妻一区二区| 国产白丝娇喘喷水9色精品| 亚洲欧洲精品一区二区精品久久久 | 深夜精品福利| 亚洲综合色网址| 欧美成人午夜免费资源| 这个男人来自地球电影免费观看 | 国精品久久久久久国模美| 久热这里只有精品99| 国产一区二区在线观看av| 国产亚洲一区二区精品| 男女免费视频国产| 日本av手机在线免费观看| 日韩精品免费视频一区二区三区| 亚洲欧洲国产日韩| 水蜜桃什么品种好| 久久国产精品大桥未久av| 亚洲色图综合在线观看| 男人舔女人的私密视频| 国产免费现黄频在线看| 9色porny在线观看| 18禁观看日本| 天堂中文最新版在线下载| av天堂久久9| 久久久久久人妻| 国产黄色免费在线视频| av国产精品久久久久影院| 亚洲伊人色综图| 国产有黄有色有爽视频| 国产精品 欧美亚洲| 十八禁高潮呻吟视频| 超色免费av| 精品国产国语对白av| 成人免费观看视频高清| 在线观看国产h片| 国产野战对白在线观看| 国产熟女午夜一区二区三区| 2021少妇久久久久久久久久久| 九草在线视频观看| av网站在线播放免费| 久久精品国产鲁丝片午夜精品| 久久99蜜桃精品久久| 丝袜脚勾引网站| 在线天堂最新版资源| 精品少妇内射三级| 久久久久精品人妻al黑| av天堂久久9| 午夜福利一区二区在线看| 一级毛片 在线播放| 女的被弄到高潮叫床怎么办| 欧美亚洲 丝袜 人妻 在线| 男人爽女人下面视频在线观看| 黄频高清免费视频| 亚洲婷婷狠狠爱综合网| 捣出白浆h1v1| 久久午夜综合久久蜜桃| 日韩视频在线欧美| 日韩中文字幕视频在线看片| 久久精品国产a三级三级三级| 国产极品粉嫩免费观看在线| 九九爱精品视频在线观看| 免费播放大片免费观看视频在线观看| 在线免费观看不下载黄p国产| 日韩,欧美,国产一区二区三区| 欧美日韩亚洲国产一区二区在线观看 | 波多野结衣av一区二区av| 69精品国产乱码久久久| 亚洲欧美精品综合一区二区三区 | 国产国语露脸激情在线看| 一区二区三区激情视频| av网站免费在线观看视频| 婷婷色综合www| 久久精品人人爽人人爽视色| 久久99热这里只频精品6学生| 考比视频在线观看| 午夜久久久在线观看| 午夜福利视频在线观看免费| 欧美bdsm另类| 丝袜在线中文字幕| 成人黄色视频免费在线看| 国产精品久久久久久精品古装| 18在线观看网站| 国产黄色视频一区二区在线观看| 熟女电影av网| 午夜日韩欧美国产| 99国产精品免费福利视频| 男女高潮啪啪啪动态图| 免费少妇av软件| 18禁裸乳无遮挡动漫免费视频| 亚洲美女搞黄在线观看| 国产精品一国产av| 国产精品国产三级国产专区5o| 交换朋友夫妻互换小说| 国产精品熟女久久久久浪| 夫妻性生交免费视频一级片| 在线观看美女被高潮喷水网站| 久热这里只有精品99| 成年女人毛片免费观看观看9 | 王馨瑶露胸无遮挡在线观看| 捣出白浆h1v1| 国产精品女同一区二区软件| 午夜福利乱码中文字幕| 中文字幕色久视频| 99久久人妻综合| 免费在线观看黄色视频的| 蜜桃国产av成人99| 这个男人来自地球电影免费观看 | 中文字幕av电影在线播放| 欧美黄色片欧美黄色片| 免费观看性生交大片5| 91精品三级在线观看| av在线播放精品| 亚洲中文av在线| 99久久综合免费| 久久久久久久久久人人人人人人| av电影中文网址| 国产成人精品久久二区二区91 | 十分钟在线观看高清视频www| 国产亚洲精品第一综合不卡| 高清av免费在线| 蜜桃在线观看..| 91在线精品国自产拍蜜月| 国产白丝娇喘喷水9色精品| 好男人视频免费观看在线| 国产精品av久久久久免费| 2021少妇久久久久久久久久久| 狠狠婷婷综合久久久久久88av| 在线观看免费高清a一片| 看十八女毛片水多多多| 毛片一级片免费看久久久久| 久久久久久久久久人人人人人人| 亚洲国产最新在线播放| 亚洲欧美精品自产自拍| 国产黄色视频一区二区在线观看| 免费高清在线观看视频在线观看| 亚洲精品在线美女| 婷婷色综合大香蕉| 伊人久久大香线蕉亚洲五| 成人国语在线视频| 男人添女人高潮全过程视频| 国产亚洲最大av| 人人妻人人爽人人添夜夜欢视频| 精品第一国产精品| 亚洲在久久综合|