• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于全卷積網(wǎng)絡的土壤斷層掃描圖像中孔隙分割

    2019-02-25 01:53:14韓巧玲趙燕東劉克雄
    農(nóng)業(yè)工程學報 2019年2期
    關鍵詞:結構方法

    韓巧玲,趙 玥,趙燕東,劉克雄,龐 曼

    ?

    基于全卷積網(wǎng)絡的土壤斷層掃描圖像中孔隙分割

    韓巧玲1,2,3,趙 玥1,2,3※,趙燕東1,2,3,劉克雄1,龐 曼4

    (1. 北京林業(yè)大學工學院,北京 100083;2. 城鄉(xiāng)生態(tài)環(huán)境北京實驗室,北京 100083; 3.林業(yè)裝備與自動化國家林業(yè)局重點實驗室,北京 100083;4. 定州市綠谷農(nóng)業(yè)科技發(fā)展有限公司,定州 073006)

    針對土壤斷層掃描圖像中存在部分容積效應及因孔隙成分復雜、結構不規(guī)則等引起的分割精度低的問題,該文提出一種全卷積網(wǎng)絡(fully convolutional network,F(xiàn)CN)土壤孔隙分割方法,為土壤科學研究提供技術支持。該文以黑土土壤斷層掃描圖像為研究對象,通過卷積和池化運算輸出不同尺度的孔隙特征圖;將孔隙的深層特征和淺層特征相融合,采用上采樣算子對融合特征進行插值操作,從而輸出孔隙的二值圖。與大津法、分水嶺法、區(qū)域生長法和模糊C均值聚類法(Fuzzy C-means,F(xiàn)CM)4種常用孔隙分割方法的對比結果表明,F(xiàn)CN法在低,中,高3種孔隙密度的土壤圖像中優(yōu)于其他4種方法。FCN法的平均分割正確率為98.1%,比4種常用方法分別高25.6%,48.3%,55.7%和9.5%;FCN法的平均過分割率和欠分割率分別為2.2%和1.3%,僅為次優(yōu)方法(FCM法)的33.8%和23.6%。通過融合土壤孔隙結構的多重特征,F(xiàn)CN法能夠實現(xiàn)土壤孔隙整體和局部信息的精準判斷,為土壤學的研究提供了一種更加智能化的技術手段。

    土壤;圖像分割;全卷積網(wǎng)絡;土壤孔隙;深度學習

    0 引 言

    土壤孔隙是土壤固體顆粒和團聚體之間以及團聚體內部的間隙,其拓撲特征決定著土壤中空氣、水分和養(yǎng)分遷移等生態(tài)過程,進而影響土壤的肥力和農(nóng)作物的產(chǎn)量,是判斷土壤物理性質的重要特征[1-5]。因此,對土壤孔隙拓撲結構的研究,可以真實還原土壤孔隙的幾何形態(tài)和空間分布,為水土資源的相關研究提供技術支持。

    計算機斷層掃描技術為土壤孔隙結構的辨識研究提供了高效、無損的技術手段[6-8]。目前,基于土壤斷層掃描圖像的孔隙分割方法主要有大津法、分水嶺法和區(qū)域生長法[9-11]。大津法[12-13]可根據(jù)圖像的灰度特性自適應地選取閾值,從而將土壤圖像分為目標和背景兩部分。而分水嶺法[14-15]基于形態(tài)學的拓撲理論,通過尋找灰度值分布的局部極小值確定分類閾值,以此完成圖像的分割。區(qū)域生長法[16-17]則將具有相似灰度、強度、紋理等特征的相鄰像素合并為一類,通過對各像素的遍歷完成孔隙結構的判斷。但是,由于部分容積效應引起的邊界模糊性、土壤孔隙結構的復雜性和形態(tài)的不規(guī)則性,導致上述幾類方法易錯誤判斷孔隙結構。為解決這一問題,McBratney等[18-20]采用模糊聚類方法完成孔隙結構的辨識,該方法較大地提高了孔隙分割的精度,但其穩(wěn)定性和運算速度易受初始條件(聚類數(shù)目、聚類中心等)的限制,仍無法準確描述復雜的孔隙結構。

    卷積神經(jīng)網(wǎng)絡在目標檢測和圖像分類方向取得理想的效果[21-22]。Hariharan等[23]采用卷積神經(jīng)網(wǎng)絡對圖像目標進行定位,通過區(qū)域判斷提高了分割性能,但該方法受區(qū)域尺寸和輸出特征的限制,導致操作復雜且浪費運行內存。為解決上述問題,Long等提出了一種全卷積網(wǎng)絡(fully convolutional networks, FCN)圖像分割算法[24]。該算法采用全卷積層代替全連接層,能保證將卷積特征恢復為原始尺寸的二維矩陣,實現(xiàn)圖像端到端的輸出,便于進行分割操作。同時,其充分利用圖像的線條、形狀、紋理等多層次特征,避免了噪聲對圖像的影響,確保了圖像分割的準確性[25]。因此,該文采用基于FCN的土壤孔隙分割方法,以期解決因孔隙邊界模糊和灰度值不均勻導致的分割精度低的問題。

    以土壤斷層掃描圖像為應用對象,借助計算機斷層掃描技術研究了黑土孔隙的拓撲結構,從而為土壤微觀過程的模擬和孔隙尺度上的土壤結構分析提供科學依據(jù)。另外,以人工校準的孔隙真實位置標定圖為標準,通過定性與定量試驗分析了FCN法對于土壤孔隙的適用性和魯棒性評估,以期為土壤科學的發(fā)展提供一種智能化的技術手段。

    1 材料與方法

    1.1 土壤樣本的采集與預處理

    本試驗所用土壤選自黑龍江省克山農(nóng)場,土壤類型以黏化濕潤均腐土為主。采用內徑和高均為10 cm的有機玻璃管于0~40 cm層深的侵蝕溝壁進行原狀土取樣,共重復取樣3次,得到3個圓柱狀土壤樣本[26-2]。將采集的土壤樣本分別進行干燥、飽和水和冰凍處理,以得到3個不同狀態(tài)的土壤樣本,即為本試驗的研究對象。

    將采集的土壤樣本置于Philips Brilliance64層128排螺旋CT機進行掃描處理,以得到土壤斷層掃描圖像。CT掃描儀的參數(shù)分別設定為:電壓120 kV,電流196 mA,掃描間隔1.297 ms,掃描層厚0.9 mm,窗寬(用于顯示CT圖像的特定CT值范圍)和窗位(窗寬上、下限CT值的平均數(shù))分別為2000和800,對3個土柱樣品進行螺旋掃描,每次掃描可得236幅斷層掃描圖像。單個樣本分別經(jīng)歷0、1、3、5次凍融循環(huán),故掃描單個樣本可得1652幅土壤凍結和融化的圖像。因此,本試驗圖像數(shù)據(jù)庫共包含4956幅土壤斷層掃描圖像。

    為了降低對計算機顯存的需求,根據(jù)圖像中土壤有效面積的位置,基于圓的內切正方形算法將原始土壤斷層掃描圖像剪裁為211像素×211像素的正方形圖像,用于后續(xù)土壤CT圖像的訓練和測試。

    1.2 孔隙真實結構的標定

    訓練FCN網(wǎng)絡時,孔隙結構的標定對于孔隙特征的提取和訓練具有決定性作用,是影響孔隙分割精度的重要步驟。受CT機器部分容積效應的影響,孔隙邊界為鄰域像素點的灰度平均值,在土壤圖像中呈現(xiàn)一定的模糊性,難以通過觀察直接確定(如圖1a)。因此,需通過人工操作對土壤斷層掃描圖像中的孔隙結構進行標定。

    由于孔隙結構間的距離影響孔隙邊界的判斷,針對單獨孔隙和多孔結構分別制定了相應的標定原則(如圖1b和1c所示),以期精確地完成孔隙真實結構的標定。

    注:A環(huán)表示灰黑色區(qū)域邊界(土壤固相),B環(huán)是孔隙結構的真實邊界,C環(huán)表示黑色區(qū)域的邊界(孔隙)。

    如圖1a藍色區(qū)域所示,土壤中存在相鄰的多孔結構。由于受部分容積效應(partial volume effect, PVE)的影響,相鄰多孔結構間的像素會呈現(xiàn)黑灰色,從而使得黃色圓環(huán)位置遠離孔隙真實邊界,d數(shù)值增大。根據(jù)多次標定試驗發(fā)現(xiàn),加權系數(shù)1取0.3時,針對距離較近的多孔隙結構標定效果最為理想(圖1c)。

    基于上述孔隙標定原則,孔隙真實結構標定為如圖2b所示的黑白二值圖。其中,黑色表示土壤孔隙結構,白色表示土壤土顆粒、雜質等固相物質。由圖2原始圖與標定圖的對比可知,無論是單孔結構還是多孔結構,孔隙標定結構均與原始結構具有最大相似性。

    圖2 原始圖像與標定圖的對比圖

    在比較文獻中常用孔隙分割方法的基礎上,發(fā)現(xiàn)模糊C均值聚類算法(Fuzzy C-means, FCM)的孔隙分割精度最高,因此,為提高標定精度和減少工作量,基于FCM法得到的孔隙二值圖進行孔隙真實結構的標定。每幅孔隙真實結構標定圖都由5個人按照孔隙標定原則進行重復標定,以消除主觀性對標定精度的影響。

    1.3 全卷積網(wǎng)絡

    全卷積網(wǎng)絡(fully convolutional networks, FCN)的本質是將卷積神經(jīng)網(wǎng)絡的全連接層替換為卷積層,從而保證在輸入為任意尺寸的土壤斷層掃描圖像時,能夠輸出相同尺寸的孔隙二值圖像。用于土壤孔隙分割的FCN網(wǎng)絡具有卷積層、池化層和上采樣層3種不同的隱藏層。

    在卷積層運算后,為避免網(wǎng)絡參數(shù)過多造成的過擬合現(xiàn)象,F(xiàn)CN方法引入了池化層[29]。該操作在保留特征的基礎上將圖像劃分為×的固定矩形區(qū)域(和小于原始圖像的尺寸),通過平均值池化或最大值池化,完成對卷積特征的采樣。該文采用最大值池化法,減少網(wǎng)絡參數(shù),降低對圖像旋轉、縮放等操作的敏感度,快速完成網(wǎng)絡的收斂。池化操作不改變輸入圖像的層數(shù),其計算公式為:

    式中,x表示在坐標(,)處池化層的輸出值,表示滑動的步長,表示每正方形局部區(qū)域的邊長。池化操作后,為保證輸出與原始土壤斷層掃描圖像相同尺寸的孔隙結構二值圖,F(xiàn)CN網(wǎng)絡中加入了上采樣層。

    上采樣層的目的是從不同層次的二維孔隙特征圖中重構出原始尺寸的圖像,并通過對像素級的分類,完成孔隙結構的分割。上采樣層相當于池化操作的逆向運算,其可實現(xiàn)圖像尺寸的擴充,其計算公式如下

    基于TensorFlow框架結構,F(xiàn)CN網(wǎng)絡以土壤斷層掃描圖像和人工標定的孔隙真實位置圖作為輸入,在原始圖像基礎上經(jīng)過多次卷積運算、池化運算和上采樣運算后,輸出特點數(shù)量的特征預測圖。以特征預測圖與標定圖之間的誤差作為反饋,完成正向推理運算。然后,通過反向傳播算法實現(xiàn)權值的更新,完成反向的學習運算。在20 000次的迭代學習后,網(wǎng)絡的誤差值趨于收斂,選取此時的參數(shù)為最優(yōu)權值集,從而建立FCN土壤孔隙分割模型?;谠撏寥揽紫斗指钅P?,可完成孔隙結構的分割,輸出土壤孔隙的二值圖。

    1.4 網(wǎng)絡構建與評價指標

    構建網(wǎng)絡所用圖像數(shù)據(jù)庫共包含4956幅土壤斷層掃描圖像,按照7∶3的原則分為訓練集和測試集,即分別包含3469幅和1487幅圖像。為驗證FCN法的普適性,根據(jù)土壤孔隙率,將測試集分為低(0~0.03)、中(0.03~0.1)和高(0.1~1)3種不同孔隙密集程度的圖像[30]。因此,測試集中包含低、中和高密度圖像分別為669幅、516幅和302幅。本試驗依托谷歌開發(fā)的TensorFlow框架構建FCN網(wǎng)絡結構,硬件環(huán)境如下:Intel core 64位操作系統(tǒng),8核處理器,16 GB內存,GTX-1080,CPU i7-4790 3.60 GHz。

    為量化5種方法的孔隙分割效果,引入分割正確率、過分割率和欠分割率3個指標。孔隙分割正確率表示孔隙被正確分割的比例,描述的是孔隙結構的整體情況。其定義表示如下

    式中,P為算法的孔隙分割正確率,取值范圍為(1,5),該數(shù)值分別表示大津法、分水嶺法、區(qū)域生長法、FCM法和FCN法。N為算法錯檢的像素數(shù),為圖像中孔隙的總像素數(shù)。

    過分割率描述土壤固相物質被識別為孔隙的比例,而欠分割率則是土壤孔隙被識別成非孔隙的比例,其值越小,表示孔隙分割性能越好。計算公式分別為:

    式中,O表示不應該包含在分割結果、實際卻在分割結果中的像素點個數(shù);R表示孔隙真實結構標定圖中孔隙像素點的個數(shù);U表示本應該包含在分割結果中的像素點個數(shù),實際卻不在分割結果中的像素點個數(shù)。

    2 結果與分析

    2.1 試驗結果

    如圖3所示,為隨機選取的5種方法基于低密度土壤斷層掃描圖像進行的孔隙分割結果。圖3a為土壤圖像對應的孔隙真實結構標定圖,是評價不同方法孔隙分割效果的參考基準。

    圖3 不同方法的分割結果對比

    由分割結果可知,各方法的孔隙分割效果存在較大差異。由圖3中的方形框可知,分水嶺法(圖3c)和區(qū)域生長法(圖3d)存在很大程度的過分割現(xiàn)象,主要體現(xiàn)在不屬于孔隙結構的土壤固相物質被誤分割成孔隙,無法準確判斷出位置相近的孔隙結構的邊界,對孔隙結構的區(qū)分性不理想。大津法(圖3b)在一定程度上避免了過分割現(xiàn)象,但當土壤小孔隙與大孔隙的距離相近時,會將其判斷為一個連通的大孔隙,無法單獨分割出小孔隙。圖3e所示的FCM法雖然整體分割效果較好,但在孔隙密集區(qū)域仍會出現(xiàn)孔隙結構相連的情況。相較于前4種方法,F(xiàn)CN法分割出的孔隙結構與標定圖最為接近。由圖3f可知,F(xiàn)CN法不僅能夠準確地分離土壤固相物質與孔隙結構,也能夠清楚地分割出細小孔隙結構,有利于孔隙細節(jié)信息的保存。

    比較圖3圓形框的孔隙結構可知,大津法無法識別出該孔隙結構,會丟失孔隙的細節(jié)信息,而分水嶺法和區(qū)域生長法則過大估計了孔隙結構。這主要是因為孔隙的形態(tài)和灰度各不相同,同一分割方法對不同位置的孔隙的分割效果也不相同,因此,常用的分割方法獲得的孔隙結構與孔隙真實位置標定圖的存在一定差異。然而,F(xiàn)CN方法則能準確地提取不同類型的土壤孔隙的邊界信息,并精確定位不規(guī)則孔隙的空間位置,從而保證有效分離固相雜質等無效信息。

    通過定性比較分析可知,F(xiàn)CN法分割出的孔隙結構與孔隙真實位置標定圖相一致,其效果優(yōu)于其他4種方法,證明了FCN法在復雜背景下對土壤孔隙分割的有效性。這一優(yōu)勢主要歸功于網(wǎng)絡中的多個卷積層,較淺的卷積層能夠學習到孔隙結構的局部特征(如灰度,形狀等),而較深的卷積層可從圖像整體獲取孔隙的抽象特征(如紋理等),通過多層特征的結合,F(xiàn)CN法可準確分離孔隙結構和和固相物質。

    2.2 分割正確率

    為進一步比較5種方法的分割效果,將其在低、中和高3種不同孔隙密集程度的土壤斷層掃描圖像中進行了定量分析。表1所示為5種方法的分割正確率,所列數(shù)據(jù)以均值和標準差的形式呈現(xiàn)。

    表1 不同方法的分割正確率

    由表1結果可得,大津法的分割正確率在低、中、高3種孔隙密度的土壤斷層掃描圖像中都高于分水嶺法和區(qū)域生長法,但均低于FCM法,這一結論與2.1節(jié)的試驗結果一致。

    由5種方法的平均正確率可知,F(xiàn)CM法的平均分割正確率為89.6%,對土壤孔隙的分割已經(jīng)有相對較高的精度。但FCN法在3種土壤孔隙密度條件下的平均分割正確率達到了98.1%,比大津法、分水嶺法、區(qū)域生長法和FCM法分別高25.6%,48.3%,55.7%和9.5%,說明其能更大程度上還原孔隙的總體信息,更加精確的刻畫孔隙特性。

    綜上所示,F(xiàn)CN法能夠自動提取并學習土壤孔隙的高級特征,從而使其具有較強的泛化能力和魯棒性,能夠顯著提高孔隙的分割正確率。

    2.3 過分割率

    表2所示為5種方法的過分割率,所列數(shù)據(jù)以均值和標準差的形式呈現(xiàn)。

    表2 不同方法的過分割率

    由表5過分割率可知,分水嶺法和區(qū)域生長法的平均過分割率分別達到17.7%和22.5%,而大津法和FCM法具有相似的平均過分割率,均小于上述2種方法。FCM法的過分割率在低密度和高密度的土壤圖像中均低于大津法,但在中密度土壤圖像比大津法高4.3%,這一現(xiàn)象主要是因為初始參數(shù)(聚類數(shù)目、初始聚類中心、初始隸屬度矩陣)選擇的不合理。相較于常用的4種孔隙分割方法,F(xiàn)CN法在3種土壤孔隙密度條件下均具有最小的平均過分割率(2.2%)。相比以上4種方法,F(xiàn)CN法的平均過分割率為分水嶺法和區(qū)域生長法的12.4%和9.8%,僅為次優(yōu)方法(FCM法)的33.8%,證明了FCN法在土壤孔隙分割上的優(yōu)越性。

    綜上所示,F(xiàn)CN法針對不同類型的土壤圖像均具有最小的過分割率,能夠準確判斷出土壤的固相物質和孔隙結構,對于土壤內部不同物質具有較強的魯棒性。

    2.4 欠分割率

    5種方法的欠分割率以均值和標準差的形式在表3中展示。由最后一列結果可知,大津法和分水嶺法具有最高的平均欠分割率,區(qū)域生長法和FCM法其次,而FCN法的平均欠分割率為1.3%,比其他方法至少低4.1%。同樣地,針對低密度、中密度、高密度3類土壤斷層掃描圖像,F(xiàn)CN法均具有最小的欠分割率,僅為次優(yōu)方法(FCM法)的23.6%。

    表3 不同方法的欠分割率

    綜上所述,F(xiàn)CN法可準確描述土壤孔隙的形狀、大小和位置等信息,最大程度的還原孔隙結構,對土壤孔隙的研究具有重要的參考價值。

    3 結 論

    基于土壤孔隙的特性和深度學習理論,該文提出一種基于全卷積網(wǎng)絡的土壤孔隙分割方法(FCN法)。該方法利用卷積算子提取土壤孔隙結構的多重特征,并通過加入池化算子來減少網(wǎng)絡計算量和卷積核權重的數(shù)目;并采用上采樣算子使網(wǎng)絡輸出與原始圖像尺寸相同的孔隙二值圖像。為了精確分析FCN方法對土壤斷層掃描圖像中孔隙分割的性能,基于孔隙分布密集程度的特點,將土壤斷層掃描圖像分為低密度,中密度,高密度3個類別,以進行5種分割方法的比較分析。同時,采用分割正確率、過分割率、欠分割率3個指標來量化5種方法的孔隙分割性能,得到主要結論如下:

    1)FCN方法可彌補傳統(tǒng)分割方法在進行土壤孔隙信息提取時僅用到灰度、邊緣等低級特征的問題。通過融合土壤孔隙淺層和深層的多重特征,F(xiàn)CN方法可有效分割不規(guī)則的孔隙結構,特別是能夠精確刻畫孔隙的細節(jié)信息。通過自主學習孔隙結構的特征,F(xiàn)CN法具有較高的孔隙結構的分割精度,可為土壤學的研究提供一種智能化的技術手段。

    2)FCN法針對復雜背景下的土壤孔隙分割具有良好的泛化能力和魯棒性。試驗結果表明,F(xiàn)CN法在3類孔隙密度土壤圖像上的分割效果均優(yōu)于其余4種方法。其中,F(xiàn)CN法的平均分割正確率為98.1%,分別比大津法、分水嶺法、區(qū)域生長法和FCM法的分割正確率高25.6%,48.3%,55.7%和9.5%,在分割孔隙結構方面具有較大優(yōu)勢。FCN法的平均過分割率和欠分割率為2.2%和1.3%,僅為次優(yōu)方法(FCM法)的33.8%和23.6%。

    綜上所示,F(xiàn)CN法具有良好的孔隙分割性能。通過融合土壤孔隙的多重特征,該方法能夠準確提取孔隙信息、還原孔隙空間分布,可為孔隙尺度上的土壤結構分析提供科學依據(jù)和智能化的技術手段。

    [1] Hill R L, Horton R, Cruse R M. Tillage effects on soil water retention and pore size distribution of two mollisols[J]. Soil Science Society of America Journal,1984, 49(5):1264-1270.

    [2] Tokumoto I, Noborio K, Koga K. Coupled water and heat flow in a grass field with aggregated Andisol during soil-freezing periods[J]. Cold Regions Science and Technology, 2010, 62(2/3): 98-106.

    [3] Yu X, Fu Y, Lu S. Characterization of the pore structure and cementing substances of soil aggregates by a combination of synchrotron radiation X-ray micro-computed tomography and scanning electron microscopy[J]. European Journal of Soil Science, 2017, 68(1): 66-79.

    [4] Meira Cássaro F A, Posadas Durand A N, Gimenez D, et al. Pore-size distributions of soils derived using a geometrical approach and multiple resolution microct images[J]. Soil Science Society of America Journal, 2017, 81(3): 468-476.

    [5] Taina I A, Heck R J, Elliot T R, et al. Micromorphological and X-ray μCT study of Orthic Humic Gleysols under different management conditions[J]. Geoderma, 2010, 158(3): 110-119.

    [6] Cnudde V, Boone M N. High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications[J]. Earth-Science Reviews, 2013, 123: 1-17.

    [7] Munkholm L J, Richard H J, Deen B. Soil pore characteristics assessed from X-ray micro-CT derived images and correlations to soil friability[J]. Geoderma, 2012(181/182): 22-29.

    [8] 姚志華,陳正漢,李加貴,等. 基于CT技術的原狀黃土細觀結構動態(tài)演化特征[J]. 農(nóng)業(yè)工程學報,2017,33(13):134-142.

    Yao Zhihua, Chen Zhenghan, Li Jiagui, et al. Meso-structure dynamic evolution characteristic of undisturbed loess based on CT technology [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(13): 134-142. (in Chinese with English abstract)

    [9] Nicholas J, Mats L, John K. Connectivity and percolation of structural pore networks in a cultivated silt loam soil quantified by X-ray tomography[J]. Geoderma, 2017, 287: 71-79.

    [10] Sarah S, Erwan P, Lique L, et al. X-ray Micro-CT: How soil pore space description can be altered by image processing[J]. Vadose Zone Journal, 2018, 17(1). DOI: 10.2136/vzj2016.06. 0049.

    [11] Yu X, Wu C, Fu Y. Three-dimensional pore structure and carbon distribution of macroaggregates in biochar-amended soil[J]. European Journal of Soil Science, 2016, 67(1): 109-120.

    [12] Jarvis N, Larsbo M, Koestel J. Connectivity and percolation of structural pore networks in a cultivated silt loam soil quantified by X-ray tomography[J]. Geoderma, 2017, 287: 71-79.

    [13] Otsu N. A threshold selection method from gray-Level histograms[J]. IEEE Transactions on Systems Man and Cybernetics, 1979, 9(1): 62-66.

    [14] Vincent L, Soille P. Watersheds in digital spaces: An efficient algorithm based on immersion simulations[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1991, 13(6): 583-598.

    [15] Zhou H, Mooney S J, Peng X H. Bimodal soil pore structure investigated by a combined soil water retention curve and X-ray Computed Tomography approach[J]. Soil Science Society of America Journal, 2017, 81(6): 1270-1278.

    [16] Kamdi S, Krishna R K. Image segmentation and region growing algorithm[J]. International Journal of Computer Technology & Electronics Engineering, 2012, 1(2): 103-107.

    [17] Schnaar G, Brusseau M L. Characterizing pore-scale configuration of organic immiscible liquid in multiphase systems with synchrotron X-ray microtomography[J]. Vadose Zone Journal, 2006, 5(2): 641-648.

    [18] McBratney A B, Odeh I O A. Application of fuzzy sets in soil science: Fuzzy logic, fuzzy measurements and fuzzy decisions[J]. Geoderma, 1997, 77(2/3/4): 85-113.

    [19] Sun X L, Zhao Y G, Wang H L, et al. Sensitivity of digital soil maps based on FCM to the fuzzy exponent and the number of clusters[J]. Geoderma, 2012(171/172): 24-34.

    [20] 趙玥,韓巧玲,趙燕東. 基于CT掃描技術的土壤孔隙定量表達優(yōu)化[J]. 農(nóng)業(yè)機械學報,2017,48(10):252-259.

    Zhao Yue, Han Qiaoling, Zhao Yandong. Optimization of soil pore quantitative expression based on computed tomography scanning technology[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(10): 252-259. (in Chinese with English abstract)

    [21] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]// Neural Information Processing Systems, Nevada, 2012: 1097-1105.

    [22] Noh H, Hong S, Han B. Learning deconvolution network for semantic segmentation[C]//IEEE International Conference on Computer Vision, Liverpool, 2015: 1520-1528.

    [23] Hariharan B, Arbeláez P, Girshick R, et al. Simultaneous detection and segmentation[C]// European Conference on Computer Vision, Zürich, 2014: 297-312.

    [24] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition, Boston, 2015: 3431-3440.

    [25] Dai J, He K, Sun J. Instance-aware semantic segmentation via multi-task network cascades[C]//IEEE Conference on Computer Vision and Pattern Recognition, Boston, 2015: 3150-3158.

    [26] 王恩姮,盧倩倩,陳祥偉. 模擬凍融循環(huán)對黑土剖面大孔隙特征的影響[J]. 土壤學報,2014,51(3):490-496.

    Wang Enheng,Lu Qianqian, Chen Xiangwei. Characterization of macro-pores in mollisol profile subjected to simulated freezing-thawing alternation[J]. Acta Pedologica Sinica, 2014, 51(3): 490-496. (in Chinese with English abstract)

    [27] 趙玥,韓巧玲,趙燕東. 基于灰度-梯度特征的改進FCM土壤孔隙辨識方法[J]. 農(nóng)業(yè)機械學報,2018,49(3):279-286.

    Zhao Yue, Han Qiaoling, Zhao Yandong. Improved FCM method for pore identification based on grayscale- gradient features[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(3): 279-286. (in Chinese with English abstract)

    [28] Shen X Y, Hertzmann A, Jia J Y, et al. Automatic portrait segmentation for image stylization[J]. Computer Graphics Forum, 2016, 35(2): 93-102.

    [29] Ghiasi G, Fowlkes C C. Laplacian pyramid reconstruction and refinement for semantic segmentation[C]//European Conference on Computer Vision, 2016: 519-534.

    [30] Hapca S M, Houston A N, Otten W, te al. New local thresholding method for soil images by minimizing grayscale intra-class variance[J]. Vadose Zone Journal, 2013, 12(3): 1-13.

    Soil pore segmentation of computed tomography images based on fully convolutional network

    Han Qiaoling1,2,3,Zhao Yue1,2,3※, Zhao Yandong1,2,3,Liu Kexiong1, Pang Man4

    (1.,100083; 2.,100083,; 3.100083,; 4.073006,)

    In this paper, a soil pore segmentation method based on fully convolutional network (FCN) is proposed to improve the accuracy of pore segmentation in soil image and provide technical support for the research of soil science. Taking the soil of typical black soil as the research object, the soil computed tomography image were obtained by scanning and cutting. Based on the FCN network, the soil image and the calibrated image of pore structure were input for convoluting, pooling and deconvoluting operations, and the error between the prediction image and the calibration image was used as feedback to complete the forward inference operation. Then, the weight value was updated by the back propagation algorithm to establish the soil pore segmentation model. Fully considering the pore geometry and spatial distribution characteristics, the pore model can accurately output the soil pore binary image. Meanwhile, the commonly used segmentation methods in the literature, such as Otsu method, watershed method, regional growth method and Fuzzy C-means method (FCM) were adopted for the comparative experiments on soil computed tomography images with low pore density (0-0.03), medium pore density (0.03-0.1) and high pore density (0.1-1) which were defined by porosity of soil. The experimental results showed that the watershed method and the regional growth method overestimate the pore structure of different geometries, including cracks between the pores, whereas the Otsu method and FCM method tended to overestimate the macropores and underestimate the micropores. Compared the five methods, the FCN method can accurately extract the pore structures with vary topologies from the complex soil computed tomography images with low, medium and high pore density. Moreover, the segmentation accuracy rate, over-segmentation rate, and under-segmentation rate were used to evaluate the soil pore segmentation performance of five methods. Based on 1487 soil computed tomography images, the average segmentation accuracy of FCN pore segmentation method was 98.1%, which was 25.6%, 48.3%, 55.7% and 9.5% higher than that of Otsu method, watershed method, regional growth method and FCM method. The average over-segmentation rate of the FCN pore segmentation method was 2.2%, which was only 33.8% of the suboptimal method (FCM method), respectively. And the average under-segmentation rate of the FCN pore segmentation method was 1.3%, which was only 23.6% of the suboptimal method (FCM method). In total, the FCN method can accurately extract the pore topology, restore the spatial distribution of pores and its application can make up for the shortcoming that the traditional segmentation method only uses the low-level features (gray and edge) when extracting the pore structure. Owing to the multiple convolution layers in the network, the FCN method can obtain the vary features of pore structure, so it has strong generalization ability and robustness of pore segmentation for different types of soil images. This paper will has a good reference for the microscopic process simulation , 3D reconstruction and soil structure analysis on the pore scale, and can provide a more intelligent technical method for soil science.

    soils; image segmentation; full convolutional network; soil pore; deep learning

    10.11975/j.issn.1002-6819.2019.02.017

    S152

    A

    1002-6819(2019)-02-0128-06

    2018-06-12

    2019-01-08

    國家重點研發(fā)計劃項目(2017YFD0600901)、北京市共建項目專項、中央高?;究蒲袠I(yè)務費專項資金項目(2015ZCQ-GX-04)、河北省創(chuàng)新能力提升計劃工作類項目(18827408D)資助

    韓巧玲,博士生,主要從事生態(tài)信息智能檢測,圖像處理與模式識別等研究。Email:hanqiaoling0@bjfu.edu.cn

    趙 玥,副教授,博士,主要從事圖像處理與模式識別、機器視覺與模式識別等研究。Email:zhaoyue0609@126.com

    韓巧玲,趙 玥,趙燕東,劉克雄,龐 曼. 基于全卷積網(wǎng)絡的土壤斷層掃描圖像中孔隙分割[J]. 農(nóng)業(yè)工程學報,2019,35(2):128-133. doi:10.11975/j.issn.1002-6819.2019.02.017 http://www.tcsae.org

    Han Qiaoling, Zhao Yue, Zhao Yandong, Liu Kexiong, Pang Man. Soil pore segmentation of computed tomography images based on fully convolutional network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(2): 128-133. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.02.017 http://www.tcsae.org

    猜你喜歡
    結構方法
    《形而上學》△卷的結構和位置
    哲學評論(2021年2期)2021-08-22 01:53:34
    論結構
    中華詩詞(2019年7期)2019-11-25 01:43:04
    新型平衡塊結構的應用
    模具制造(2019年3期)2019-06-06 02:10:54
    學習方法
    可能是方法不對
    論《日出》的結構
    用對方法才能瘦
    Coco薇(2016年2期)2016-03-22 02:42:52
    四大方法 教你不再“坐以待病”!
    Coco薇(2015年1期)2015-08-13 02:47:34
    賺錢方法
    捕魚
    亚洲av电影在线观看一区二区三区| 黄片播放在线免费| 亚洲国产欧美网| 国产伦人伦偷精品视频| 久久女婷五月综合色啪小说| 男女床上黄色一级片免费看| 日韩电影二区| 欧美97在线视频| 悠悠久久av| 国产精品久久久久久精品古装| 老司机影院成人| 午夜日韩欧美国产| 免费在线观看日本一区| 日本猛色少妇xxxxx猛交久久| 成人国语在线视频| 久久久久视频综合| 夫妻午夜视频| 国产片内射在线| svipshipincom国产片| 国产高清videossex| 日韩制服骚丝袜av| 国产福利在线免费观看视频| 亚洲中文av在线| 考比视频在线观看| 欧美精品高潮呻吟av久久| 亚洲午夜精品一区,二区,三区| 日日摸夜夜添夜夜添小说| 成人影院久久| 老司机福利观看| 欧美日韩亚洲国产一区二区在线观看 | 爱豆传媒免费全集在线观看| 成人三级做爰电影| 国产亚洲午夜精品一区二区久久| 国产人伦9x9x在线观看| 性少妇av在线| 中文精品一卡2卡3卡4更新| 大香蕉久久成人网| 美女大奶头黄色视频| 宅男免费午夜| 美女国产高潮福利片在线看| 日本一区二区免费在线视频| 日韩欧美一区视频在线观看| 国产av国产精品国产| 两个人免费观看高清视频| 日本vs欧美在线观看视频| 婷婷色av中文字幕| 最黄视频免费看| 中文字幕制服av| 亚洲人成电影免费在线| 一边摸一边做爽爽视频免费| cao死你这个sao货| 男人爽女人下面视频在线观看| 国产成人精品无人区| 老司机深夜福利视频在线观看 | 交换朋友夫妻互换小说| 无限看片的www在线观看| www.av在线官网国产| 成人18禁高潮啪啪吃奶动态图| 亚洲国产看品久久| 亚洲成人免费电影在线观看| 久久久精品区二区三区| 亚洲国产精品成人久久小说| 久久精品成人免费网站| 精品人妻1区二区| 久久精品国产综合久久久| 久久这里只有精品19| 黄频高清免费视频| 可以免费在线观看a视频的电影网站| 亚洲中文av在线| 久久久国产欧美日韩av| 久久久久网色| 搡老乐熟女国产| 免费观看a级毛片全部| 另类亚洲欧美激情| 一区二区三区激情视频| 亚洲国产精品一区三区| 亚洲精品一二三| 人人妻人人添人人爽欧美一区卜| 俄罗斯特黄特色一大片| 国产精品99久久99久久久不卡| 中国美女看黄片| 999精品在线视频| 亚洲国产av影院在线观看| 久久精品熟女亚洲av麻豆精品| 欧美精品av麻豆av| av超薄肉色丝袜交足视频| 欧美日韩精品网址| 99热国产这里只有精品6| 久久人妻福利社区极品人妻图片| 精品国产一区二区三区四区第35| 国产精品1区2区在线观看. | av在线播放精品| 国产区一区二久久| 麻豆av在线久日| 亚洲成人国产一区在线观看| 飞空精品影院首页| 大片免费播放器 马上看| 纵有疾风起免费观看全集完整版| 国产精品免费视频内射| 汤姆久久久久久久影院中文字幕| 国产一级毛片在线| 成人三级做爰电影| 精品一品国产午夜福利视频| 免费在线观看日本一区| 免费观看av网站的网址| 国产精品久久久久久精品古装| 亚洲av成人一区二区三| 午夜久久久在线观看| 久久久国产成人免费| 黄频高清免费视频| 午夜福利,免费看| 老熟女久久久| 水蜜桃什么品种好| 亚洲欧美日韩高清在线视频 | 色94色欧美一区二区| 国产一区有黄有色的免费视频| 久久热在线av| 日本wwww免费看| 精品人妻1区二区| 亚洲第一欧美日韩一区二区三区 | 高清视频免费观看一区二区| 性高湖久久久久久久久免费观看| 欧美黑人欧美精品刺激| 一二三四社区在线视频社区8| 日韩三级视频一区二区三区| 岛国毛片在线播放| 欧美日韩中文字幕国产精品一区二区三区 | 久久天堂一区二区三区四区| 国产又爽黄色视频| 午夜福利视频在线观看免费| 男人舔女人的私密视频| 性色av一级| 一区二区三区激情视频| 黄网站色视频无遮挡免费观看| 18禁观看日本| 黑人巨大精品欧美一区二区蜜桃| 成人av一区二区三区在线看 | 男女边摸边吃奶| 亚洲精品日韩在线中文字幕| 桃红色精品国产亚洲av| 成人手机av| 亚洲一卡2卡3卡4卡5卡精品中文| x7x7x7水蜜桃| 成人一区二区视频在线观看| 一本久久中文字幕| 久久这里只有精品19| 国产片内射在线| 在线观看舔阴道视频| 婷婷精品国产亚洲av| 午夜免费成人在线视频| 久久精品aⅴ一区二区三区四区| 亚洲18禁久久av| 叶爱在线成人免费视频播放| av视频在线观看入口| 桃红色精品国产亚洲av| 亚洲成人久久爱视频| 国产亚洲欧美98| 日本三级黄在线观看| 亚洲欧美日韩高清在线视频| 国产午夜精品论理片| 国产亚洲av高清不卡| 18禁观看日本| av在线播放免费不卡| 欧美黑人欧美精品刺激| 99国产综合亚洲精品| 国产精品 国内视频| 久久香蕉激情| 国产v大片淫在线免费观看| 日韩欧美国产在线观看| 中文字幕av在线有码专区| 国产精品一区二区三区四区免费观看 | 中文资源天堂在线| 人妻夜夜爽99麻豆av| av中文乱码字幕在线| 亚洲精品久久成人aⅴ小说| 亚洲av美国av| 久久久久久久精品吃奶| 在线观看免费午夜福利视频| 午夜精品一区二区三区免费看| 久久婷婷成人综合色麻豆| 亚洲熟妇熟女久久| 免费在线观看黄色视频的| 丰满人妻熟妇乱又伦精品不卡| 99久久99久久久精品蜜桃| 亚洲成人久久性| 国产亚洲欧美在线一区二区| 老鸭窝网址在线观看| 可以在线观看的亚洲视频| xxx96com| e午夜精品久久久久久久| 午夜精品久久久久久毛片777| 19禁男女啪啪无遮挡网站| 宅男免费午夜| 中文字幕人妻丝袜一区二区| 久久中文看片网| 黄片小视频在线播放| 91麻豆精品激情在线观看国产| 五月玫瑰六月丁香| 美女高潮喷水抽搐中文字幕| 91麻豆精品激情在线观看国产| 老汉色av国产亚洲站长工具| 床上黄色一级片| 中文字幕熟女人妻在线| 国产亚洲精品久久久久5区| 1024视频免费在线观看| 欧美日韩福利视频一区二区| 国产v大片淫在线免费观看| 九色国产91popny在线| 色综合婷婷激情| 婷婷精品国产亚洲av| 国产精品综合久久久久久久免费| 少妇人妻一区二区三区视频| 欧美午夜高清在线| videosex国产| 免费人成视频x8x8入口观看| 午夜精品久久久久久毛片777| 国产69精品久久久久777片 | 亚洲av电影不卡..在线观看| 日本在线视频免费播放| 中文字幕久久专区| 国产午夜精品论理片| 国语自产精品视频在线第100页| 999久久久精品免费观看国产| 91字幕亚洲| 97人妻精品一区二区三区麻豆| 国产蜜桃级精品一区二区三区| 久久久水蜜桃国产精品网| 我要搜黄色片| 久久久久久久精品吃奶| 午夜精品久久久久久毛片777| 又爽又黄无遮挡网站| xxx96com| 亚洲欧美日韩东京热| 动漫黄色视频在线观看| 久久久国产欧美日韩av| 国产成年人精品一区二区| 狠狠狠狠99中文字幕| 成人av在线播放网站| 亚洲男人的天堂狠狠| 99国产精品一区二区三区| 成人av一区二区三区在线看| 精华霜和精华液先用哪个| 老汉色av国产亚洲站长工具| 一个人免费在线观看电影 | 在线观看免费日韩欧美大片| 欧美丝袜亚洲另类 | 国产亚洲欧美在线一区二区| 一本一本综合久久| 欧洲精品卡2卡3卡4卡5卡区| 麻豆一二三区av精品| 国产精品99久久99久久久不卡| 99久久久亚洲精品蜜臀av| www日本黄色视频网| 免费高清视频大片| 精品免费久久久久久久清纯| 亚洲成av人片免费观看| www国产在线视频色| 夜夜躁狠狠躁天天躁| 超碰成人久久| 老司机靠b影院| 18禁黄网站禁片免费观看直播| 男女床上黄色一级片免费看| 岛国在线免费视频观看| 18禁黄网站禁片午夜丰满| 国产又黄又爽又无遮挡在线| 色老头精品视频在线观看| 欧美日本亚洲视频在线播放| 国产黄a三级三级三级人| 午夜福利视频1000在线观看| 精品久久久久久成人av| 国产伦一二天堂av在线观看| 天天躁夜夜躁狠狠躁躁| 中文字幕人妻丝袜一区二区| 国模一区二区三区四区视频 | 欧美中文日本在线观看视频| 亚洲av中文字字幕乱码综合| 动漫黄色视频在线观看| 两个人免费观看高清视频| 狠狠狠狠99中文字幕| 日本撒尿小便嘘嘘汇集6| 中文字幕久久专区| 亚洲国产高清在线一区二区三| 一a级毛片在线观看| av在线天堂中文字幕| 午夜精品久久久久久毛片777| 久久午夜综合久久蜜桃| 婷婷精品国产亚洲av| 国产一区在线观看成人免费| 国产精品av久久久久免费| 久久久国产成人免费| 91大片在线观看| 国产精品1区2区在线观看.| 亚洲美女黄片视频| 视频区欧美日本亚洲| 久久午夜亚洲精品久久| 国产片内射在线| 香蕉久久夜色| 999精品在线视频| 黄色女人牲交| 亚洲欧美一区二区三区黑人| 三级毛片av免费| 男女那种视频在线观看| 岛国在线观看网站| av中文乱码字幕在线| 长腿黑丝高跟| 国产成人影院久久av| 亚洲欧美精品综合久久99| 欧美日本视频| 国产三级中文精品| 亚洲熟妇熟女久久| 两性夫妻黄色片| 国产aⅴ精品一区二区三区波| 天天一区二区日本电影三级| 女人高潮潮喷娇喘18禁视频| 欧美日韩中文字幕国产精品一区二区三区| 一级作爱视频免费观看| 免费在线观看日本一区| 国产一级毛片七仙女欲春2| 久久中文看片网| 日韩大码丰满熟妇| 熟女少妇亚洲综合色aaa.| 天天一区二区日本电影三级| 国产在线观看jvid| 搡老妇女老女人老熟妇| 精品久久蜜臀av无| 久久精品亚洲精品国产色婷小说| 2021天堂中文幕一二区在线观| 久久久精品欧美日韩精品| 很黄的视频免费| 91九色精品人成在线观看| 巨乳人妻的诱惑在线观看| av超薄肉色丝袜交足视频| xxx96com| 久久久久久人人人人人| 免费观看人在逋| 老司机福利观看| 免费无遮挡裸体视频| 一区福利在线观看| 又大又爽又粗| 男女那种视频在线观看| 两个人的视频大全免费| 欧美日韩中文字幕国产精品一区二区三区| 午夜老司机福利片| 91九色精品人成在线观看| 18禁黄网站禁片免费观看直播| 国产高清有码在线观看视频 | 国产成+人综合+亚洲专区| 美女午夜性视频免费| av超薄肉色丝袜交足视频| 久久国产精品人妻蜜桃| 国产99白浆流出| 床上黄色一级片| 国产视频内射| 亚洲一区中文字幕在线| 国产精品久久久久久精品电影| 青草久久国产| 久久 成人 亚洲| 国产野战对白在线观看| 国产成人精品久久二区二区91| 校园春色视频在线观看| 三级国产精品欧美在线观看 | 国产91精品成人一区二区三区| 国产亚洲av嫩草精品影院| 一级毛片精品| 国产亚洲精品第一综合不卡| 岛国在线免费视频观看| 伦理电影免费视频| 亚洲一区二区三区色噜噜| 久久久国产精品麻豆| 狂野欧美激情性xxxx| 一区二区三区高清视频在线| 久久久久久国产a免费观看| 在线观看美女被高潮喷水网站 | 69av精品久久久久久| 亚洲国产精品久久男人天堂| 人妻夜夜爽99麻豆av| 国产精品九九99| 好男人在线观看高清免费视频| 亚洲欧美日韩高清在线视频| 中文资源天堂在线| 久久精品91蜜桃| 国产一区二区激情短视频| 亚洲第一电影网av| 人人妻人人澡欧美一区二区| 黄片大片在线免费观看| 亚洲成av人片在线播放无| 99精品欧美一区二区三区四区| 美女扒开内裤让男人捅视频| 国产精品影院久久| 精品熟女少妇八av免费久了| 国产乱人伦免费视频| 嫩草影院精品99| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品一区av在线观看| 日本 欧美在线| 一本综合久久免费| 亚洲精品粉嫩美女一区| 天堂影院成人在线观看| 日韩欧美精品v在线| 国产视频内射| 久久精品人妻少妇| 日本一二三区视频观看| 老熟妇乱子伦视频在线观看| 久久久久久久午夜电影| www.熟女人妻精品国产| 精品久久久久久,| 精品欧美国产一区二区三| 熟妇人妻久久中文字幕3abv| 国产午夜精品久久久久久| 狂野欧美白嫩少妇大欣赏| 一本综合久久免费| 国产av一区二区精品久久| 18美女黄网站色大片免费观看| 久久国产精品人妻蜜桃| 亚洲乱码一区二区免费版| 母亲3免费完整高清在线观看| 日日摸夜夜添夜夜添小说| 男人舔奶头视频| 搡老妇女老女人老熟妇| 成人18禁高潮啪啪吃奶动态图| 身体一侧抽搐| 黄频高清免费视频| 日本三级黄在线观看| 我的老师免费观看完整版| 91av网站免费观看| 色av中文字幕| 亚洲 欧美 日韩 在线 免费| 舔av片在线| 成人三级做爰电影| 国产亚洲精品久久久久久毛片| 久久香蕉国产精品| 桃色一区二区三区在线观看| 亚洲av五月六月丁香网| 天堂动漫精品| 久久这里只有精品19| 国产精品99久久99久久久不卡| 欧美黄色片欧美黄色片| 国产成人aa在线观看| 激情在线观看视频在线高清| 色综合亚洲欧美另类图片| 欧美人与性动交α欧美精品济南到| 不卡av一区二区三区| 久久99热这里只有精品18| 真人一进一出gif抽搐免费| 欧美精品啪啪一区二区三区| 国产精品久久久人人做人人爽| 亚洲色图 男人天堂 中文字幕| 欧美日本视频| 国内揄拍国产精品人妻在线| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美日本视频| 丰满的人妻完整版| 久久性视频一级片| 观看免费一级毛片| 此物有八面人人有两片| 欧美在线一区亚洲| xxx96com| 一区福利在线观看| 在线观看午夜福利视频| 久久午夜综合久久蜜桃| 91字幕亚洲| 九色成人免费人妻av| 亚洲人成电影免费在线| 国产乱人伦免费视频| 日韩欧美三级三区| 成人av在线播放网站| 国产精品国产高清国产av| 久久精品国产清高在天天线| 国产成人av教育| 激情在线观看视频在线高清| 国产私拍福利视频在线观看| 99久久国产精品久久久| 久久国产精品影院| 老汉色av国产亚洲站长工具| www国产在线视频色| 日本黄色视频三级网站网址| 久久久精品欧美日韩精品| 久久国产精品人妻蜜桃| 又粗又爽又猛毛片免费看| 欧美黑人巨大hd| 亚洲在线自拍视频| 日本五十路高清| 高清毛片免费观看视频网站| 真人做人爱边吃奶动态| 欧美av亚洲av综合av国产av| 黄片大片在线免费观看| 欧美高清成人免费视频www| 两个人免费观看高清视频| 精品一区二区三区四区五区乱码| 两性午夜刺激爽爽歪歪视频在线观看 | 2021天堂中文幕一二区在线观| 嫁个100分男人电影在线观看| 麻豆一二三区av精品| 亚洲激情在线av| 精品午夜福利视频在线观看一区| 村上凉子中文字幕在线| 1024手机看黄色片| 一区二区三区激情视频| 丝袜美腿诱惑在线| 男女那种视频在线观看| 一a级毛片在线观看| 亚洲欧美日韩高清专用| 日韩精品中文字幕看吧| 国产av不卡久久| 一卡2卡三卡四卡精品乱码亚洲| 久久久久久人人人人人| 两个人视频免费观看高清| 一级毛片精品| 99久久精品热视频| 欧美丝袜亚洲另类 | 亚洲国产欧洲综合997久久,| 人妻久久中文字幕网| 欧美一区二区精品小视频在线| 成人午夜高清在线视频| 中文字幕av在线有码专区| 久久亚洲精品不卡| 成年免费大片在线观看| 在线观看66精品国产| 亚洲狠狠婷婷综合久久图片| 男女那种视频在线观看| 五月伊人婷婷丁香| 国产区一区二久久| 悠悠久久av| 一本久久中文字幕| 天天一区二区日本电影三级| 长腿黑丝高跟| 欧美国产日韩亚洲一区| 亚洲乱码一区二区免费版| 一本一本综合久久| 女同久久另类99精品国产91| 亚洲av电影在线进入| 久久国产精品人妻蜜桃| 成人三级黄色视频| bbb黄色大片| 亚洲国产高清在线一区二区三| 免费看美女性在线毛片视频| 成人一区二区视频在线观看| 久久这里只有精品中国| 亚洲一区高清亚洲精品| 99久久久亚洲精品蜜臀av| 成人av在线播放网站| 小说图片视频综合网站| 日本a在线网址| 人人妻人人看人人澡| www.999成人在线观看| 人妻久久中文字幕网| 波多野结衣高清无吗| 亚洲欧美日韩高清专用| 午夜激情av网站| 黄频高清免费视频| 国产亚洲精品综合一区在线观看 | 精品久久久久久久久久久久久| 日韩成人在线观看一区二区三区| 好男人在线观看高清免费视频| 中文亚洲av片在线观看爽| 最近最新中文字幕大全免费视频| 免费在线观看视频国产中文字幕亚洲| 黄色视频不卡| 国产av麻豆久久久久久久| 草草在线视频免费看| 校园春色视频在线观看| 午夜福利18| 桃色一区二区三区在线观看| 久久久久久九九精品二区国产 | 亚洲中文字幕日韩| 母亲3免费完整高清在线观看| 国产精品国产高清国产av| 我要搜黄色片| 91在线观看av| 亚洲中文av在线| 免费观看精品视频网站| 免费电影在线观看免费观看| 校园春色视频在线观看| 一a级毛片在线观看| 久久久久久亚洲精品国产蜜桃av| 嫩草影视91久久| 在线观看日韩欧美| 老熟妇仑乱视频hdxx| 亚洲欧美日韩高清专用| 成人特级黄色片久久久久久久| 老鸭窝网址在线观看| 免费无遮挡裸体视频| 日本免费a在线| 欧美精品亚洲一区二区| 香蕉国产在线看| 悠悠久久av| 国产欧美日韩一区二区精品| 国产精品1区2区在线观看.| 日日干狠狠操夜夜爽| 久久精品亚洲精品国产色婷小说| a级毛片a级免费在线| 精品久久久久久久人妻蜜臀av| 国产欧美日韩精品亚洲av| 欧美大码av| 日本精品一区二区三区蜜桃| 欧美国产日韩亚洲一区| 99久久精品热视频| 亚洲男人的天堂狠狠| 欧美午夜高清在线| 国产片内射在线| 欧美黄色片欧美黄色片| 级片在线观看| 亚洲精品色激情综合| 中文在线观看免费www的网站 | 成年女人毛片免费观看观看9| 亚洲自拍偷在线| 久久久国产成人精品二区| 久久欧美精品欧美久久欧美| 免费在线观看成人毛片| 日韩精品青青久久久久久| 国内精品久久久久久久电影| 亚洲 国产 在线| 99热6这里只有精品| 精品电影一区二区在线| 久久这里只有精品19|