張 娟,徐寧彤,孟慶峰,姜佰文
?
有機肥施用年限對土壤有機碳組分及其來源與玉米產(chǎn)量的影響
張 娟,徐寧彤,孟慶峰,姜佰文※
(東北農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,哈爾濱 150030)
松嫩平原西部土壤鹽漬化現(xiàn)象普遍,嚴(yán)重制約著農(nóng)業(yè)的發(fā)展。施用有機肥能夠提高土壤有機碳的含量,這是改良鹽堿土的核心。該研究依托鹽堿土改良長期定位試驗,依據(jù)施用有機肥的年限,共設(shè)置4個處理,分別為:施用有機肥5a、9a和16a的處理,以未施肥的鹽堿土壤作為對照處理。試驗通過對土壤δ13C值、土壤有機碳組分、玉米產(chǎn)量、土壤pH和電導(dǎo)率等多項指標(biāo)的測定,量化玉米源及有機肥源有機碳對土壤總有機碳的貢獻,明確各有機碳組分的分配比例,探討長期施用有機肥對鹽堿土壤有機碳來源、組分、玉米產(chǎn)量及鹽堿程度的影響。結(jié)果表明:長期施用有機肥與種植玉米的方式顯著增加鹽堿土壤的δ13CSOC值(<0.01),且δ13CSOC值隨培肥年限的增加而增加;同時以植物及土壤的δ13CSOC值為基礎(chǔ),借助二元方程計算得出鹽堿土壤有機培肥9a后土壤有機碳中來源于玉米殘茬的比例為14.36%,來源于有機肥的比例為25.92%,鹽堿土壤原有有機碳所占的比例為59.72%;長期施用有機肥顯著增加玉米產(chǎn)量,降低土壤pH和電導(dǎo)率,并且隨有機肥施用年限的增加玉米產(chǎn)量提高,土壤pH和電導(dǎo)率呈下降趨勢;長期施用有機肥顯著增加有機碳各組分的碳密度,0~40 cm土層的活性I、活性II和惰性有機碳的密度,隨有機肥施用年限的增加均呈現(xiàn)出遞增的變化趨勢;土壤有機碳總量的增加來自于各組分含量的增加,0~40 cm土層有機碳含量的增加主要源于惰性和活性II有機碳,其次是活性I有機碳。綜上所述,有機培肥是土壤有機碳及玉米產(chǎn)量提升的雙贏措施,且有機肥源有機碳對有機碳的貢獻大于玉米源碳的輸入。長期有機培肥可以豐富植物的直接碳源,亦可促進碳素的長期固存,增強鹽堿土的碳匯功能。
土壤;有機碳;有機肥;玉米;同位素分析;鹽堿土
中國鹽堿土分布廣泛,面積約為3.70×107hm2,主要分布在東北、華北、華東和西北四大區(qū)域[1]。東北地區(qū)是世界三大蘇打鹽堿土分布區(qū)之一,鹽堿土面積約為3.84×106hm2,其中耕作鹽堿土面積為1.28×106hm2,占全區(qū)耕地總面積的近十分之一[2]。東北地區(qū)作為中國商品糧主要生產(chǎn)基地,提高和保持土壤供肥能力,始終是鹽堿土壤改良工作的重點。
土壤有機碳(SOC)是保證土壤肥力的關(guān)鍵因素,其含量高低直接影響作物生產(chǎn)。施用有機肥可增加SOC含量,改善土壤養(yǎng)分狀況[3-6]。同時,提高SOC含量也是施用有機肥改良鹽堿土的核心。楊明等[7-9]采用有機培肥措施改良鹽堿土1~2 a后,SOC總量有不同程度的增加,增量在1.97~4.10 g/kg之間。然而,以往研究多針對SOC總量變化,對于長期施用有機肥措施下蘇打鹽堿土壤有機碳來源及其各組分遞變規(guī)律的研究鮮少開展。
SOC是由分解程度和周轉(zhuǎn)時間各異的多種有機物質(zhì)所組成,各組分對外界環(huán)境條件、農(nóng)田管理方式變化的響應(yīng)時間差異較大。酸水解法是土壤有機碳組分的有效劃分方法[10],其中能夠被水解的部分按照水解的難易程度可劃分為活性及慢性有機碳,活性有機碳即有機碳源中能夠被植物直接吸收利用的部分,分解程度高,周轉(zhuǎn)時間短,對外界條件變化的響應(yīng)比SOC總量更加敏銳[11-12];非水解部分被劃分為惰性有機碳,分解程度較低且周轉(zhuǎn)時間極為漫長,故可以反映有機碳的長期固存能力[12-14]。
本研究依托鹽堿土改良長期定位試驗,以不同培肥年限的耕作鹽堿土壤作為研究對象,通過對土壤和植物δ13C值、土壤有機碳組分、玉米產(chǎn)量、土壤鹽堿性等多項指標(biāo)的測定,借助二元方程量化玉米源及有機肥源有機碳對土壤總有機碳的貢獻,明確各有機碳組分的分配比例,探討長期施用有機肥對鹽堿土壤有機碳來源、有機碳組分、玉米產(chǎn)量及鹽堿程度的影響。研究結(jié)果將豐富對蘇打鹽堿土壤碳素累積過程的認識,并為中國鹽堿土壤固碳和地力提升技術(shù)的選擇提供科學(xué)依據(jù)。
東北農(nóng)業(yè)大學(xué)鹽堿土長期定位試驗站位于黑龍江省肇州縣永樂鎮(zhèn)太豐村(125.06°E,45.40°N),該區(qū)地處松嫩平原西部,屬典型的中溫帶大陸性季風(fēng)氣候,年均溫為3.70 ℃,年均降水量為425 mm,年均蒸發(fā)量為1 800 mm。土壤類型為蘇打型草甸堿土和堿化草甸土,呈復(fù)區(qū)分布。典型自然植被為羊草和蘆葦。開墾前土壤基本理化性質(zhì)為:pH值9.56,電導(dǎo)率6.23 dS/m,SOC為6.36 g/kg,全氮含量0.37 g/kg。
試驗開始于2000年,依據(jù)開墾年限共設(shè)置4個處理,開墾即配合有機肥施用,各處理分別為:施用有機肥5a(Y5)、施用有機肥9a(Y9)和施用有機肥16a(Y16),以未施肥的土壤作為對照處理(CK)。小區(qū)采用隨機區(qū)組設(shè)計,每個處理3次重復(fù),每個小區(qū)面積為65m2,其中壟長10 m,壟寬0.65 m,共10壟。有機肥種類為腐熟的牛糞,牛糞的養(yǎng)分含量為:有機質(zhì)334.21 g/kg,全氮11.21 g/kg、全磷10.67 g/kg和全鉀13.85 g/kg,每年秋整地前施用45 m3/hm2。供試植物為玉米(龍丹288),拔節(jié)期追施尿素450 kg/hm2,玉米生育期內(nèi)無灌溉。玉米生育期結(jié)束后,小區(qū)內(nèi)玉米全部收獲用于玉米產(chǎn)量測定,并折算成國際單位kg/hm2。
土壤樣品于2016年4月玉米播種前采集,每個試驗小區(qū)分別采集0~20 cm和20~40 cm土層的土壤樣品。將土壤樣品攤成2 cm左右厚度的薄層,適當(dāng)?shù)膲核?,翻動,剔除植物殘體等外侵物。在室內(nèi)陰涼通風(fēng)處自然風(fēng)干后,部分樣品磨細過0.25 mm篩,用于SOC總量及其各組分的測定;部分樣品過0.10 mm篩,用于土壤δ13CSOC值的測定。
土壤pH選用5:1水土比,采用MP512-03型精密pH 分析儀測定;電導(dǎo)率(EC)選用5:1 水土比,采用MP515-01精密電導(dǎo)率儀測定。土壤有機碳組分采取酸水解兩步法測定[10]:土壤樣品在105 ℃條件下,用2.50 mol/L的H2SO4水解,制得的上清液供活性I有機碳測定;土壤樣品再經(jīng)13 mol/LH2SO4水解,制得的待測液供活性II有機碳測定;惰性有機碳含量由差減法測得。有機碳總量與各有機碳組分含量采用Analytikjena 2100s multi N/C分析儀進行測定。
土壤δ13CSOC值(VPDB)利用Finnigan MAT Delta Plus XP同位素質(zhì)譜儀進行測定:樣品測定前需利用HCl預(yù)處理12 h去除無機碳干擾,然后在1020 ℃的純氧環(huán)境下高溫燃燒確保有機物氧化完全。
當(dāng)原始鹽堿土壤開墾種植玉米后,玉米殘體(根和殘茬)隨之輸入到土壤之中,此時土壤有機碳既包括原有土壤的有機碳,又包括來源于玉米殘體的有機碳。由于原始鹽堿土壤自然植被的δ13CSOC值與玉米的δ13CSOC值有較大差異,所以鹽堿土壤開墾種植玉米后,就相當(dāng)于對土壤中的有機碳進行了原位標(biāo)記。據(jù)此可以根據(jù)質(zhì)量守恒原理,利用公式(1)估算鹽堿土壤種植玉米后,土壤有機碳中來源于鹽堿地固有有機碳和玉米殘體的有機碳的比例[15]。
δ=δ+(1?)δ0(1)
式中δ為鹽堿土壤開墾種植玉米后土壤有機碳的δ13C值,δ為玉米δ13C值,δ0為未開墾鹽堿土壤的δ13C值,為來源于玉米殘體的有機碳占土壤有機碳的比例,(1-)為來源于鹽堿土壤固有的有機碳的比例。
對于沒有添加有機肥的處理,玉米源有機碳可用下式計算
SOCmaize=SOC×(2)
SOCoriginal=SOC×(1?) (3)
式中SOCmaize、SOCoriginal分別為玉米源和鹽堿土原有有機碳所占的比例,SOC為土壤有機碳總量。對于有機肥處理,有機肥來源的SOC可利用總有機碳與原有有機碳和玉米源有機碳之間的差值進行計算。
穩(wěn)定性同位素可反映SOC的來源,分解程度及土壤肥力變化等諸多過程。因此,土壤有機碳穩(wěn)定性同位素技術(shù)常用于有機碳周轉(zhuǎn)及累積特征的研究[16]。長期施用有機肥顯著影響鹽堿土壤δ13CSOC值(圖1),表現(xiàn)為:有機培肥后,0~20 cm土層,處理Y5,Y9,Y16的土壤δ13CSOC值顯著高于CK處理(<0.05),各培肥處理間盡管差異不顯著,但土壤δ13CSOC值隨培肥年限的增加表現(xiàn)出增加的趨勢,這與Ma等[24]研究結(jié)果相似;20~40 cm土層的土壤δ13CSOC值低于0~20 cm土層,但各處理的土壤δ13CSOC值亦顯著高于CK處理(<0.05),各施肥處理的δ13CSOC值比CK處理增加1.87~2.43‰,低于0~20 cm土層的增量,且各施肥年限間的土壤δ13CSOC值差異不顯著。
不同植被的δ13C值相差較大。一般而言,C4植物δ13C值在?9‰~19‰之間,平均為?13‰,C3植物δ13C值在?23‰至?40‰之間,平均為?27‰[17-18],土壤δ13CSOC值與其上長期生長的植被的δ13C值十分相近,一般略高于植被δ13C值0.5‰~3‰,同時也受外界環(huán)境條件、農(nóng)田管理措施及微生物分餾等多種因素影響(差異≤3‰)[4,19-22]。試驗區(qū)開墾前地表植被為羊草(C3植物),CK處理0~20 cm土層δ13CSOC值為?23.72‰,C3植物是SOC的主要來源。開墾后種植玉米(C4作物),玉米秸稈作為飼料,產(chǎn)出的牛糞用于改良鹽堿土,這顯著影響各土層SOC的來源,施用有機肥16a后0~20 cm土層和20~40 cm土層δ13CSOC值分別增加5.35‰和2.43‰,說明在C4作物種植及施用牛糞的作用下土壤δ13CSOC值顯著增加,這與Dou等[23]和Zhang等[15]的研究結(jié)果相一致。
注:不同小寫字母表示同一土層不同處理間差異顯著,下同。
原始鹽堿土壤自然植被的δ13CSOC值與玉米的δ13CSOC值差異很大,根據(jù)質(zhì)量守恒原理,可計算玉米源有機碳所占的比例。本研究以開墾9a種植玉米,單施無機肥料不施有機肥的處理為對照,結(jié)果表明:有機培肥9a后,土壤有機碳總量中來源于玉米殘茬的比例為14.36%,來源于有機肥的比例為25.92%,鹽堿土壤原有有機碳比例為59.72%。相似的研究在中國其他區(qū)域也有開展:Zhang等[15]在江西紅壤長期定位實驗站的研究表明,紅壤有機培肥11a后,玉米源有機碳的比例約為11.00%,有機肥源的有機碳比例約為21.00%,其研究結(jié)果與本研究相近,但有機肥源有機碳的比例略低于本研究,其原因可能與本研究中較高的有機肥施用量直接相關(guān);武寧[25]研究表明,自然植被開墾種植麥-玉兩熟作物9a后,來源于小麥及玉米的有機碳比例約為12.00%,由于一年種植兩季作物,故來源于玉米的有機碳比例低于本研究。
土壤有機碳的動態(tài)變化體現(xiàn)了土壤中碳源物質(zhì)輸出與輸入之間的動態(tài)平衡。伴隨有機肥施入,外源碳的輸入量不斷增加,土壤有機碳密度亦隨之增加,如圖2所示,0~20 cm土層,Y5、Y9和Y16處理的土壤有機碳密度比CK處理分別增加49.81%,47.51%和68.99%。方差分析結(jié)果表明:0~20 cm土層有機碳密度隨培肥年限的增加而增加,Y16處理的有機碳密度達到最高,各培肥處理有機碳密度均顯著高于CK處理(<0.05);20~40 cm土層的有機碳密度與0~20cm土層相似,各培肥處理有機碳密度亦顯著高于CK處理,然而各培肥處理間有機碳密度差異不顯著。
有機肥作為長效碳源可顯著增加土壤有機碳密度[26-28],且隨培肥年限的增加而增加,利用鹽堿土壤有機碳密度折算有機碳的年增長速率為1.33 t/hm2。許多學(xué)者在其他區(qū)域也開展過相似研究。尤孟陽等[29]在海倫實驗站的研究結(jié)果表明,黑土有機培肥14a后土壤有機碳密度由未培肥時的53.80 t/hm2增加到62.90 t/hm2,有機碳年增長速率0.65 t/hm2;胡誠等[30]在武漢南湖實驗站的研究亦表明,黃棕壤有機培肥25a后,土壤有機碳密度由44.50 t/hm2增加到60.5 t/hm2,有機碳年增長速率0.64 t/hm2。相比較而言,鹽堿土壤有機碳的年增長速率大于黑土和黃棕壤的年增長速率,這可能與黑土(28.1 g/kg)和黃棕壤(15.91 g/kg)長期定位試驗開展時較高的土壤有機碳含量密切相關(guān)。
圖2 不同培肥處理SOC密度的變化情況
土壤活性有機碳作為植物的直接碳源,易于作物吸收利用。有機培肥后,0~20 cm土層,處理Y5、Y9和Y16的活性I有機碳密度顯著高于CK處理(<0.05),各施肥處理間差異不顯著(圖3a)。在20~40 cm土層,其活性I有機碳密度低于0~20 cm土層,各施肥處理活性I有機碳密度亦顯著高于CK。
土壤活性II有機碳的分解程度介于活性I有機碳及惰性有機碳之間,可水解,但難度高于活性I有機碳,即通常所理解的緩效性有機碳。經(jīng)過長期的有機培肥,土壤活性II有機碳亦呈現(xiàn)隨土層深度增加而降低,隨培肥年限增加而增加的趨勢(如圖3b所示)。在0~20 cm土層,培肥處理Y5、Y9和Y16的土壤活性II有機碳密度比CK處理分別增加5.64、4.18和7.07 t/hm2,方差分析結(jié)果表明,施肥處理土壤活性II有機碳密度顯著高于CK處理(<0.05),各施肥處理間差異不顯著。在20~40 cm土層,土壤活性II有機碳密度的增量低于0~20 cm土層,但各處理土壤活性II有機碳密度均顯著高于CK處理(<0.05)。
土壤惰性有機碳即有機碳的非水解部分,主要由木質(zhì)素、腐殖質(zhì)、多糖及多酚等組分構(gòu)成,在SOC總量中所占比例較大。長期有機培肥措施影響土壤惰性有機碳密度。如圖3c所示,在0~20 cm土層,Y5、Y9和Y16處理的惰性有機碳密度均顯著高于CK處理,且Y16處理的惰性有機碳密度顯著高于其他處理(<0.05)。在20~40 cm土層,各處理惰性有機碳密度的增幅高于0~20 cm土層,且施肥處理惰性有機碳密度顯著高于CK處理,施肥處理間差異不顯著。
圖3 不同培肥處理土壤活性I、II有機碳和惰性有機碳密度變化
土壤有機碳密度的增加源于有機碳各組分密度的增加,從各組分對土壤有機碳密度增加的貢獻情況來看(表1),0~20 cm土層,惰性有機碳>活性II有機碳>土壤活性I有機碳,可見有機培肥初期活性有機碳貢獻較大,而長期培肥條件下惰性有機碳貢獻較大;而20~40 cm土層,活性II有機碳>惰性有機碳>活性I有機碳,變化特征與0~20 cm土層有所差異,活性II有機碳貢獻較大。有機肥施入影響有機碳各組分的碳密度,其分配特征在不同區(qū)域略有差異。例如,Dou等[23]在吉林公主嶺的研究表明,黑土有機培肥25a后土壤有機碳密度由49.50 t/hm2增加到56.10 t/hm2,且各組分中以惰性有機碳密度增加為主,以土壤活性有機碳密度的增加為輔;Zhang等[11]的研究表明,灰漠土開墾為農(nóng)田60 a,期間適當(dāng)配合有機肥施入,0~30 cm土層內(nèi)土壤有機碳密度增加26.00 t/hm2,其中活性I、活性II和惰性有機碳密度分別增加3.00、3.00和20 t/hm2。有機培肥后土壤有機碳密度及各組分的碳密度均顯著增加,其原因一方面為牛糞作為碳源物質(zhì)直接施入到土壤[31];一方面為施用有機肥能夠增加作物根系和凋落物歸還土壤的數(shù)量[32];另外,牛糞中纖維素、半纖維素和木質(zhì)素的含量較高,可增加惰性碳源的比例;同時,牛糞作為新鮮碳源施入到土壤之中可以激發(fā)SOC的礦化[33],這在一定程度上也促進了有機碳的周轉(zhuǎn)。
表1 有機碳各組分碳密度所占土壤有機碳密度的比例
由此可見,蘇打鹽堿土壤長期有機培肥既可以提高土壤肥力,增加植物生長所需的直接碳源,又有利于土壤碳素的長期固存,增強土壤的碳匯功能。
長期有機培肥顯著影響玉米產(chǎn)量(圖4),玉米產(chǎn)量隨培肥年限增加呈現(xiàn)遞增趨勢,Y16處理的玉米產(chǎn)量最高,其次是Y5和Y9處理,CK處理的玉米產(chǎn)量最低,這與Meng等[34]的研究結(jié)果相一致。方差分析結(jié)果表明:各培肥處理玉米產(chǎn)量均顯著高于CK處理,培肥處理間以Y16處理的產(chǎn)量為最高。
圖4 不同培肥處理玉米產(chǎn)量的變化情況
長期施用有機肥顯著影響土壤鹽堿性。土壤pH隨有機肥施用年限的增加呈現(xiàn)出遞減的變化趨勢,CK的土壤pH最高,處理Y16的土壤pH最低(圖5a)。施用有機肥各處理的土壤pH均顯著低于CK處理(<0.05),各施肥處理之間的土壤pH差異不顯著。
土壤電導(dǎo)率與pH具有相似的變化趨勢(圖5b),CK的電導(dǎo)率最高,其次是處理Y5、Y9,而處理Y16的電導(dǎo)率最低。經(jīng)統(tǒng)計分析可知,施用有機肥各處理的電導(dǎo)率與CK間呈顯著性差異(<0.05),而施用有機肥的各處理間差異不顯著。
可見,采用有機培肥措施,伴隨土壤有機碳含量增加,土壤鹽堿程度顯著減低,其原因主要是土壤施用有機肥可改善土壤通透性,利于表層土壤鹽分向土體下層淋洗[35],同時有機肥中的有機組分分解形成的有機酸可以降低土壤中的堿性物質(zhì)[35]。
圖5 土壤pH值、電導(dǎo)率變化情況
1)長期施用有機肥與種植玉米的方式顯著增加鹽堿土壤的δ13CSOC值。隨有機肥施用年限的增加,δ13CSOC值呈現(xiàn)上升趨勢。
2)有機培肥9a后,鹽堿土壤有機碳中來源于玉米殘茬的比例為14.36 %,來源于有機肥的比例為25.92 %,鹽堿土壤原有有機碳的比例為59.72%,可見有機肥源有機碳對土壤有機碳的貢獻大于玉米源有機碳。
3)長期施用有機肥顯著增加土壤有機碳密度及各組分的有機碳密度,0~40 cm土層有機碳含量的增加主要源于惰性和活性II有機碳,其次是活性I有機碳。
4)長期施用有機肥顯著增加玉米產(chǎn)量,降低土壤pH和電導(dǎo)率,并且隨有機肥施用年限的增加玉米產(chǎn)量提高,土壤pH和電導(dǎo)率呈下降趨勢。
[1] 王利民,陳金林,梁珍海,等. 鹽堿土改良利用技術(shù)研究進展[J]. 浙江林學(xué)院學(xué)報,2010,27(1):143-148.
Wang Limin, Chen Jinlin, Liang Zhenhai, et al. Research progress of improvement and utilization of saline and alkali soil[J]. Journal of Zhejiang Forestry College, 2010, 27(1): 143-148. (in Chinese with English abstract)
[2] 姚榮江,楊勁松,劉廣明. 東北地區(qū)鹽堿土特征及其農(nóng)業(yè)生物治理[J]. 土壤,2006,38(3):256-262.
Yao Rongjiang, Yang Jinsong, Liu Guangming. Charaeteristics and agro-biological management of saline-alkalized land in northeast China[J]. Soils, 2006, 38(3): 256-262. (in Chinese with English abstract)
[3] Xu Y M, Liu H, Wang X H, et al. Changes in organic carbon index of grey desert soil in northwest China after long-term fertilization[J]. Journal of Integrative Agriculture, 2014, 13(3): 554-561.
[4] Yang X Y, Sun B H, Zhang S L. Trends of yield and soil fertility in a long-term wheat-maize system[J]. Journal of Integrative Agriculture, 2014, 13: 402-414.
[5] 李輝,張軍科,江長勝,等. 耕作方式對紫色水稻土有機碳和微生物生物量碳的影響[J]. 生態(tài)學(xué)報,2012,32(1):247-255.
Li Hui, Zhang Junke, Jiang Changsheng, et al. Long-term tillage effects on soil organic carbon and microbial biomass carbon in a purple paddy soil[J]. Acta Ecologica Sinica, 2012, 32(1): 247-255. (in Chinese with English abstract)
[6] 陳吉,趙炳梓,張佳寶,等. 長期施肥處理對玉米生長期潮土微生物生物量和活度的影響[J]. 土壤學(xué)報,2010,47(1):122-130.
Chen Ji, Zhao Bingxin, Zhang Jiabao, et al. Effect of long-term fertilization on microbial biomass and activity in fluvo-aquic soil during maize growth period[J]. Acta Pedologica Sinica, 2010, 47(1): 122-130. (in Chinese with English abstract)
[7] 楊明,孫毅,高玉山,等. 有機肥對蘇打鹽堿土的改良效果研究[J]. 吉林農(nóng)業(yè)科學(xué),2013,38(3):43-46,62.
Yang Ming, Sun Yi, Gao Yushan, et al. Effects of organic manure on improving soda saline-slkali soil[J]. Journal of Jilin Agricultural Sciences, 2013, 38(3): 43-46, 62. (in Chinese with English abstract)
[8] 燕新紅. 不同改良方法對堿化草甸土理化性狀的影響[D]. 哈爾濱:東北農(nóng)業(yè)大學(xué),2012.
Yan Xinhong. Effect of Different Improvement Measures on Physicochemical Characteristics[D]. Harbin: Northeast Agricultural University, 2012. (in Chinese with English abstract)
[9] Bhatti A U, Khan Q, Gurmani A H, et al. Effect of organic manure and chemical amendments on soil properties and crop yield on a salt affected entisol[J]. Pedosphere, 2005, 15(1): 46-51.
[10] Rovira P, Vallejo V R. Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: An acid hydrolysis approach[J]. Geoderma, 2002, 107(1/2): 109-141.
[11] Zhang Juan, Wang Xiujun, Wang Jiaping. Impact of land use change on profile distributions of soil organic carbon fractions in the Yanqi Basin[J]. Catena, 2014, 115: 79-84.
[12] Banger K, Kukal S S, Toor G, et al. Impact of long-term additions of chemical fertilizers and farm yard manure on carbon and nitrogen sequestration under rice-cowpea cropping system in semi-arid tropics[J]. Plant and Soil, 2009, 318(1/2): 27-35.
[13] Krull E S, Baldock J A, Skjemstad J O. Importance of mechanisms and processes of the stabilisation of soil organic matter for modelling carbon turnover[J]. Functional Plant Biology, 2003, 30(2): 207-222.
[14] 吳慶標(biāo),王效科,歐陽志云. 活性有機碳含量在凋落物分解過程中的作用[J]. 生態(tài)環(huán)境,2006,15(6):1295-1299.
Wu Qingbiao, Wang Xiaoke, Ouyang Zhiyun. Effects of labile organic carbon on the litters decomposition process[J]. Ecology and Environment, 2006, 15(6): 1295-1299. (in Chinese with English abstract)
[15] Zhang Wenju, Liu Kailou, Wang Jinzhou, et al. Relative contribution of maize and external manure amendment to soil carbon sequestration in a longterm intensive maize cropping system[J]. Scientific Reports, 2015, 5: 1-12.
[16] 牛曉音,王延華,楊浩. 滇池雙龍流域不同土地利用方式下土壤侵蝕與土壤養(yǎng)分分異[J]. 環(huán)境科學(xué)研究,2014,27(9):1043-1050.
Niu Xiaoyin, Wang Yanhua, Yang Hao, et al. Effects of different land uses on soil erosion and soil nutrient variability in the Shuanglong catchment of Dianchi Watershed[J]. Research of Environmental Sciences, 2014, 27(9): 1043-1050. (in Chinese with English abstract)
[17] Wang Jinzhou, Wang Xiujun, Xu Minggang, et al. Contributions of wheat and maize residues to soil organic carbon under long-term rotation in north China[J]. Scientific Reports, 2015, 5: 11409.
[18] 趙亞南. 長期不同施肥下紫色水稻土有機碳變化特征及影響機制[D]. 重慶:西南大學(xué),2016.
Zhao Ya’nan. Characteristic and Mechanism of Organic Carbon Sequestration of Purple Paddy Soil under Long-term Fertilization[D]. Chongqing: Southwest University, 2016. (in Chinese with English abstract)
[19] Powers J S, Schlesinger W H. Geographic and vertical patterns of stable carbon isotopes in tropical rain forest soils of Costa Rica[J]. Geoderma, 2002, 109(1): 141-160.
[20] Wynn J G, Bird M I. C4-derived soil organic carbon decomposes faster than its C3 counterpart in mixed C3/C4 soils[J]. Global Change Biology, 2007, 13(10): 2206-2217.
[21] 李志鵬,潘根興,張旭輝. 改種玉米連續(xù)3年后稻田土壤有機碳分布和13C自然豐度變化[J]. 土壤學(xué)報,2007,44(2):244-251.
Li Zhipeng, Pan Genxing, Zhang Xuhui. Topsoil organic carbon pool and13C natural abundance changes from a paddy after 3 years corn cultivation[J]. Acta Pedologica Sinica, 2007, 44(2): 244-251. (in Chinese with English abstract)
[22] 冷延慧. 長期施肥對棕壤、黑土團聚體組成極其穩(wěn)定性的影響[D]. 沈陽:沈陽農(nóng)業(yè)大學(xué),2008.
Leng Yanhui. Effect of Long-term Fertilization on Composition and Stability of Aggregates in Brown Earth and Black Soil[D]. Shengyang: Shengyang Agricultural University, 2008. (in Chinese with English abstract)
[23] Dou Xiaolin, He Ping, Cheng Xiaoli, et al. Long-term fertilization alters chemically-separated soil organic carbon pools: Based on stable C isotope analyses[J]. Scientific Reports, 2016, 1: 1-9.
[24] Ma Li, Yang Linzhang, Xia Lizhong, et al. Long-term effects of inorganic and organic amendments on organic carbon in a paddy soil of the Taihu Lake region, China[J]. Pedosphere, 2011, 21(2): 186-196.
[25] 武寧. 耕作措施與秸稈還田對麥-玉兩熟農(nóng)田土壤有機碳來源的影響[D]. 泰安:山東農(nóng)業(yè)大學(xué),2016.
Wu Ning. Effect of Tillage and Straw Returning on Sources of Soil Organic Carbon in Wheat-maize Crop System[D]. Taian: Shandong Agricultural University, 2016. (in Chinese with English abstract)
[26] LiJuan, WenYanchen, LiXuhua, et al.Soil labile organic carbon fractions and soil organic carbon stocks as affected by long-term organic and mineral fertilization regimes in the North China Plain[J]. Soil & Tillage Research, 2018, 175: 281-290.
[27] He Y T, He X H, Xu M G, et al. Long-term fertilization increases soil organic carbon and alters its chemical composition in three wheat-maize cropping sites across central and south China[J]. Soil & Tillage Research, 2018, 177: 79-87.
[28] Benbi Dinesh, Brar Kiranvir, Toor Amardeep, et al. Sensitivity of labile soil organic carbon pools to long-term fertilizer, straw and manure management in rice-wheat system[J]. Pedosphere, 2015, 25: 534-545.
[29] 尤孟陽,李海波,韓曉增. 土地利用變化與長期施肥對黑土有機碳密度的影響[J]. 水土保持學(xué)報,2010,24(2): 155-159.
You Mengyang, Li Haibo, Han Xiaozeng. Land use change and long-term fertilization impact on SOC density in black soil of Northeast China[J]. Journal of Soil and Water Conservation, 2010, 24(2): 155-159. (in Chinese with English abstract)
[30] 胡誠,喬艷,李雙來,等. 長期不同施肥方式下土壤有機碳的垂直分布及碳儲量[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報,2010,18(4):689-692.
Hu Cheng, Qiao Yan, Li Shuanglai, et al. Vertical distribution and storage of soil organic carbon under long-term fertilization[J]. Chinese Journal of Eco-Agriculture, 2010, 18(4): 689-692. (in Chinese with English abstract)
[31] Yang Z H, Singh B R, Hansen S. Aggregate associated carbon, nitrogen and sulfur and their ratios in long-term fertilized soils[J]. Soi & Tillage Research, 2007, 95: 161-171.
[32] Bhattacharyya R, Chandra S, Singh R D, et al. Long-term farmyard manure application effects on properties of a silty clay loam soil under irrigated wheat-soybean rotation[J]. Soil & Tillage Research, 2007, 94: 386-396.
[33] 戚瑞敏,趙秉強,李娟,等. 添加牛糞對長期不同施肥潮土有機碳礦化的影響及激發(fā)效應(yīng)[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(2):118-127.
Qi Ruimin, Zhao Bingqiang, Li Juan, et al. Effects of cattle manure addition on soil organic carbon mineralization and priming effects under long-term fertilization regimes[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(2): 118-127. (in Chinese with English abstract)
[34] Meng Qingfeng, Li Dawei, Zhang Juan, et al. Soil properties and corn (Zea mays L.) production under manure application combined with deep tillage management in solonetzic soils of Songnen Plain[J]. Northeast China Journal of Integrative Agriculture, 2016, 15(4): 879-890.
[35] Chang C, Sommerfeldt T G, Entz T. Soil chemistry after eleven annual applications of cattle feedlot manure[J]. Journal of Environmental Quality, 1991, 20: 475-480.
Effect of years of manure fertilizer application on soil organic carbon component, its source and corn yield
Zhang Juan, Xu Ningtong, Meng Qingfeng, Jiang Baiwen※
(,,150030,)
Soil salinization is common phenomenon in Songnen Plain of northeast China, which seriously restricts the development of agriculture. Long-term manure application can significantly increase the content of soil organic carbon, which is the major method for saline-sodic soils amelioration. According to the cattle manure application history, manure applied to saline-sodic soils for 5, 9 and 16 years were used as the experimental treatments, and soil without manure application was used as a control. Based on long-term experimentation, soil δ13CSOCvalue, soil organic carbon fraction, corn yield, soil pH and soil EC were determined. The relative contribution of plant residue and organic manure to soil carbon sequestration was quantified. Furthermore, the distribution ratio of soil organic carbon fraction was explicit. Simultaneously, the characteristic of soil organic carbon fraction distribution were discussed in saline-sodic soils. Our results indicated that corn (Zea mays L.) with long-term manure application significantly (<0.05) increased the δ13CSOCvalue in saline-sodic soils (<0.05), and δ13CSOCwas increased with the duration of manure application. On the other hand, the contribution of corn-derived carbon (below-ground roots and residues) and the manure-derived carbon to soil organic carbon can be calculated from δ13CSOCvalue of plant and soil by using a two-end member mixed model. Our results showed that after nine years manure application, corn-derived soil organic carbon comprised about 14.36% of total soil organic carbon and manure-derived soil organic carbon accounted for 25.92%, and the other part was from original soil organic carbon of saline-sodic soils. Long term manure application significantly resulted in an increase in corn yield and decreases in soil pH and EC, and corn yield increased with the number of year of manure application. Conversely, soil pH and EC decreased with the number of year of manure application. Generally, soil organic carbon can be chemically divided into labile I, labile II and recalcitrant carbon that have different sensitivities to changes of environmental conditions. Changes in SOC fractions may provide an early indicator of changes in total SOC. Long-term manure application also significantly increased the density of each soil organic carbon fraction, and the density of soil organic carbon fractions, such as labile I carbon, labile II carbon and recalcitrant carbon, was increased with the number of year of manure application at the 0-20 and 20-40 cm, respectively. The density of soil organic carbon fractions was the highest in the treatment with manure application for 16 years. Increased contents of soil organic carbon was most contributed by soil recalcitrant carbon and soil labile II carbon, followed by soil labile I carbon at the 0-20cm and 20-40cm, respectively. Summarily, long-term manure application can directly enrich the carbon source of plant, promote the long-term sequestration of soil carbon, and enhance the carbon sink function of saline-sodic soils. Long term manure application was necessary to a win-win strategy for both SOC sequestration and corn production. The contribution of manure derived carbon to SOC increase was larger than corn derived carbon.
soils; organic carbon; manure fertilizer; corn; isotope analysis; saline-sodic soils
10.11975/j.issn.1002-6819.2019.02.014
S15
A
1002-6819(2019)-02-0107-07
2018-04-21
2018-11-10
國家自然科學(xué)基金(41501316)和(41501315),東北農(nóng)業(yè)大學(xué)“青年才俊”計劃(16QC11),青年創(chuàng)新人才計劃(UNPYSCT-2017025),國家重點研發(fā)計劃項目子課題(2016YFD0300806-3)
張 娟,講師,博士,主要從事碳循環(huán)相關(guān)研究。Email:zhangjuan2080@163.com
姜佰文,教授,博士,主要從事植物營養(yǎng)與施肥技術(shù)相關(guān)研究。Email:jbwneau@163.com
張 娟,徐寧彤,孟慶峰,姜佰文. 有機肥施用年限對土壤有機碳組分及其來源與玉米產(chǎn)量的影響[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(2):107-113. doi:10.11975/j.issn.1002-6819.2019.02.014 http://www.tcsae.org
Zhang Juan, Xu Ningtong, Meng Qingfeng, Jiang Baiwen. Effect of years of manure fertilizer application on soil organic carbon component, its source and corn yield[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(2): 107-113. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.02.014 http://www.tcsae.org