• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Robust decentralized control design for aircraft engines:A fractional type

    2019-02-27 08:59:34MuxunPANLingjinCAOWenxingZHOUJinqunHUANGYeHwCHEN
    CHINESE JOURNAL OF AERONAUTICS 2019年2期

    Muxun PAN,Lingjin CAO,Wenxing ZHOU,Jinqun HUANG,Ye-Hw CHEN

    aCollege of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China

    bThe George W.Woodruff School of Mechanical Engineering,Georgia Institute of Technology,Atlanta,GA 30332-0405,USA

    Abstract A new decentralized control for aircraft engines is proposed.In the proposed control approach,aircraft engines are considered as uncertain large-scale systems composed of interconnected uncertain subsystems.For each subsystem,the time-varying uncertainty,including parameter disturbances and interconnections in/between subsystems,is depicted by a class of general nonlinear functions.A fractional robust decentralized control with two parts,the nominal one and the fractional one,is presented.The nominal control guarantees the asymptotical stability of the engine system without uncertainty.The fractional part aims at overcoming the influences of uncertainty.Compared to the previous studies,the presented control provides not only an extra flexibility for the system performance tuning by the fraction-type gain but also a facility for the control input calculation.The proposed control approach is applied to a turbofan engine with two subsystems.The computer simulation shows that,in the flight envelope,the fractional control not only guarantees the closed-loop system uniform boundedness and ultimate uniform boundedness but also shows good economy.

    KEYWORDS Aircraft engines;Large-scale systems;Robust decentralized control;Uncertainty;Uniform boundedness;Uniform ultimate boundedness

    1.Introduction

    An aircraft engine is a complex nonlinear plant that contains multi-subsystem.These subsystems are coupled with each other via complicated mechanical and aerothermodynamics connections.In the conventional control system design for aircraft engine,a centralized structure is generally adopted.1However,for modern advanced aircraft engines,the control variables increase to 8 and more,and the entire controlled system becomes more complex.2As indicated in Ref.3,for a complex physical configuration and high dimensionality of interconnected systems,a centralized control is neither economically feasible nor even necessary.Moreover,it requires much communication,which brings problem of bandwidth,time-delays and reliability.The simulation in Ref.1showed that when the network time-delay sufficiently increases,the instability of the engine occurs.Consequently,the decentral-ized control is a positive alternative scheme for a large-scale system,such as the control of aircraft engines,1space robot,4complex structures of building,5networks,6-8and multi-agent control.9,10The philosophy of decentralized control is to use the ‘locally available” information of each subsystem to construct a controller,which provides the benefits of weight and cost reduction and performance improvement.11Lewis12introduced the distributed control concept into the aircraft engine control.Lewis12and Behbahani et al.13analyzed and estimated successively the contribution that decentralized controls lead to thrust-weight ratio increase and cost reduction,compared to the centralized control.Perez and Lou presented that for a gas turbine engine,the interactions between the sub-loops were restrained by a frequency domain-based decentralized control,and the system could remain stable in the presence of soft and/or hard failures.14

    Decentralized control has been attracting the attention of global researchers,who have produced numerous relevant literature studies.To the authors' knowledge,in this paper,we briefly review the research on the decentralized control with discrete and continuous approaches for linear and nonlinear complex/large-scale systems.For linear complex systems,one of the most popular and classic control approaches is to build interaction-oriented models and make use of different mathematical methods and graphic theories to shape closed systems with diagram or cascade forms.5,14-18For example,linear state feedback control laws based on the Lyapunov stability or the pole placement based on Nyquist stability were presented in Ref.15In Ref.14,a permutation matrix and a square down matrix were designed to shape the system transfer function with a diagonal form and reduce the interaction.In Ref.5,the decentralized cascade sliding mode control was developed for a steel frame structure.In the decentralized state feedback control design of Ref.17,an M-matrix constrained the solution of Lyapunov equation to decompose interactions.By using the graphs of the controlled complex systemGAand controllerGK,the controllability of a whole complex system based on arbitrary pole placement decentralized controllers was proposed in Ref.18.

    Other than interactions,as more practical and realistic considerations,such as nonlinearity,parameter disturbance,unmodeled error,and networked time-delay,are taken into account,large-scale systems are being described in more detail.Generally,two general methods are used to consider the nonlinearity:one is to partition a nonlinear system into a linear nominal system and a nonlinear part.The nonlinear part normally can be interaction and/or uncertainty,input disturbance and time-delay terms.8,19-23Based on this strategy,a nominal controller and a compensator are designed separately for the nominal system and the nonlinear part.The upper bound of the norm of interaction terms is often adopted in the compensator design.Ref.11summarized this method's theoretical basis and its research history.Chen assumed the interaction norm bound with a one-order polynomial form and presented a robust decentralized controller.22Han and Chen extended this assumptive bound to a more general non-decreasing function.23Unlike the approach of taking advantage of the known norm upper bounds of interactions and uncertainty,Wu considered the case of unknown upper bounds,estimated these upper bounds by adaptive laws and finally proposed an auxiliary control(compensator)to overcome interactions and uncertainty.8,20Recently,beyond the partition strategy mentioned above,the approaches to consider interaction and design decentralized control are more diverse.6,7,9,24-26A local observer depending on the local control input and output has been developed.The observer output and local output constructed a completely decentralized controller.6,7,9In Ref.26,the authors demonstrated a discrete Linear Quadratic Regulator(LQR)decentralized control with partial history sharing information.To decompose the interaction,a conditional mean of the state and control input replaced the global information in the subsystem controller,and a Kalmann filter was used to update the mean.

    In this paper,we present a fractional robust decentralized control.The implication of fractional is that the control gain is a fractional type with an optional order parameter(see Eq.(31)).This fractional structure contains the control form in Ref.22and provides a more flexibility for designers.Moreover,we apply this fractional control to aircraft engines.An aircraft engine is considered as a large-scale system that contains several interconnected subsystems.Because of the existence of individual difference between real engines,unmodeled dynamics,nonlinearity of dynamics and unknown disturbance,both the local subsystems and the interconnecting terms exhibit uncertainty.Based on the approach adopted in Refs.19-21,23,we describe this aircraft engine large-scale system as a nominal system and a nonlinear part.A novelty in Ref.19is that the region around the sliding mode face was defined for the compensator design.Consequently,a sliding mode controller with a continuous function but a classical discontinuous function was obtained.We notice that the nominal state is required in sliding mode compensator calculations,while for a nonlinear aircraft engine,it is difficult to obtain this nominal state.In Ref.20,because of the unknown upper bound of interaction norm and uncertainty norm,the convergent bound of tracking errors could not be obtained theoretically.In Refs.21,23,Chen and Han presented some important investigations involving the interconnection systems modeling and robust control designing processes with linear bound and nonlinear bound uncertainty;however,they did not consider the effect of control inputs in other subsystems on the studied subsystem.In our paper,we consider not only the states but also the control outputs from other subsystems as interactions of the local subsystem,and a new fractional decentralized control design approach is proposed.Here,the fractional control means that the control gain has a multi-order fractional form.By choosing different orders,a series of controller candidates are produced.

    The main contribution of this new control is threefold:(A)the fractional decentralized robust control can guarantee the interconnection dynamic system uniform boundedness and ultimate uniform boundedness regardless of the nonlinear uncertainty.The calculation of control inputs only needs the system states and avoids the requirement of nominal states in Ref.19(B)the new control has a more flexible and general structure compared to Refs.22,23,which is one of the motivations of our work.Actually,the controls in Refs.22,23can be considered as a specific case(ki=1)of the presented fractional control.Moreover,designers can have more flexibility to achieve the desired performance by choosing and adjusting the order and/or parameters in the fractional control law.The third contribution is the relationship between the control law order and the control cost;a bounded region could help engineers to achieve a balance between the system performance and the control cost.

    The paper is organized as follows.The problem is stated in Section 2.In Section 3,a class of multi-order robust decentralized control for nonlinear large-scale systems is proposed.We discuss the decentralized control for linear large-scale system as a special case in Section 4.In Section 5,we discuss the effect of adjustable parameters in controller law on the control cost and the bounded region.In Section 6,we apply the controller to aircraft engines,and the controller constructing process is introduced.In Section 7,the simulation results of the controlled engine system are given to illustrate the effectiveness of the proposed approaches.A brief conclusion and discussion of the results are presented in Section 8.

    2.Problem statement

    The system under considerationSis composed ofNcoupled subsystemsSithat are described as

    and for alli∈ {1,2,···,N}.Here xi(t)∈ Rniand ui(t)∈ Rmiare states and control inputs of theith subsystem respectively,niandmiare the dimensions of xi(t)and ui(t),σi(s)∈ Rsiare uncertain parameters,siis the dimension of σi(s),and the third term of right side of Eq.(1)is the interconnection in theith subsystem caused by other subsystems.Unknown functions σi(·):R → Σiand σij(·):R → Σijare Lebesgue measurable,Σi,Σij? Rsi.Furthermore,the known function fi(·):Rni×R → Rniand Bi(·):Rni× R → Rni×mi,and the(known or unknown)functions Δfi(·):Rni× Σ × R → Rni, ΔBi(·):Rni×Σ × R → Rni×mi, gij1(·):Σij× R → Rni×njand gij2(·):Σij×R → Rni×mjare Lebesgue measurable intand continuous in other arguments.

    By Eq.(1),the large-scale systems can be written as

    From Eq.(1),we can see that each subsystem is divided into three parts:the internal dynamic system fi(xi(t),t),control term Biuiand uncertainty terms(which contain interconnection terms).Now we pose some assumptions on this largescale system.

    with xi=0 as its global equilibrium position.Furthermore,there exist a functionVi(·):Rni× R → R+and strictly positive scalar γ1i,γ2iand γ3i,such that

    are met for all(xi,σi,t)∈ Rni× Σi× R,(σij,t)∈ Σij× R.λmin(·)denotes the minimum eigenvalue of matrix (·).

    Remark 1.In Assumption 1,the nominal system is the system without uncertainty.The control qi(xi,t)which will be the first part of our robust decentralized controller guarantees the stability of nominal system.Assumption 2 is the matching conditions.Assumption 3 prescribes the bounds of uncertainty and interconnection terms,and the functions ζ1i(xi,t),ζ2i(xi,t),and ζ3i(xi,t)can have more general forms.

    Moreover,we state two definitions of performance parameters that we pursue.

    Given constantr0∈ (0,∞),system Eq.(24)is uniformly bounded,if there exists a positive constantd(r0)< ∞ such that

    Definition 2.Given constantsˉr>r,r>0 andr0>0,system Eq.(24)is uniformly ultimately bounded if

    3.Fractional robust decentralized control for nonlinear largescale systems

    Before the presentation of the main results,we make the following preparation.We define continuous functions αi(·):Rni× R → Rmiand ψi(·):Rni× R → R+(i=1,2,···,N),as

    where δij> 0,ri> 0 andujmax=maxt∈[0,∞)‖uj(t)‖.Furthermore,there always exist δijsatisfying

    By combining Eqs.(27)and(28),we define the following function Ψi(·):Rni× R → R+as for all(xi,t)∈ Rni× R(i=1,2,···,N).

    By Eq.(12),Eq.(27),Eq.(28)and Eq.(30),our new fractional robust decentralized control is

    where

    where εi> 0,andkiis a strictly positive integer(i.e.,ki=1,2,···).

    By choosing different controller orderki,we can obtain a different control law.Letki=1,2,3,and thus the fractional parts of corresponding 1st,2nd,and 3rd order controller are

    Remark 2.Because Ψi≥ 0,for all εi> 0,

    By Eqs.(23)and(36),it is easy to determine that the denominator of Eq.(32)is greater than zero,which means that the fractional parts of controllers Eq.(31),kipi(xi,t),always exist for any finite (xi,t).

    Remark 3.The fractional part of the new robust decentralized controllerkipi(xi,t)can be considered as the composition of two parts.The first part,

    implies the control direction.The second part is a fractional gain defined as

    Note that both the numerator and denominator of τiareki-1 order polynomials.Whenki=1,the controller has the same structure as that in Ref.22.The controller in Ref.22can be considered as a specific form of Eq. (32). The order of polynomial and the parameter can be adjusted, thus providing a flexible control scheme for designers to obtain better dynamic performance.For example,when each subsystem has different internal dynamic performance,one can achieve the desired performance of the control system by choosing differentkiand εi.

    Theorem 1.Consider system Eq.(2)subject to Assumptions1-3.Under controller Eq.(31),the controlled system is uniformly bounded and uniformly ultimately bounded.For given r0andˉr,

    Proof of Theorem 1.See Appendix A.□

    Remark 4.We discuss the effect of parameters εiandrion the system performance and the control.According to Eqs.(39)and(40),the size of the uniform boundedness region will increase with the increase in εiand decrease with the increase inri.Moreover,by Eqs.(28)and(32),the control cost will decrease with the increase in εiand increase with the increase inri.These observations suggest that larger εi,smallerri,or larger εi/riwill bring larger size of the uniform boundedness region and smaller control cost.

    We now briefly summarize the procedure of the robust decentralized controller as follows:

    Step 1.By Eqs.(19)-(23),decide and calculate ζ1i≥ 0,βij≥ 0(i=1,2,···,N), ζ2i≥ 0, ζ3i≥ 0(i=1,2,···,N,j=1,2,···,N).

    Step 2.ChooseViin Eq.(13)and calculate ?Vi/?xi.

    Step 3.Calculate αiin Eq.(27).

    Step 4.Give δij> 0(i,j=1,2,···,N)andri> 0(i=1,2,···,N).Calculate ψiin Eq.(28)based on results of Step 1.

    Step 5.Based on αiand ψi,calculate Ψiin Eq.(30).

    Step 6.Chooseki≥ 1(i=1,2,···)and εi> 0(i=1,2,···,N).Calculate the fractional robust decentralized control in Eq.(31).

    4.Robust decentralized control design for linear large-scale systems

    In Section 3,the new robust control for non-linear large-scale systems is proposed.In this section,we will discuss one of its special cases:the control design for linear large-scale systems.

    where λmin(·)and λmax(·)are the minimum eigenvalue and maximum eigenvalue of a matrix respectively.According to Eqs.(47)and(48),one easily determines,for subsystem Eq.(44),that Assumption 1 is met.

    Consider Eqs.(15)-(18)and(44),and define

    and then Assumption 2 is met.

    For Assumption 3,the bounds of uncertainty and interconnections are rewritten as

    Consequently,the parameters in Eqs.(27)-(30)are calculated by

    where δij> 0,ri> 0,andi,j=1,2,···,N.For subsystem Eq.(44),the fractional control part of Eq.(31)is updated to

    Finally,by combining Eqs.(45)and(62),the fractional robust decentralized controller for linear large-scale systems is

    5.Analysis of parameters in fractional robust decentralized control

    One of the initial motivation of our fractional control is to enhance the flexibility of performance adjustment.We achieve this goal via introducing parameters:the order of control lawkiand gain parameter εi.In the sense of differentki,we intend to provide a series of controllers that render the different dynamical subsystems with the different controllers under the similar structure frame to obtain satisfactory performance.In this section,the investigation into the effect of the orderkiand parameters εion the control cost and bounded region is conducted.By Eqs.(31)and(38),we know

    Lemma 1.For anyεi> 0, Ψi> 0and ki=1,2,···,the magnitude ofτi(ki,εi,Ψi)andΔτi(ki,εi,Ψi)decrease with the increase in ki.

    Proof of Lemma 1.See Appendix B.□

    Remark 5.Because the magnitude of the decentralized robust control Eq.(31)is in proportion to|τi(ki,εi,Ψi)|,the magnitude of the control decreases with the increase inki,that is,the control effort is smaller with largerki.It will help to save the control cost with largerki.However,with the increase inki,the control scheme becomes increasingly complex and thus requires more calculation.Therefore,the choice ofkiis a trade-off design,which depends on the practical engineering application.

    Lemma 2.For anyεi> 0,Ψi> 0,and ki=1,2,···,the magnitude ofτi(ki,εi,Ψi)decreases with the increase inεi/Ψiand

    Proof of Lemma 2.See Appendix C.□

    Remark 6.By Eqs.(28)and(30),one knows that ψiis proportional tori,i.e.,a smallerriwill result in a smaller ψiand Ψi.This also results in the conclusion in Remark 4,namely,larger εiand smallerriwill result in smaller control cost.

    6.Robust decentralized control design for aircraft engines

    For a turbofan engine,its dynamic characteristic can be depicted by

    Where xT(t)=[nL(t) πT(t)]is the state variable of a turbofan,uT(t)= [Wf(t)A8(t)]is the control variable,and f(·)is a nonlinear function.nLis the rotational speed of lowpressure spool,πTis the turbine pressure ratio,Wfis the fuel flow,andA8is the exhaust nozzle.By the small perturbation method or/and the least square fitting algorithm,a linear model of the turbofan is extracted from Eq.(66).

    Here A ∈ R2×2,and B ∈ R2×2.

    Assume that the uncertain dynamic turbofan system Eq.(67)can also be described as

    whereaij=ˉaij+Δaij,bij=ˉbij+Δbij(i,j=1,2),A=[ˉaij]2×2,ΔA=[Δaij]2×2,B=[ˉbij]2×2,and ΔB=[Δbij]2×2.

    System Eq.(68)can be regarded as the composition of the following two single-input single-output subsystemsS1andS2:

    For a turbofan engine,the fractional part of robust decentralized control is

    Remark 7.For a turbofan engine,because its nominal subsystem is stable,the control partKixi(i=1,2),is neglected here.

    The aircraft engine robust decentralized control system is shown in Fig.1.In the Fig.1,the coupling uncertainty between the subsystem 1 and the subsystem 2 is represented by Δ12and Δ21.According to Eqs.(75)-(79)and combining the aircraft engine linear model,the parameters β12, β21, ζ11,ζ12, ξ12,and ξ21can be derived first.Next,according to Eq.(82)and the parameters given by the designers,ψ1and ψ2are derived.At every step in the simulation,the state variablesx1andx2will be updated and the parameters α1and α2will be updated.Subsequently, Ψ1and Ψ2are calculated at every step in the simulation.By Eq.(84),the robust decentralized controller is obtained.

    Fig.1 Robust decentralized control system of turbofan engine.

    7.Simulation and result analysis

    In order to conduct computer simulations of theu2max=0.1,δ12=3×10-4,δ21=100,r1=2×10-3,r2=80,ε1=5 × 10-3,and ε2=1 × 10-5.The simulations are performed in the flight envelope depicted in Fig.2,which is formed by the flight heightHand the Mach numberMa.We notate the number of the operation points in Fig.2 asNOP.Hence,NOP=18.Because of space limitation,the simulation results at the point 1,9 and 14 are given in Figs.3-8.From these figures,we can see that the 1st,2nd,3rd order control can guarantee the desired performance.With the increase of order,the dynamic responses become slightly lower.To compare the performance between the new control and the dominated control,we design a PI control for the same turbofan Eq.(68)withKp1=9×10-4,Ki1=5×10-5,Kp2=8×10-3,andKi2=0.02.The simulation results at the corresponding operation points are also depicted in Figs.3-8.Fig.3 shows that the responses ofnLand πTunder the four controllers are similar.At point 14,there is no overshoot ofnLunder the 2nd order control,and the overshoot ofnLunder PI control is 17.838%.Such overshoot is not acceptable for a turbofan engine.

    Fig.2 Simulation point positional distribution.

    We define the integral of control effortCto evaluate the economic efficiency of the controlled system.The control cost sketch map is shown in Fig.9.For the fuel consumption,whenWfis greater than its baseline value,the fuel is consumed.Conversely,ifWfis less than the baseline value,this part of fuel should be cut from the baseline value.Thus,CforWfis defined asCWf=C1-C2.For the tuning of nozzle areaA8,regardless of whether the area is larger or smaller than the baseline value,the hydraulic energy is consumed to adjustA8.Thus,CforA8isCA8=C1+C2.Here,the settling timets,the overshoot δ andCare adopted to evaluate the system behavior.We compare the system responses under the 2nd order control and the PI control.Figs.10-12 give the statistics of performance index comparison at all eighteen points,and the magnitude between the minimal and maximal performance indices are listed in Table 1.

    Fig.3 Responses of states at point 1.

    Fig.4 History of controls at point 1.

    Fig.5 Responses of states at point 9.

    Fig.6 History of controls at point 9.

    Fig.7 Responses of states at point 14.

    Fig.8 History of controls at point 14.

    Fig.9 Sketch map of control cost.

    Figs.10-12 and Table 1 show that(A)as far astsofnLand πT,at part of the simulation points,such as points 10,14,17 and 18,tsunder 2nd order control is larger than that under PI control,and opposite situation appears at the other part of simulation points;and(B)checking δ andCat the same time,δ andCunder the 2nd order control are much less than those under the PI control.For example,the maximal δ ofnLand πTunder the PI control reach 17.838%and 28.1552%respectively.(C)With the increase of order,the value oftsof the controlled system increases gently,while δ of the controlled system decreases obviously.

    The above analysis implies that designers could obtain the satisfied turbofan dynamic behavior and economical cost by determining the appropriate fractional control.The comparison between the fractional control and the PI control shows that the fractional control guarantees better comprehensive performance.

    Fig.10 Settling time of state response at all 18 operating points.

    Fig.11 Overshoot of state responses at all 18 operating points.

    Fig.12 Cost of control at all 18 operating points.

    Table 1 Performance index extremes of outputs under different conditions and different controls.

    8.Conclusions

    The problem of control design for an uncertain turbofan system which is composed ofNsubsystems was considered.Each subsystem not only contains internal uncertainty but also has external uncertainty,which is nonlinear and time-varying.A fractional robust decentralized controller was presented.By choosing the controller parameter and order,more flexible candidate controllers can be obtained.By analyzing the relationship among the control order,control cost and boundedness region,we provide designers the reference on achieving balanced trade-off between the performance and control cost.The new decentralized control design was applied to the turbofan control system with two subsystems.The computer simulation demonstrates that the proposed control guarantees the uniform boundedness and uniform ultimate boundedness of the controlled system and better comprehensive performance than the traditional PI control.

    Acknowledgement

    This work was supported by the Fundamental Research Funds for the Central Universities,China(No.NJ2016020).

    Appendix A.

    Proof of Theorem 1.Select Lyapunov candidate functionV(·):Rn× R → R+as

    HereVi(xi,t)is the same as the function in Assumption 1.As a consequence of Eq.(13),

    For simplicity,some arguments will be omitted as long as no ambiguity arises.

    Consider all terms of Eq.(A6).As a consequence of Eq.(14),

    By Eqs.(19)and(27),the third term in Eq.(A6)satisfies

    Combining Eq.(27),Eq.(30)and Eq.(31),the fourth term in Eq.(A6)is

    By Eq.(23),one obtains

    Relating Eq.(A10),Eq.(A9)can be rewritten as

    Combining Eqs.(20),(21),(27)and(28),the last three terms in Eq.(A6)satisfy

    Combining Eqs.(A7)-(A12),Eq.(A6)can be rewritten as

    We further consider the second term of the right-hand side of Eq.(A13).By using the equationak-bk= (a-b)(ak-1+ak-2b+ ···+bk-1)(a,b∈ R)for any ε> 0,we have

    Therefore,Eq.(A13)can be rewritten as

    Based on Eq.(A5),Eq.(A25)and Lemma 1 in Ref.23,system Eq.(2)is uniform boundedness and uniform ultimate boundedness.From Eq.(A5),Eq.(A25)and Eqs.(14)and(15)in Ref.23,we know that the relevant parameters are

    Therefore,the increment Δτi(ki,εi,Ψi)decreases with the increase inki.

    Appendix C

    国产在视频线精品| 黄色一级大片看看| 亚洲欧美精品自产自拍| 婷婷色综合大香蕉| 精品久久国产蜜桃| 欧美日韩av久久| 成人无遮挡网站| 在线亚洲精品国产二区图片欧美 | 国产一区亚洲一区在线观看| 中文字幕av电影在线播放| 免费日韩欧美在线观看| 国产精品久久久久久久久免| 秋霞伦理黄片| 亚洲成色77777| 观看av在线不卡| 国产日韩一区二区三区精品不卡 | 久久久久国产网址| 成人黄色视频免费在线看| 色婷婷av一区二区三区视频| 亚洲国产最新在线播放| 一个人免费看片子| 国产精品久久久久久久电影| 爱豆传媒免费全集在线观看| 最近手机中文字幕大全| 中文字幕制服av| 欧美+日韩+精品| 久久免费观看电影| 高清av免费在线| 在线观看免费高清a一片| 麻豆精品久久久久久蜜桃| 少妇精品久久久久久久| 国产一区二区三区综合在线观看 | 一级a做视频免费观看| 夜夜骑夜夜射夜夜干| 国产亚洲一区二区精品| 国产探花极品一区二区| 亚洲国产精品一区二区三区在线| 18禁裸乳无遮挡动漫免费视频| 久久午夜福利片| 香蕉精品网在线| 久久毛片免费看一区二区三区| 伦理电影大哥的女人| 国产成人精品久久久久久| videosex国产| 肉色欧美久久久久久久蜜桃| 婷婷色麻豆天堂久久| 国产精品偷伦视频观看了| 国产成人精品福利久久| 91久久精品电影网| 爱豆传媒免费全集在线观看| 日韩亚洲欧美综合| 午夜福利视频在线观看免费| 免费观看在线日韩| 免费不卡的大黄色大毛片视频在线观看| 好男人视频免费观看在线| 香蕉精品网在线| 亚洲,欧美,日韩| 亚洲精品,欧美精品| 777米奇影视久久| 亚洲精品国产av成人精品| 久久精品国产鲁丝片午夜精品| 看十八女毛片水多多多| 七月丁香在线播放| 国内精品宾馆在线| 日韩欧美一区视频在线观看| 国产精品国产三级专区第一集| 日韩强制内射视频| a 毛片基地| 成年女人在线观看亚洲视频| 蜜臀久久99精品久久宅男| 久久久久人妻精品一区果冻| 亚洲欧美日韩另类电影网站| 十八禁网站网址无遮挡| 如日韩欧美国产精品一区二区三区 | 午夜福利在线观看免费完整高清在| 成人国语在线视频| 人妻少妇偷人精品九色| 人人妻人人爽人人添夜夜欢视频| 少妇丰满av| 卡戴珊不雅视频在线播放| 在线亚洲精品国产二区图片欧美 | 国产精品嫩草影院av在线观看| 国产日韩欧美亚洲二区| 肉色欧美久久久久久久蜜桃| 一级毛片电影观看| 特大巨黑吊av在线直播| 99精国产麻豆久久婷婷| 国产亚洲午夜精品一区二区久久| 性色av一级| 免费看光身美女| 看非洲黑人一级黄片| 黄色毛片三级朝国网站| 乱码一卡2卡4卡精品| 精品少妇黑人巨大在线播放| 亚洲美女视频黄频| 欧美日韩国产mv在线观看视频| 国产乱人偷精品视频| 另类精品久久| 日韩,欧美,国产一区二区三区| 如日韩欧美国产精品一区二区三区 | 国产69精品久久久久777片| 亚洲国产精品999| 欧美日韩视频精品一区| 国产片内射在线| 久久99热6这里只有精品| 国产探花极品一区二区| 成人国产av品久久久| 精品熟女少妇av免费看| 九色成人免费人妻av| 狂野欧美白嫩少妇大欣赏| 18+在线观看网站| av播播在线观看一区| 天美传媒精品一区二区| 18禁观看日本| 日本免费在线观看一区| a级毛片免费高清观看在线播放| 一边摸一边做爽爽视频免费| 亚洲精品一二三| 黄片无遮挡物在线观看| 一区二区三区四区激情视频| 天天影视国产精品| 国产精品国产三级专区第一集| 久久久久久久精品精品| 在线观看人妻少妇| 亚洲激情五月婷婷啪啪| 日本爱情动作片www.在线观看| 熟妇人妻不卡中文字幕| 国产成人精品无人区| 777米奇影视久久| 久久精品夜色国产| 一个人看视频在线观看www免费| 欧美bdsm另类| 日韩亚洲欧美综合| 亚洲精品美女久久av网站| 久久精品国产自在天天线| 亚洲高清免费不卡视频| 老司机亚洲免费影院| 国产精品久久久久久久久免| 97超碰精品成人国产| 男女免费视频国产| 亚洲色图 男人天堂 中文字幕 | 一区二区三区精品91| 一级片'在线观看视频| 亚洲婷婷狠狠爱综合网| 亚洲成人一二三区av| 久久久欧美国产精品| 国产免费福利视频在线观看| 精品一区二区免费观看| 日韩强制内射视频| a 毛片基地| 国产一区有黄有色的免费视频| 欧美+日韩+精品| 91久久精品电影网| 七月丁香在线播放| 日韩强制内射视频| 青青草视频在线视频观看| 亚洲欧美清纯卡通| 国产老妇伦熟女老妇高清| 午夜福利视频在线观看免费| 国产成人精品福利久久| 成人手机av| 2018国产大陆天天弄谢| av国产精品久久久久影院| 99热这里只有是精品在线观看| 欧美一级a爱片免费观看看| 色网站视频免费| 亚洲怡红院男人天堂| 国产成人av激情在线播放 | 国产伦理片在线播放av一区| 亚洲激情五月婷婷啪啪| 一级a做视频免费观看| 在现免费观看毛片| 涩涩av久久男人的天堂| 国产又色又爽无遮挡免| 欧美精品人与动牲交sv欧美| 精品午夜福利在线看| 亚洲精品国产av成人精品| 老熟女久久久| 一个人看视频在线观看www免费| 91国产中文字幕| 日本色播在线视频| 综合色丁香网| 国产视频内射| 蜜桃在线观看..| 视频在线观看一区二区三区| 精品午夜福利在线看| 一本大道久久a久久精品| 蜜桃国产av成人99| 国产又色又爽无遮挡免| 成年美女黄网站色视频大全免费 | 中文字幕制服av| 国产毛片在线视频| 国产极品天堂在线| 各种免费的搞黄视频| 夜夜骑夜夜射夜夜干| 国产日韩欧美亚洲二区| 久久久久国产网址| 在线看a的网站| 97超视频在线观看视频| 中文字幕av电影在线播放| 青春草国产在线视频| 日韩欧美一区视频在线观看| 肉色欧美久久久久久久蜜桃| 中国三级夫妇交换| 久久久久久久精品精品| 麻豆精品久久久久久蜜桃| 国产精品国产av在线观看| 中文字幕人妻丝袜制服| 国产成人91sexporn| 王馨瑶露胸无遮挡在线观看| 亚洲av在线观看美女高潮| 亚洲成色77777| 国产极品粉嫩免费观看在线 | 国产精品一区www在线观看| 欧美97在线视频| 国产成人精品久久久久久| 免费不卡的大黄色大毛片视频在线观看| 日韩免费高清中文字幕av| 国产精品一二三区在线看| 在线播放无遮挡| 天天躁夜夜躁狠狠久久av| 欧美少妇被猛烈插入视频| 狂野欧美激情性bbbbbb| 秋霞伦理黄片| 亚洲精品视频女| 国产片内射在线| 麻豆精品久久久久久蜜桃| 久久久久久久久久成人| 久久久午夜欧美精品| 中国国产av一级| a级毛色黄片| 国产毛片在线视频| 成人国产麻豆网| 成人无遮挡网站| 亚洲第一av免费看| 午夜日本视频在线| 久久久久久久精品精品| 高清毛片免费看| 久久女婷五月综合色啪小说| 久久99精品国语久久久| 欧美日韩视频精品一区| 中国国产av一级| 国产精品久久久久久精品古装| 欧美人与善性xxx| 精品久久久久久久久亚洲| 国产av国产精品国产| 精品99又大又爽又粗少妇毛片| 日韩,欧美,国产一区二区三区| 婷婷色综合大香蕉| 成人漫画全彩无遮挡| 建设人人有责人人尽责人人享有的| 在线播放无遮挡| 亚洲美女黄色视频免费看| 日本av手机在线免费观看| 在线亚洲精品国产二区图片欧美 | 毛片一级片免费看久久久久| 久久久久久久精品精品| 亚洲欧美日韩另类电影网站| 另类亚洲欧美激情| 国产免费一级a男人的天堂| 免费不卡的大黄色大毛片视频在线观看| 亚洲色图综合在线观看| 久久精品国产亚洲网站| 麻豆成人av视频| 五月伊人婷婷丁香| 最后的刺客免费高清国语| 97在线人人人人妻| av.在线天堂| 国产精品人妻久久久影院| av国产久精品久网站免费入址| 亚洲av不卡在线观看| 色94色欧美一区二区| 大码成人一级视频| 色婷婷久久久亚洲欧美| 久久这里有精品视频免费| 人体艺术视频欧美日本| 日韩三级伦理在线观看| 在现免费观看毛片| 少妇被粗大的猛进出69影院 | 男女免费视频国产| 亚洲高清免费不卡视频| 性高湖久久久久久久久免费观看| 精品少妇久久久久久888优播| 在线观看免费视频网站a站| 国产熟女午夜一区二区三区 | 人人妻人人澡人人看| 97精品久久久久久久久久精品| 色网站视频免费| 国产黄片视频在线免费观看| 久久av网站| 2018国产大陆天天弄谢| 在线观看人妻少妇| av免费在线看不卡| 国产乱人偷精品视频| 日本午夜av视频| 2021少妇久久久久久久久久久| 日韩成人伦理影院| 国产熟女午夜一区二区三区 | 国产探花极品一区二区| 日韩av不卡免费在线播放| 亚洲精品久久午夜乱码| 伊人久久国产一区二区| 免费高清在线观看视频在线观看| 午夜91福利影院| a级片在线免费高清观看视频| 女人精品久久久久毛片| 在线免费观看不下载黄p国产| 久久久久久久久久成人| 最新中文字幕久久久久| a 毛片基地| 九草在线视频观看| 精品久久久久久电影网| 嫩草影院入口| av视频免费观看在线观看| 3wmmmm亚洲av在线观看| 精品人妻熟女av久视频| 老司机影院毛片| av一本久久久久| 女的被弄到高潮叫床怎么办| 精品人妻熟女毛片av久久网站| 精品人妻偷拍中文字幕| 少妇丰满av| 老司机亚洲免费影院| 日韩成人伦理影院| 十分钟在线观看高清视频www| 超碰97精品在线观看| 黑丝袜美女国产一区| 国产亚洲午夜精品一区二区久久| 少妇人妻精品综合一区二区| 久久久久久久亚洲中文字幕| 亚洲av中文av极速乱| 亚洲综合色网址| 欧美精品一区二区免费开放| 男的添女的下面高潮视频| 一本色道久久久久久精品综合| 久久久久精品久久久久真实原创| 美女福利国产在线| 免费少妇av软件| 中文天堂在线官网| 91久久精品国产一区二区三区| 亚洲国产成人一精品久久久| 欧美三级亚洲精品| 9色porny在线观看| 99热这里只有精品一区| 亚洲精品aⅴ在线观看| 美女内射精品一级片tv| 国产伦理片在线播放av一区| 亚洲内射少妇av| 日日啪夜夜爽| 亚洲精品日韩av片在线观看| 99久久精品国产国产毛片| 亚洲欧美成人精品一区二区| 国产成人免费观看mmmm| 久久久久精品性色| 日韩熟女老妇一区二区性免费视频| 亚洲av男天堂| 51国产日韩欧美| 久久狼人影院| 老女人水多毛片| 乱人伦中国视频| 日本av免费视频播放| 欧美日韩国产mv在线观看视频| 国产不卡av网站在线观看| 亚洲国产av影院在线观看| 天堂俺去俺来也www色官网| av.在线天堂| 久久精品久久精品一区二区三区| 久久毛片免费看一区二区三区| 99久久中文字幕三级久久日本| 91精品国产九色| 久久99精品国语久久久| 亚洲欧美中文字幕日韩二区| 日本黄色日本黄色录像| 爱豆传媒免费全集在线观看| 99热这里只有是精品在线观看| 色网站视频免费| 久久久精品94久久精品| 亚洲国产精品国产精品| 中文天堂在线官网| 久久 成人 亚洲| 女的被弄到高潮叫床怎么办| 国产亚洲精品久久久com| 免费人成在线观看视频色| 人人妻人人澡人人看| 亚洲欧美一区二区三区国产| 在线天堂最新版资源| 少妇猛男粗大的猛烈进出视频| 日韩一区二区视频免费看| av网站免费在线观看视频| 中文字幕精品免费在线观看视频 | 成人二区视频| 18在线观看网站| av国产久精品久网站免费入址| 亚洲性久久影院| 97在线视频观看| 中文字幕人妻熟人妻熟丝袜美| 欧美日韩成人在线一区二区| 丝袜脚勾引网站| 久久精品人人爽人人爽视色| 免费人妻精品一区二区三区视频| 日日爽夜夜爽网站| 秋霞伦理黄片| 亚洲av男天堂| 国产精品蜜桃在线观看| 成人毛片a级毛片在线播放| 美女福利国产在线| 赤兔流量卡办理| 日韩大片免费观看网站| 亚洲图色成人| 国产精品成人在线| 国产黄色视频一区二区在线观看| 久久精品人人爽人人爽视色| 久久久久人妻精品一区果冻| 日韩电影二区| 日本vs欧美在线观看视频| 欧美日韩av久久| 亚洲av二区三区四区| xxxhd国产人妻xxx| 国产av一区二区精品久久| 日本vs欧美在线观看视频| 婷婷色av中文字幕| 亚洲av欧美aⅴ国产| 国产精品久久久久久精品电影小说| 你懂的网址亚洲精品在线观看| 国产成人a∨麻豆精品| 亚洲久久久国产精品| 777米奇影视久久| 极品少妇高潮喷水抽搐| 亚洲欧美成人综合另类久久久| 建设人人有责人人尽责人人享有的| 国产成人精品无人区| 99久国产av精品国产电影| 少妇高潮的动态图| 日本av手机在线免费观看| 亚洲欧美成人精品一区二区| 国产成人精品婷婷| 十八禁高潮呻吟视频| 亚洲熟女精品中文字幕| 99九九在线精品视频| 久久久久国产网址| 久久综合国产亚洲精品| 国产精品麻豆人妻色哟哟久久| 91精品一卡2卡3卡4卡| 久久久久久久久久成人| 男女高潮啪啪啪动态图| h视频一区二区三区| 久久精品国产自在天天线| a级毛色黄片| 亚洲av国产av综合av卡| 日韩 亚洲 欧美在线| 亚洲欧美精品自产自拍| av在线播放精品| 欧美变态另类bdsm刘玥| 91午夜精品亚洲一区二区三区| 日韩成人av中文字幕在线观看| 久久精品国产a三级三级三级| 精品熟女少妇av免费看| 搡老乐熟女国产| 亚洲图色成人| 亚洲精品日韩av片在线观看| 老司机亚洲免费影院| 欧美xxⅹ黑人| 大香蕉97超碰在线| 国产精品久久久久久久电影| av在线播放精品| 内地一区二区视频在线| 亚洲成色77777| 菩萨蛮人人尽说江南好唐韦庄| 国产av国产精品国产| 91精品国产九色| 欧美日本中文国产一区发布| 男人操女人黄网站| 国产黄片视频在线免费观看| 蜜桃国产av成人99| 亚洲国产精品999| 在线观看免费日韩欧美大片 | 久久人人爽人人片av| 国产精品人妻久久久久久| 国产黄色免费在线视频| av天堂久久9| 在线观看www视频免费| 尾随美女入室| 国产午夜精品久久久久久一区二区三区| 在线观看国产h片| a级毛色黄片| 欧美人与善性xxx| 一区在线观看完整版| 国产黄片视频在线免费观看| 欧美日韩亚洲高清精品| 99国产精品免费福利视频| 国产精品久久久久久久电影| 久久久久视频综合| 国产老妇伦熟女老妇高清| 国产成人精品一,二区| 亚洲欧美一区二区三区黑人 | videossex国产| 亚洲欧美色中文字幕在线| 男女免费视频国产| 激情五月婷婷亚洲| 啦啦啦啦在线视频资源| 日韩,欧美,国产一区二区三区| 又大又黄又爽视频免费| 精品国产国语对白av| 欧美一级a爱片免费观看看| 伊人亚洲综合成人网| 久久午夜综合久久蜜桃| 久热久热在线精品观看| 人人妻人人澡人人爽人人夜夜| av免费在线看不卡| 曰老女人黄片| 熟女av电影| 最新中文字幕久久久久| 亚洲精品国产av成人精品| 在线观看免费视频网站a站| 一区二区三区精品91| 免费观看无遮挡的男女| 免费黄频网站在线观看国产| 91久久精品电影网| 亚洲情色 制服丝袜| 亚洲不卡免费看| 三级国产精品欧美在线观看| 久久ye,这里只有精品| 丝袜在线中文字幕| av有码第一页| 亚洲综合色网址| 欧美3d第一页| 精品国产一区二区三区久久久樱花| 国产男女内射视频| 999精品在线视频| 夜夜看夜夜爽夜夜摸| 亚洲精品乱久久久久久| 熟女人妻精品中文字幕| 国产在线视频一区二区| 97超视频在线观看视频| 97精品久久久久久久久久精品| 熟女av电影| 国产欧美日韩综合在线一区二区| 我要看黄色一级片免费的| 日日啪夜夜爽| 亚洲精品自拍成人| 热re99久久国产66热| 成年女人在线观看亚洲视频| 国产 一区精品| 夜夜骑夜夜射夜夜干| 97超碰精品成人国产| 欧美日韩一区二区视频在线观看视频在线| 九九久久精品国产亚洲av麻豆| 国产精品熟女久久久久浪| 在线播放无遮挡| www.色视频.com| 国产老妇伦熟女老妇高清| 高清黄色对白视频在线免费看| 午夜91福利影院| 日日摸夜夜添夜夜添av毛片| 国产精品欧美亚洲77777| 最近中文字幕高清免费大全6| 乱人伦中国视频| 午夜日本视频在线| 99九九线精品视频在线观看视频| 狠狠精品人妻久久久久久综合| 成年女人在线观看亚洲视频| 亚洲色图 男人天堂 中文字幕 | 免费播放大片免费观看视频在线观看| 成人无遮挡网站| 久久毛片免费看一区二区三区| 欧美日韩成人在线一区二区| 国产成人av激情在线播放 | 一级黄片播放器| 欧美日韩综合久久久久久| 日本wwww免费看| 国产精品嫩草影院av在线观看| 国产一区二区三区综合在线观看 | 五月开心婷婷网| 少妇人妻久久综合中文| a级毛色黄片| 免费高清在线观看日韩| 亚洲国产精品一区三区| 在线亚洲精品国产二区图片欧美 | 菩萨蛮人人尽说江南好唐韦庄| videossex国产| 国产午夜精品一二区理论片| 国产一区二区在线观看av| 一本一本综合久久| 亚洲,欧美,日韩| 免费久久久久久久精品成人欧美视频 | 黄片无遮挡物在线观看| 一本久久精品| 亚洲精品一二三| 777米奇影视久久| 亚洲国产成人一精品久久久| 亚洲精品乱码久久久久久按摩| 国产av国产精品国产| 老女人水多毛片| 久久99蜜桃精品久久| 日韩免费高清中文字幕av| 国产成人精品福利久久| 有码 亚洲区| 亚洲av在线观看美女高潮| 亚洲精品日韩在线中文字幕| 亚洲成人手机| 午夜福利,免费看| 欧美另类一区| 中文字幕人妻熟人妻熟丝袜美| 日本色播在线视频| 男人爽女人下面视频在线观看| 国产高清不卡午夜福利| 搡老乐熟女国产| 国产亚洲精品第一综合不卡 | 久久精品国产a三级三级三级| 午夜日本视频在线| 日韩欧美精品免费久久| 少妇高潮的动态图| 人人妻人人添人人爽欧美一区卜| 亚洲三级黄色毛片| 3wmmmm亚洲av在线观看|