• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Event-triggered adaptive control for attitude tracking of spacecraft

    2019-02-27 09:00:02ChenlingWANGYunLIQingleiHUJinHUANG
    CHINESE JOURNAL OF AERONAUTICS 2019年2期

    Chenling WANG,Yun LI,Qinglei HU,Jin HUANG

    aSchool of Automation Science and Electrical Engineering,Beihang University,Beijing 100191,China

    bBeijing Institute of Automatic Control Equipment,Beijing 100074,China

    Abstract Plug-and-play technology is an important direction for future development of spacecraft and how to design controllers with less communication burden and satisfactory performance is of great importance for plug-and-play spacecraft.Considering attitude tracking of such spacecraft with unknown inertial parameters and unknown disturbances,an event-triggered adaptive backstepping controller is designed in this paper.Particularly,a switching threshold strategy is employed to design the event-triggering mechanism.By introducing a new linear time-varying model,a smooth function,an integrable auxiliary signal and a bound estimation approach,the impacts of the network-induced error and the disturbances are effectively compensated for and Zeno phenomenon is successfully avoided.It is shown that all signals of the closed-loop system are globally uniformly bounded and both the attitude tracking error and the angular velocity tracking error converge to zero.Compared with conventional control schemes,the proposed scheme significantly reduces the communication burden while providing stable and accurate response for attitude maneuvers.Simulation results are presented to illustrate the effectiveness of the proposed scheme.

    KEYWORDS Adaptive control;Attitude tracking;Event-triggered control;Spacecraft;Uncertainties

    1.Introduction

    In recent years,the low-cost plug-and-play spacecraft has attracted an increasing amount of attention.Since the investigation of Air Force Research Laboratory in 2004,several types of plug-and-play satellites have been successfully launched,1-5including PnPSat-1,TacSat-2 and MSV.As a new architectural concept for spacecraft,the plug-and-play spacecraft offers more flexibility during spacecraft design and mission operation,and helps to reduce the launch risk and increase the reconfigurability.The functional components of plugand-play spacecraft are connected by low-cost wireless networks,and the wireless technology plays an important role in constructing lighter-weight,faster and cost-effective spacecraft.However,as mentioned in Refs.4,5,the bandwidth of the wireless network is limited.Therefore,how to design control schemes with less communication burden and satisfactory performance is of great importance for plug-and-play spacecraft.

    Up to now,considerable achievements have been made for attitude control of spacecraft based on various kinds of approaches such as sliding mode control,6-8optimal control,9,10iterative learning control,11feedback linearization,12and observer-based control.13,14Owing to the advantages in improving transient performance and handling uncertainties,adaptive backstepping control15has also been applied to spacecraft.In Refs.16-19,some effective adaptive back stepping control schemes were proposed for attitude control of spacecraft.Nevertheless,it is noticed that all aforementioned control schemes were developed within the framework of continuous-time control.When these schemes are implemented on digital platforms,the sampling period is required to be sufficiently small and the communication between controllers and actuators is executed at every sampling instant no matter whether it is necessary or not,which would cause overloading of the communication network.As a result,these control schemes may be inappropriate for plug-and-play spacecraft with limited communication capability.

    On the other hand,nowadays control systems are often implemented over networks,which has advantages in reducing cost and increasing flexibility.Motivated by the fact that the bandwidth of the communication network is limited,event triggered control has received an increasing amount of attention.In this control strategy,the controller communicates with the actuator and/or the sensor only at some discrete time instants when a predefined triggering condition is satisfied,which significantly reduces the communication burden.In Refs.20-22,some event-triggered control strategies were developed,but the closed-loop system was directly assumed to be input-to-state stable with respect to network-induced errors.This assumption is conservative or even impossible for general nonlinear systems.Under the condition that the system models are exactly known,an event-triggered control scheme was proposed in Ref.23,which was later applied to marine vessel in Ref.24.However,in practice,it is hard to obtain precise system models because of uncertainties.In order to handle system uncertainties,recently an event-triggered adaptive control scheme was presented in Ref.25for a class of nonlinear systems.By co-designing the controller and the event-triggering mechanism,the assumption about input-to-state stability in Refs.20-22was removed in Ref.25.Nevertheless,the scheme in Ref.25is limited to single-input single-output systems and can only ensure that the tracking error converges to a residual set rather than zero.Hence,the same as the schemes in Refs.20-24,it cannot be directly applied to spacecraft which have multiple inputs and multiple outputs and require high control precision.

    In this paper,within the framework of backstepping design,an event-triggered adaptive control scheme is proposed for attitude tracking of spacecraft with unknown inertial parameters and unknown external disturbances.The proposed scheme has the following features:

    (1)An event-triggering mechanism is designed to determine the time instants for communication and continuous communication is avoided.As a result,the communication burden is significantly reduced in comparison with the spacecraft control schemes in Refs.6-14,16-19,which is quite favorable for plug-and-play spacecraft.

    (2)A linear time-varying model is constructed to rewrite the event-triggering mechanism.Meanwhile,a bound estimation approach is introduced to tackle the network induced error and external disturbances.With these efforts,the impacts of the network-induced error and external disturbances are successfully compensated for.

    (3)With the aid of an integrable auxiliary signal incorporated into the controller design,both the attitude tracking error and the angular velocity tracking error converge to zero asymptotically,regardless of the unknown inertial parameters,external disturbances and the network-induced error.Besides,it is proved that all closed-loop signals are globally uniformly bounded.As a result,the proposed scheme is able to provide stable and accurate response for attitude maneuvers while reducing the communication burden.

    The remainder of this paper is organized as follows.In Section 2,the control problem is formulated.Sections 3 and 4 are devoted to controller design and stability analysis,respectively.Simulation results are presented in Section 5 to illustrate the effectiveness of the proposed scheme.Finally,we conclude in Section 6.

    2.Problem formulation

    The attitude kinematics and dynamics of a rigid spacecraft can be described in terms of quaternion as6

    where J ∈ R3×3is the inertial matrix described in the body frame B;I∈ R3×3is the identity matrix;w ∈ R3is the angular velocity of the spacecraft with respect to the inertial frame I and is expressed in the frame B;the unit quaternion(q,q0)∈ R3× R represents the attitude orientation of the spacecraft in the frame B with respect to the frame I and satisfies qTq+=1; τ= [τ1,τ2,τ3]T∈ R3represents the control torque;d= [d1,d2,d3]T∈ R3denotes an external disturbance;S(x)is a skew-symmetric matrix acting on x= [x1,x2,x3]T,which is given by

    (qe,qe0)∈ R3× R is denoted as the attitude tracking error from the body frame to the desired frame with orientation(qd,qd0)∈ R3× R, whose motion is governed byWith the definition of quaternion multiplication,11(qe,qe0)can be calculated as

    The angular velocity error from the body frame with respect to the desired frame is defined as

    Note that the inertial matrix J is symmetric positive definite but may be uncertain during operation.In this paper,we do not need the knowledge of J,i.e.,J is assumed to be unknown.The objective is to design an event-triggered adaptive control scheme so that all closed-loop signals are bounded and the attitude q and the angular velocity w of the spacecraft track the desired attitude qdand the desired angular velocity wd,respectively,where wdand˙wdare bounded.

    The following assumption and lemma will be used in our design.

    Assumption 1.The disturbancedis bounded.

    Lemma 1.For any scalar z∈ Randε> 0,the following relationship holds:

    Proof:.The first inequality of Eq.(6)is obvious.On the other hand,it can be readily checked that 0 ≤ |z|-z2/(|z|+ ε)=ε|z|/(|z|+ ε)< ε, which together withz2/(|z|+ ε)≤

    3.Event-triggered adaptive controller design

    3.1.Event-triggering mechanism

    In this paper,the event-triggering mechanism is designed as

    wherek=0,1,2,···,ti,0:=0,‘inf”represents the in fimum of a set(i.e.,the greatest lower bound of a set),ui(t)is theith element of u(t)=[u1(t),u2(t),u3(t)]Twhich will be designed in Subsection 3.2,andm1,m2,m3andm4are positive design parameters withm1∈ (0,1).

    Remark 1.As can be seen from Eqs.(7)and(8),whenever the triggering condition in Eq.(8)is satisfied,the time instant will be marked as ti,k+1and the control value ui(ti,k+1)will be transmitted to the actuator module of the spacecraft.During the time interval[ti,k,ti,k+1),the control torqueτiis kept as the value of uiat the time instant ti,k.Since no communication is needed to updateτiduring(ti,k,ti,k+1),the communication burden is significantly reduced in comparison with the spacecraft control schemes proposed inRefs.6-14,16-19.

    Remark 2.The above event-triggering mechanism is inspired by the switching threshold strategy proposed inRef.25.When the control torque is not very large,i.e.,when|τi|≤m4,the magnitude of the threshold is proportional to that of the control torque and the relative threshold strategy is activated so that precise control can be obtained.Once the control torque becomes large,i.e.,when|τi|>m4,the magnitude of the threshold is a constant and the fixed threshold strategy is applied to prevent the control torque from large impulses.

    Remark 3.By constructing the linear time-varying model in Eqs.(10)and(11),we unify the description of the relationship betweenτ(t)andu(t),no matter the relative threshold strategy or the fixed threshold strategy is activated.As can be seen from what follows,this model will significantly facilitate the construction ofu(t)and the disposal of the network-induced errorΔ(t):=u(t)- τ(t).

    3.2.Backstepping design procedure

    Based on the above event-triggering mechanism,in this subsection,u(t)in Eqs.(7)and(8)will be designed within the framework of backstepping design,where the design procedure consists of two steps.To simplify the presentation,we first define

    where α1is a stabilizing function to be designed.Besides,we will employ positive scalarsc1,c2,γ1and γ2and a symmetric positive definite matrix Γ ∈ R6×6as design parameters in the design procedure without restating.

    Let ? := [J11,J22,J33,J23,J13,J12]TwithJijbeing the (i,j)th element of J.Then,it can be easily proved that Jb=L(b)?,which implies that Eq.(18)can be rewritten as

    The block diagram of the proposed control scheme is shown in Fig.1.

    Remark 4.It is worth pointing out that,in the above design,the network-induced error and the external disturbance are dealtwith by the combination of the bound estimation approach,Lemma1and the integrable auxiliary signalε(t).The smooth functionin Lemma1and the bound estimation approach play a key role to tackle the time-varying uncertainties brought by the network-induced error and the disturbance(see Eqs.(21),(22)and(28)),whileε(t)makes the corresponding residual terms integrable and lays a foundation for asymptotic tracking.Besides,the construction ofuand the design of the event-triggering mechanism are completely decoupled and the former does not depend on the parameters of the latter,which gives the user more freedom to choose the design parameters in order to seek less communication burden and better tracking performance.

    Fig.1 Block diagram of proposed scheme.

    4.Stability analysis

    The main theorem of this paper is established as follows.

    Theorem 1.Consider the closed-loop system consisting of the spacecraft in Eq.(1),the adaptive laws in Eqs.(25)and(27)and the event-triggered control law in Eqs.(7),(8)and(26).Suppose that Assumption1holds.Then,all signals of the closed-loop system are globally uniformly bounded and the attitude tracking errorqeand the angular velocity tracking errorωeconverge to zero asymptotically.Besides,Zeno phenomenon is avoided.

    Proof:.Define a Lyapunov function candidate of the closed loop system as

    Remark 5.Compared with the event-triggered adaptive control scheme proposed inRef.25,where the tracking error only converges to a residual set rather than zero,Theorem1indicates that our control scheme can ensure that all closed-loop signals are globally uniformly bounded and both the attitude tracking error and the angular velocity tracking error converge to zero,regardless of the unknown inertial parameters,external disturbances and network-induced error.As a result,the proposed scheme provides not only an effective way to reduce the communication burden but also a control method with global stability and high precision,which is quite favorable for low-cost plug-and-play spacecraft.Besides,it should be pointed out thatthe linear time-varying model in Eqs.(10)and(11),the smooth functionin Lemma1,the integrable auxiliary signalε(t)and the bound estimation approach used in our paper are not involved inRef.25,and the scheme inRef.25is limited to singleinput single-output systems and cannot be directly applied to spacecraft.

    5.Simulation results

    In this section,simulation results are presented to illustrate the effectiveness of the proposed control scheme.In the simulation,the inertia matrix is set as

    be zero,and the design parameters and the auxiliary signal are chosen asm1=0.3,m2=0.01,m3=1.5,m4=4,c1=0.9,c2=1.7, γ1=7, γ2=3, Γ =diag{15,15,15,15,15,15}and ε=0.2e-0.01t.The simulation results are given in Figs.2-7.As shown in Figs.2 and 3,both the attitude tracking error qeand the angular velocity tracking error weconverge to zero.The boundedness of the parameter estimations is illustrated in Fig.4,while the control torque τ= [τ1,τ2,τ3]Tis plotted in Fig.5,from which it can be seen that the control torque is updated only when the triggering condition is satisfied.

    Fig.2 Error quaternion (qe,qe0).

    Fig.3 Angular velocity error we.

    Fig.4Parameter estimation of^l,^p and||^?||.

    Fig.5 Control torque.

    Moreover,in order to make a comparison,a representative adaptive control scheme proposed in Subsection 3.A of Ref.6is applied to the spacecraft with the same condition and the same simulation step size as before.This scheme does not use event triggered control strategy and its control signal is updated at every sampling instant.The design parameters are set ask0=0.5, δ1=0.01, δ2=1.5 and μ =1.5(their definitions can be found in Ref.6)to have the same energy consumption as the proposed control scheme,where the energy consumption is defined asE=∫300‖ τ(t)‖2dt.The corresponding simulation results are shown in Figs.6-11,where Schemes 1 and 2 denote the proposed control scheme and the control scheme in Ref.6,respectively.From Fig.6,we can see that the two control schemes consume the same amount of energy.As shown in Fig.7,for the control scheme in Ref.6,the control signal τi(i=1,2,3)is updated 3000 times in the first 30 seconds.By comparison,for our event-triggered control scheme,τ1,τ2and τ3are updated only 204,236 and 251 times,respectively.Figs.8 and 9 give the energy comparison ofqeiandwei,where the energy is defined asEφ=φ2(t)dtwith φ denotingqeiandwei(i=1,2,3).The responses of the attitude tracking error in terms of Euler angles and the responses of the angular velocity tracking error are shown in Figs.10 and 11.Figs.6-11 indicate that the proposed control scheme not only significantly reduces the communication burden but also provides better tracking performance.

    Fig.6 Energy consumption.

    Fig.7 Number of times for communication.

    Fig.8 Energy comparison about qe1,qe2and qe3.

    Fig.9 Energy comparison about we1,we2and we3.

    Fig.10 Attitude tracking error of yaw.

    6.Conclusions

    Fig.11 Angular velocity tracking error.

    In this paper,an event-triggered adaptive control scheme has been proposed for attitude tracking of spacecraft with unknown inertial parameters and unknown external disturbances.A linear time-varying model has been introduced to unify the description of the relative threshold strategy and the fixed threshold strategy used to construct the eventtriggering mechanism.With the aid of a bound estimation approach,a smooth function and an integrable auxiliary signal,the effects of the network-induced error and the disturbances are successfully compensated for.We have shown that all closed-loop signals are globally uniformly bounded and both the attitude tracking error and the angular velocity tracking error converge to zero.Simulation results have been presented to illustrate the effectiveness of the proposed scheme.Future investigation should include the disposal of input constraints.

    Acknowledgements

    This study was supported by the National Natural Science Foundation of China(Nos.61673036,61661136007 and 51777013)and the Beijing Natural Science Foundation of China(No.4182036).

    丰满人妻一区二区三区视频av| 国产私拍福利视频在线观看| 欧美一区二区亚洲| 三级毛片av免费| 精品久久久久久成人av| 国产精品野战在线观看| 精品人妻偷拍中文字幕| 久99久视频精品免费| 日本在线视频免费播放| 麻豆成人av在线观看| 国产精品无大码| 色哟哟·www| 高清毛片免费观看视频网站| 日本三级黄在线观看| 免费看光身美女| 国产av在哪里看| 综合色av麻豆| 美女高潮的动态| 少妇的逼水好多| 一进一出抽搐gif免费好疼| 亚洲av免费在线观看| 国模一区二区三区四区视频| av黄色大香蕉| 成人特级黄色片久久久久久久| 国产蜜桃级精品一区二区三区| 嫩草影院新地址| 成年免费大片在线观看| 国内精品一区二区在线观看| 国产高清激情床上av| 亚洲国产精品成人综合色| 99久国产av精品| 国产午夜精品论理片| 男人舔奶头视频| 成年女人永久免费观看视频| 18禁黄网站禁片午夜丰满| 中文字幕久久专区| 中文字幕av成人在线电影| 亚洲av成人av| 少妇人妻精品综合一区二区 | 美女黄网站色视频| 男人和女人高潮做爰伦理| 国产色爽女视频免费观看| 小说图片视频综合网站| 亚洲18禁久久av| 桃红色精品国产亚洲av| 日韩大尺度精品在线看网址| ponron亚洲| 国产男人的电影天堂91| 国产成人av教育| 国产欧美日韩精品一区二区| 神马国产精品三级电影在线观看| 亚洲性夜色夜夜综合| 国内精品久久久久久久电影| 伦精品一区二区三区| 最好的美女福利视频网| 精品免费久久久久久久清纯| 色尼玛亚洲综合影院| 亚洲专区国产一区二区| 欧美黑人欧美精品刺激| 可以在线观看的亚洲视频| av专区在线播放| 欧美一区二区精品小视频在线| 久久人人爽人人爽人人片va| 99热6这里只有精品| 成人精品一区二区免费| 一级a爱片免费观看的视频| 日本爱情动作片www.在线观看 | 天天一区二区日本电影三级| 国产主播在线观看一区二区| 午夜免费激情av| 国产综合懂色| 又粗又爽又猛毛片免费看| 久久精品影院6| 久久久国产成人免费| 精品国内亚洲2022精品成人| ponron亚洲| 亚洲精品国产成人久久av| 国内精品久久久久久久电影| 91狼人影院| 亚洲国产精品sss在线观看| 最近中文字幕高清免费大全6 | 欧美+亚洲+日韩+国产| 露出奶头的视频| 亚洲一区高清亚洲精品| 国内精品一区二区在线观看| 97超视频在线观看视频| x7x7x7水蜜桃| 一个人看视频在线观看www免费| 一级a爱片免费观看的视频| 欧美在线一区亚洲| 国产精品一区二区免费欧美| 亚洲成人久久性| 精品久久国产蜜桃| 如何舔出高潮| 国产一区二区三区视频了| 99在线人妻在线中文字幕| 亚洲成人久久爱视频| 免费av观看视频| 亚洲成人精品中文字幕电影| 亚洲欧美日韩卡通动漫| 十八禁国产超污无遮挡网站| 欧美绝顶高潮抽搐喷水| 日本-黄色视频高清免费观看| 国产精品一区二区三区四区久久| 狂野欧美白嫩少妇大欣赏| 国产精品人妻久久久久久| 久久欧美精品欧美久久欧美| 免费搜索国产男女视频| 真实男女啪啪啪动态图| 亚洲精品在线观看二区| 男女视频在线观看网站免费| 免费人成在线观看视频色| 波多野结衣高清无吗| 我要搜黄色片| 日韩欧美国产在线观看| 午夜免费成人在线视频| 最近最新免费中文字幕在线| 免费人成在线观看视频色| 97碰自拍视频| 两个人视频免费观看高清| 别揉我奶头 嗯啊视频| 在线天堂最新版资源| 国产精品一及| 99热这里只有是精品在线观看| 熟妇人妻久久中文字幕3abv| 国产精品一及| 国产亚洲欧美98| 日韩精品中文字幕看吧| 久久人人爽人人爽人人片va| 91麻豆av在线| 午夜福利在线观看免费完整高清在 | 日韩一区二区视频免费看| 亚洲av中文av极速乱 | 一级黄色大片毛片| 丰满乱子伦码专区| 日韩欧美在线二视频| 亚洲成人免费电影在线观看| 乱人视频在线观看| 国产 一区 欧美 日韩| 一进一出抽搐gif免费好疼| 18禁在线播放成人免费| 老师上课跳d突然被开到最大视频| 欧美日韩黄片免| 国产欧美日韩精品亚洲av| 无人区码免费观看不卡| 不卡视频在线观看欧美| АⅤ资源中文在线天堂| 夜夜夜夜夜久久久久| 色综合色国产| 国产一区二区在线av高清观看| 99热这里只有是精品在线观看| 国产精品一区二区三区四区免费观看 | 长腿黑丝高跟| 国产69精品久久久久777片| 少妇高潮的动态图| 精品久久国产蜜桃| 久久久久久久久久久丰满 | 久久久久国内视频| 亚洲国产日韩欧美精品在线观看| 亚洲av.av天堂| 成人性生交大片免费视频hd| 国产白丝娇喘喷水9色精品| 国产精品人妻久久久影院| 非洲黑人性xxxx精品又粗又长| 天天一区二区日本电影三级| 国产精品三级大全| 直男gayav资源| 亚洲成人久久性| 日本免费a在线| 久久久久久久久久久丰满 | 99久久精品国产国产毛片| 天堂av国产一区二区熟女人妻| 精品久久久久久,| 欧美成人一区二区免费高清观看| 亚洲中文日韩欧美视频| 国产91精品成人一区二区三区| 别揉我奶头~嗯~啊~动态视频| 久久久久免费精品人妻一区二区| 88av欧美| 性欧美人与动物交配| 日本成人三级电影网站| 观看美女的网站| 日韩欧美国产在线观看| 91av网一区二区| a在线观看视频网站| 人人妻人人看人人澡| 少妇被粗大猛烈的视频| 在线免费观看不下载黄p国产 | 1024手机看黄色片| 伦理电影大哥的女人| 国产精品一区二区三区四区久久| 九九爱精品视频在线观看| 午夜福利高清视频| 久久久久国内视频| 免费看光身美女| 波多野结衣高清作品| 成人鲁丝片一二三区免费| 夜夜看夜夜爽夜夜摸| 国产精品自产拍在线观看55亚洲| 真实男女啪啪啪动态图| 五月伊人婷婷丁香| 国产成人av教育| 国产精品1区2区在线观看.| АⅤ资源中文在线天堂| 国产单亲对白刺激| 亚洲中文字幕一区二区三区有码在线看| 免费看美女性在线毛片视频| 免费黄网站久久成人精品| 在线天堂最新版资源| 亚洲精品粉嫩美女一区| 国产日本99.免费观看| 国产老妇女一区| 淫秽高清视频在线观看| 国产久久久一区二区三区| 亚洲 国产 在线| 色播亚洲综合网| av专区在线播放| 热99在线观看视频| 美女 人体艺术 gogo| .国产精品久久| 欧美日韩中文字幕国产精品一区二区三区| 国产aⅴ精品一区二区三区波| 午夜免费成人在线视频| 国产人妻一区二区三区在| 亚洲色图av天堂| 成人特级av手机在线观看| 亚洲av电影不卡..在线观看| 国产高潮美女av| 少妇猛男粗大的猛烈进出视频 | 国产在线精品亚洲第一网站| 精品国产三级普通话版| 亚洲精品456在线播放app | 国产精品伦人一区二区| 22中文网久久字幕| 成人无遮挡网站| 91在线观看av| 日韩欧美三级三区| 直男gayav资源| 精品人妻1区二区| 俺也久久电影网| 一个人看视频在线观看www免费| 天堂√8在线中文| 亚洲美女搞黄在线观看 | 国产精品女同一区二区软件 | 狂野欧美激情性xxxx在线观看| 欧美日韩亚洲国产一区二区在线观看| 亚洲精品一区av在线观看| 欧美黑人巨大hd| 中文资源天堂在线| 丰满乱子伦码专区| 窝窝影院91人妻| 婷婷六月久久综合丁香| 亚洲av电影不卡..在线观看| 精品久久久久久,| 简卡轻食公司| 不卡一级毛片| 日韩高清综合在线| 亚洲色图av天堂| av在线天堂中文字幕| av在线老鸭窝| 久久婷婷人人爽人人干人人爱| 99热6这里只有精品| av.在线天堂| 欧美激情在线99| 免费av观看视频| 五月玫瑰六月丁香| 天堂影院成人在线观看| 欧美日韩精品成人综合77777| 午夜免费激情av| 久久久久久久久中文| 国产精品无大码| 精品久久久久久久人妻蜜臀av| 人人妻人人看人人澡| 国产精品亚洲一级av第二区| av在线蜜桃| avwww免费| 免费搜索国产男女视频| 极品教师在线视频| 免费人成在线观看视频色| 国内精品美女久久久久久| 日本精品一区二区三区蜜桃| 欧美xxxx黑人xx丫x性爽| 欧美高清性xxxxhd video| 三级男女做爰猛烈吃奶摸视频| 日日撸夜夜添| 久久久色成人| 天堂av国产一区二区熟女人妻| 亚洲精品在线观看二区| 超碰av人人做人人爽久久| 久久精品国产99精品国产亚洲性色| 国产精品一区二区免费欧美| 女同久久另类99精品国产91| 国产亚洲91精品色在线| 久久6这里有精品| 国产在视频线在精品| 日本五十路高清| 春色校园在线视频观看| 国内精品一区二区在线观看| 成人特级av手机在线观看| 亚洲一区高清亚洲精品| 国产一级毛片七仙女欲春2| 日韩欧美免费精品| 麻豆一二三区av精品| 欧美日韩精品成人综合77777| 高清毛片免费观看视频网站| 欧美日韩瑟瑟在线播放| av在线天堂中文字幕| 真实男女啪啪啪动态图| 最新中文字幕久久久久| 夜夜夜夜夜久久久久| 成年女人看的毛片在线观看| 欧美黑人巨大hd| 中文字幕高清在线视频| 亚洲国产欧洲综合997久久,| 九九爱精品视频在线观看| 又粗又爽又猛毛片免费看| 欧美xxxx黑人xx丫x性爽| 亚洲国产日韩欧美精品在线观看| 九色成人免费人妻av| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品日韩av片在线观看| 很黄的视频免费| 日本黄色视频三级网站网址| 丝袜美腿在线中文| 特级一级黄色大片| 久久久精品欧美日韩精品| 精品一区二区三区av网在线观看| 国产91精品成人一区二区三区| 久久精品国产99精品国产亚洲性色| 久久久午夜欧美精品| 亚洲精品久久国产高清桃花| 免费无遮挡裸体视频| 黄色视频,在线免费观看| 99精品在免费线老司机午夜| 国产精品一及| 久久精品国产亚洲av天美| 又粗又爽又猛毛片免费看| 男人和女人高潮做爰伦理| 看免费成人av毛片| 欧美日韩乱码在线| 久久久久免费精品人妻一区二区| 综合色av麻豆| 午夜视频国产福利| 国产黄a三级三级三级人| 国产 一区 欧美 日韩| 久久亚洲精品不卡| 欧美另类亚洲清纯唯美| 久久人人精品亚洲av| 99精品久久久久人妻精品| 国产高清不卡午夜福利| 欧美黑人巨大hd| 久久久久国产精品人妻aⅴ院| 噜噜噜噜噜久久久久久91| 亚洲av成人精品一区久久| 黄色女人牲交| 国产精品永久免费网站| 黄色女人牲交| 日本三级黄在线观看| 一级a爱片免费观看的视频| 日本撒尿小便嘘嘘汇集6| 欧美一区二区精品小视频在线| 国产精华一区二区三区| av.在线天堂| 精品久久久久久久末码| 免费av不卡在线播放| 女人十人毛片免费观看3o分钟| 91在线观看av| 中文字幕熟女人妻在线| 午夜日韩欧美国产| a级毛片a级免费在线| 国产欧美日韩精品一区二区| 国产国拍精品亚洲av在线观看| 精品久久久久久久久久久久久| 午夜a级毛片| 成年免费大片在线观看| 村上凉子中文字幕在线| 免费看av在线观看网站| 少妇人妻一区二区三区视频| 91精品国产九色| 日韩欧美精品v在线| 麻豆精品久久久久久蜜桃| 又粗又爽又猛毛片免费看| 狂野欧美白嫩少妇大欣赏| 成人毛片a级毛片在线播放| 久久午夜亚洲精品久久| 我的老师免费观看完整版| 毛片女人毛片| 我的老师免费观看完整版| 精品一区二区三区视频在线| 成人毛片a级毛片在线播放| 人妻少妇偷人精品九色| 成人国产一区最新在线观看| 热99re8久久精品国产| 日韩人妻高清精品专区| 在线免费观看不下载黄p国产 | 少妇的逼水好多| 国产亚洲91精品色在线| 人妻丰满熟妇av一区二区三区| 国产91精品成人一区二区三区| 国产精品永久免费网站| 香蕉av资源在线| 久久精品国产亚洲av天美| 99久久精品热视频| 老女人水多毛片| 亚洲av.av天堂| 天堂影院成人在线观看| 波多野结衣高清作品| 久久久精品大字幕| 少妇的逼好多水| 大又大粗又爽又黄少妇毛片口| 88av欧美| 国产精品电影一区二区三区| 精品一区二区三区视频在线| 欧美3d第一页| 成人精品一区二区免费| 中文字幕av成人在线电影| 亚洲内射少妇av| 在现免费观看毛片| 欧美成人免费av一区二区三区| 国产精品一区二区免费欧美| 国产精品一区二区三区四区免费观看 | 国产精品综合久久久久久久免费| 国产成人福利小说| 三级毛片av免费| 欧美高清成人免费视频www| 久久热精品热| 日本免费a在线| 高清在线国产一区| 精品不卡国产一区二区三区| 国产精品,欧美在线| av女优亚洲男人天堂| 午夜日韩欧美国产| 欧美日韩精品成人综合77777| 精品久久久久久久末码| 亚洲在线自拍视频| 日本五十路高清| 春色校园在线视频观看| 欧美人与善性xxx| 丰满人妻一区二区三区视频av| 在线免费观看不下载黄p国产 | 欧美性猛交╳xxx乱大交人| 国产av一区在线观看免费| 嫩草影视91久久| 一边摸一边抽搐一进一小说| 波多野结衣巨乳人妻| 99热网站在线观看| 熟女人妻精品中文字幕| 亚洲成av人片在线播放无| 婷婷色综合大香蕉| 久久久久九九精品影院| 成人美女网站在线观看视频| 亚洲 国产 在线| 91久久精品国产一区二区成人| 可以在线观看毛片的网站| 亚洲成人中文字幕在线播放| 1024手机看黄色片| 一个人看视频在线观看www免费| 午夜a级毛片| 午夜精品久久久久久毛片777| 尾随美女入室| 搡老岳熟女国产| 日韩欧美在线二视频| 日日撸夜夜添| 看片在线看免费视频| 91久久精品国产一区二区三区| 欧美日本视频| 两个人视频免费观看高清| 国产白丝娇喘喷水9色精品| 最近最新免费中文字幕在线| 亚洲精品456在线播放app | 99热这里只有精品一区| 国产精品一区二区三区四区久久| 赤兔流量卡办理| 国内毛片毛片毛片毛片毛片| 又黄又爽又免费观看的视频| 最近最新免费中文字幕在线| 免费观看在线日韩| 成人性生交大片免费视频hd| 久久人人精品亚洲av| 日本三级黄在线观看| 国产精品一区二区三区四区久久| 精品国内亚洲2022精品成人| 久久久久久久午夜电影| 一个人看视频在线观看www免费| videossex国产| 亚洲一区二区三区色噜噜| 无人区码免费观看不卡| 国产不卡一卡二| 乱码一卡2卡4卡精品| 哪里可以看免费的av片| 搞女人的毛片| 国产精华一区二区三区| 午夜免费成人在线视频| 99热这里只有精品一区| 97超视频在线观看视频| 99热精品在线国产| 综合色av麻豆| 国产精品98久久久久久宅男小说| 在现免费观看毛片| 99国产极品粉嫩在线观看| 国产精品久久电影中文字幕| 国产精品人妻久久久影院| 中文字幕高清在线视频| 夜夜爽天天搞| 我的老师免费观看完整版| xxxwww97欧美| 久久这里只有精品中国| 中文字幕久久专区| 乱人视频在线观看| 国产毛片a区久久久久| 久久午夜福利片| 亚洲成人久久性| 亚洲人成伊人成综合网2020| 久久精品国产亚洲av香蕉五月| 99热这里只有是精品50| 最近视频中文字幕2019在线8| 黄色一级大片看看| 精品一区二区三区视频在线| 亚洲成人中文字幕在线播放| 淫妇啪啪啪对白视频| 嫩草影院精品99| 亚洲av五月六月丁香网| 一本一本综合久久| 国产男靠女视频免费网站| 女的被弄到高潮叫床怎么办 | 人妻丰满熟妇av一区二区三区| 国产精品女同一区二区软件 | 亚洲欧美激情综合另类| 免费av毛片视频| 免费人成在线观看视频色| av在线天堂中文字幕| 在线观看免费视频日本深夜| 国产日本99.免费观看| 久久这里只有精品中国| 免费一级毛片在线播放高清视频| 免费观看人在逋| av.在线天堂| 欧美丝袜亚洲另类 | 久久人妻av系列| 露出奶头的视频| 免费无遮挡裸体视频| 国产精品美女特级片免费视频播放器| 精品人妻视频免费看| 国产又黄又爽又无遮挡在线| 国产精品女同一区二区软件 | 97超级碰碰碰精品色视频在线观看| 色噜噜av男人的天堂激情| 久久久久久久亚洲中文字幕| 中文字幕熟女人妻在线| 99视频精品全部免费 在线| 午夜激情福利司机影院| 搡女人真爽免费视频火全软件 | 成人永久免费在线观看视频| 一个人观看的视频www高清免费观看| 色哟哟哟哟哟哟| 人妻久久中文字幕网| 免费高清视频大片| 99久久九九国产精品国产免费| 最近在线观看免费完整版| 美女大奶头视频| 精品一区二区三区av网在线观看| 日本爱情动作片www.在线观看 | 久久精品影院6| 国产伦一二天堂av在线观看| 男人的好看免费观看在线视频| 成人国产一区最新在线观看| 99久久成人亚洲精品观看| 91久久精品国产一区二区三区| 国产精品一区二区三区四区免费观看 | 韩国av在线不卡| 久久亚洲精品不卡| 赤兔流量卡办理| www.www免费av| 国产乱人视频| 蜜桃久久精品国产亚洲av| 国国产精品蜜臀av免费| 麻豆成人av在线观看| 啦啦啦啦在线视频资源| 亚洲综合色惰| 亚洲国产日韩欧美精品在线观看| 国产精华一区二区三区| 五月伊人婷婷丁香| 国产精品电影一区二区三区| 色播亚洲综合网| 亚洲 国产 在线| 亚洲天堂国产精品一区在线| 99九九线精品视频在线观看视频| 日日撸夜夜添| 欧美国产日韩亚洲一区| 久久精品久久久久久噜噜老黄 | 国产精品99久久久久久久久| 搡老妇女老女人老熟妇| 精品福利观看| 久久久久九九精品影院| 国产免费一级a男人的天堂| 久久久久性生活片| 搡老岳熟女国产| 久久精品国产亚洲av天美| 亚洲国产欧洲综合997久久,| 国产亚洲精品av在线| 欧美日韩乱码在线| 在线a可以看的网站| 99在线视频只有这里精品首页| 国内少妇人妻偷人精品xxx网站| 久久99热6这里只有精品| eeuss影院久久| 精品人妻一区二区三区麻豆 | 嫩草影视91久久| 亚洲av不卡在线观看| 美女高潮喷水抽搐中文字幕| 亚洲三级黄色毛片| 欧美性感艳星| 亚洲av二区三区四区| 99热这里只有是精品在线观看| 国产精品免费一区二区三区在线|