王春林,胡蓓蓓,馮一鳴,劉軻軻
?
基于徑向基神經(jīng)網(wǎng)絡(luò)與粒子群算法的雙葉片泵多目標(biāo)優(yōu)化
王春林,胡蓓蓓,馮一鳴,劉軻軻
(江蘇大學(xué)能源與動(dòng)力工程學(xué)院,鎮(zhèn)江 212013)
針對(duì)雙葉片泵存在水力性能比相同比轉(zhuǎn)速的多葉片離心泵低的缺陷,該文以一臺(tái)型號(hào)為80QW50-15-4的雙葉片污水泵作為研究對(duì)象,將其設(shè)計(jì)流量點(diǎn)的揚(yáng)程和效率定為優(yōu)化目標(biāo),運(yùn)用ANSYS CFX(computational fluid dynamics x)進(jìn)行數(shù)值模擬獲得性能數(shù)據(jù),采用徑向基(radial basis function,RBF)神經(jīng)網(wǎng)絡(luò)建立結(jié)構(gòu)參數(shù)與揚(yáng)程、效率性能間的預(yù)測(cè)模型,并將其用作粒子群算法的適應(yīng)值評(píng)價(jià)模型,在樣本空間內(nèi)進(jìn)行最優(yōu)值求解,獲得揚(yáng)程和效率的Pareto解。選取揚(yáng)程最優(yōu)個(gè)體和效率最優(yōu)個(gè)體進(jìn)行數(shù)值模擬,研究其在輸運(yùn)不同介質(zhì)時(shí)的性能與內(nèi)流場(chǎng)差異,并與初始模型的數(shù)值模擬數(shù)據(jù)相比較。經(jīng)試驗(yàn)驗(yàn)證,清水介質(zhì)中設(shè)計(jì)流量點(diǎn)揚(yáng)程最優(yōu)個(gè)體的揚(yáng)程較初始個(gè)體增加0.96 m,增幅達(dá)到5.5%;效率最優(yōu)個(gè)體的效率較初始個(gè)體提升了10.11個(gè)百分點(diǎn)。該優(yōu)化方法改善了葉輪水力特性,使雙葉片泵性能得到提高。
泵;算法;優(yōu)化;數(shù)值模擬;徑向基神經(jīng)網(wǎng)絡(luò)
雙葉片泵是一種特殊的離心泵,因其水力結(jié)構(gòu)簡(jiǎn)單、只有兩瓣對(duì)稱葉片且不易堵塞[1],因此被廣泛應(yīng)用于輸運(yùn)含有復(fù)雜成分的液體[2]。然而,又因其水力結(jié)構(gòu)過(guò)于簡(jiǎn)單、葉片數(shù)過(guò)少,雙葉片泵的整體性能往往低于同比轉(zhuǎn)速的多葉片泵。因此,尋求出一種能同時(shí)提升雙葉片泵多個(gè)性能的設(shè)計(jì)方法是一項(xiàng)具有實(shí)際工程意義的工作。
雙葉片泵被劃分成單獨(dú)種類泵的歷史較短,之前主要將其劃分為污水泵或普通離心泵,在未明確其種類的情況下,對(duì)其進(jìn)行的研究也較少,且在研究時(shí)會(huì)忽略一些雙葉片泵本身的特性。最近二十年,對(duì)雙葉片泵的研究進(jìn)入一個(gè)高峰期,而此時(shí)也正值數(shù)值模擬技術(shù)和計(jì)算設(shè)備較為成熟的時(shí)期,因此在傳統(tǒng)試驗(yàn)研究方法的基礎(chǔ)上結(jié)合了最新的數(shù)值模擬技術(shù),使雙葉片泵的結(jié)構(gòu)設(shè)計(jì)、水力設(shè)計(jì)以及內(nèi)部流動(dòng)規(guī)律的研究取得較大進(jìn)步。然而,在雙葉片泵的工作介質(zhì)和智能優(yōu)化方面的研究則尚有不足。
目前,對(duì)雙葉片泵輸運(yùn)介質(zhì)的研究主要集中在清水和固液兩相流,但在實(shí)際生產(chǎn)生活中雙葉片泵的工作介質(zhì)應(yīng)該還包括油性污泥漿。當(dāng)生活污水中固體顆粒粒徑很小,與水混合后,會(huì)形成剪切應(yīng)力與剪切應(yīng)變率之間不是線性關(guān)系的非牛頓流體[3],而生活油污則本身即是非牛頓流體。因此,在對(duì)泵進(jìn)行設(shè)計(jì)時(shí),應(yīng)注意雙葉片泵的工作介質(zhì)除了常規(guī)的清水和固液兩相流體外,還有非牛頓流體。
近年來(lái),智能優(yōu)化設(shè)計(jì)已被廣泛應(yīng)用在各行各業(yè),并經(jīng)實(shí)際工程的檢驗(yàn)證明有效[4]。然而,將智能優(yōu)化算法應(yīng)用于流體機(jī)械的優(yōu)化設(shè)計(jì)的案例仍較少,且優(yōu)化算法主要為遺傳算法[5-12]。為此,本文開(kāi)發(fā)一種對(duì)雙葉片泵進(jìn)行優(yōu)化設(shè)計(jì)的方法:運(yùn)用ANSYS CFX進(jìn)行數(shù)值模擬,從而獲得性能數(shù)據(jù),采用徑向基(radial basis function,RBF)神經(jīng)網(wǎng)絡(luò)建立結(jié)構(gòu)參數(shù)與揚(yáng)程、效率性能間的預(yù)測(cè)模型[13],并將其用作為粒子群算法的適應(yīng)值評(píng)價(jià)模型,在樣本空間內(nèi)進(jìn)行最優(yōu)值求解,尋求使揚(yáng)程、效率性能均達(dá)到極值的結(jié)構(gòu)參數(shù),以期為雙葉片泵優(yōu)化設(shè)計(jì)提供參考。
本文所選取型號(hào)為80QW50-15-4的雙葉片污水泵作為研究模型泵[14],具體設(shè)計(jì)參數(shù)如表1所示。
表1 80QW50-15-4主要設(shè)計(jì)參數(shù)
采用Pro/Engineer5.0建立葉輪流道、蝸殼流道、進(jìn)水管、出水管。
為選擇合理的網(wǎng)格數(shù)目以節(jié)約計(jì)算資源和保證計(jì)算精度[15],對(duì)計(jì)算域網(wǎng)格進(jìn)行無(wú)關(guān)性驗(yàn)證。表2為3組網(wǎng)格劃分方案,選用設(shè)計(jì)流量點(diǎn)清水介質(zhì)的揚(yáng)程和效率作為驗(yàn)證指標(biāo)。如表2所示,三者計(jì)算結(jié)果相似度較高,為節(jié)約資源和時(shí)間,選用方案1。
表2 網(wǎng)格無(wú)關(guān)性驗(yàn)證
計(jì)算域網(wǎng)格采用ANSYS ICEM進(jìn)行劃分,其中進(jìn)出水管段由于結(jié)構(gòu)簡(jiǎn)單,采用結(jié)構(gòu)網(wǎng)格進(jìn)行劃分;葉輪和蝸室流道由于結(jié)構(gòu)復(fù)雜,采用非結(jié)構(gòu)網(wǎng)格進(jìn)行劃分,如圖1所示。
圖1 初始模型泵的計(jì)算域網(wǎng)格圖
雙葉片泵數(shù)值模擬邊界主要有進(jìn)口邊界、出口邊界和固壁邊界。由于流量和進(jìn)水管徑為已知,故采用速度進(jìn)口邊界條件,且方向沿笛卡爾坐標(biāo)軸-軸;出口假定流動(dòng)已充分發(fā)展,因此采用靜壓出口邊界條件;固壁邊界設(shè)置為無(wú)滑移條件。
雙葉片泵葉輪的結(jié)構(gòu)參數(shù)數(shù)量較多,其中有些參數(shù)只對(duì)特定的性能影響顯著,而對(duì)其他性能影響不顯著,甚至沒(méi)有影響。本文選擇效率和揚(yáng)程為優(yōu)化目標(biāo),選用Plackeet-Burman試驗(yàn),從較多葉輪結(jié)構(gòu)參數(shù)中篩選出對(duì)揚(yáng)程、效率影響顯著的結(jié)構(gòu)參數(shù)。
試驗(yàn)采用專業(yè)試驗(yàn)設(shè)計(jì)軟件Design Expert 8.0.6進(jìn)行試驗(yàn)設(shè)計(jì)和分析,并跟據(jù)前人研究結(jié)果確定篩選參數(shù),其中篩選參數(shù)選?。喝~片進(jìn)口安放角1,葉輪前蓋板圓弧半徑1,后蓋板圓弧半徑2,葉片出口安放角2,葉輪出口寬度2,葉片包角[16]。由于在實(shí)際工程中對(duì)泵葉輪進(jìn)行優(yōu)化時(shí),需考慮到葉輪與壓水室的相對(duì)尺寸不宜變化過(guò)大以免造成動(dòng)靜干涉[17]。因此,不將葉輪進(jìn)口直徑1和葉輪出口直徑2納入篩選參數(shù)。此外,增設(shè)虛擬因素1、2、3、4、5作為誤差參照。表3為試驗(yàn)設(shè)計(jì)及相應(yīng)的數(shù)值模擬計(jì)算結(jié)果。
表4是揚(yáng)程及效率影響因素的顯著性分析。其中考慮揚(yáng)程影響因素時(shí),葉輪出口寬度2、葉片出口安放角2以及葉片包角的平方和所占百分比最多,分別為34.117 3%,18.542 9%,15.142 8%。
值表示各因素對(duì)揚(yáng)程沒(méi)有影響的可能性,即值越小對(duì)揚(yáng)程的影響越顯著,當(dāng)因素值小于0.05時(shí),可認(rèn)為其為顯著影響因素;當(dāng)因素值大于0.05而小于0.1時(shí)認(rèn)為其為次顯著影響因素;值大于0.1時(shí)可認(rèn)為其為不顯著影響因素。其中葉輪出口寬度2、葉片出口安放角2以及葉片包角值最小,可認(rèn)為這3個(gè)因素對(duì)揚(yáng)程影響顯著。
考慮效率影響因素時(shí)葉片包角、葉輪出口寬度2以及葉片出口安放角2的值均小于0.05,為顯著影響因素。葉片進(jìn)口安放角2以及葉輪后蓋板圓弧半徑2,值均大于0.05而小于0.1,為次顯著因素。
表3 Plackeet-Burman試驗(yàn)設(shè)計(jì)及計(jì)算結(jié)果
表4 揚(yáng)程及效率影響因素顯著性分析
根據(jù)揚(yáng)程、效率的影響因素顯著性分析結(jié)果,取二者交集,以葉輪出口寬度2、葉片出口安放角2以及葉片包角這3個(gè)參數(shù)作為雙葉片離心泵葉輪優(yōu)化設(shè)計(jì)的優(yōu)化變量。并根據(jù)前人研究以及本例實(shí)際情況,確定優(yōu)化變量取值范圍:2?[25,40],2?[13,28],?[190,250]。
神經(jīng)網(wǎng)絡(luò)訓(xùn)練樣本的建立應(yīng)遵循×10原則,即訓(xùn)練樣本數(shù)至少為輸入層自變量的10倍,且應(yīng)在自變量取值范圍內(nèi)均勻分布。為此,本文采用方開(kāi)泰均勻試驗(yàn)設(shè)計(jì)表建立RBF神經(jīng)網(wǎng)絡(luò)訓(xùn)練樣本[18],試驗(yàn)具體安排和計(jì)算結(jié)果如表5所示。
表5 試驗(yàn)安排及數(shù)值模擬結(jié)果
本文采用MATLAB作為RBF神經(jīng)網(wǎng)絡(luò)的編寫(xiě)與運(yùn)行軟件[19],并使用自帶的newrb()函數(shù)構(gòu)建RBF網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)[20],如式(1)所示。
net=newrb(,,GOAL,SPREAD,,) (1)
式中為輸入向量;為輸出向量;GOAL為均方誤差,取值為0.001;SPREAD為RBF函數(shù)分布密度,取值2;為神經(jīng)元最大數(shù)目;為訓(xùn)練過(guò)程的顯示頻率。將表5的數(shù)據(jù)輸入Matlab的RBF神經(jīng)網(wǎng)絡(luò)主程序中并運(yùn)行,得到圖2和圖3,即為經(jīng)過(guò)訓(xùn)練后的RBF神經(jīng)網(wǎng)絡(luò)的預(yù)測(cè)值與CFX計(jì)算值的對(duì)比。預(yù)測(cè)值與計(jì)算值有差異,但從直觀上能看出誤差較小[20]。為驗(yàn)證此次神經(jīng)網(wǎng)絡(luò)訓(xùn)練的可靠性,采用Matlab的rand函數(shù)隨機(jī)生成5組優(yōu)化參數(shù),并將由神經(jīng)網(wǎng)絡(luò)產(chǎn)生的預(yù)測(cè)值與CFX計(jì)算值進(jìn)行對(duì)比。表6是隨機(jī)生成的5組結(jié)構(gòu)參數(shù),表7是神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)值與CFX計(jì)算值對(duì)比及誤差分析。經(jīng)誤差分析可知揚(yáng)程最大誤差為3.94%,效率最大誤差為1.76%,均在工程許可范圍內(nèi)。
圖2 效率計(jì)算值與預(yù)測(cè)值對(duì)比圖
圖3 揚(yáng)程計(jì)算值和預(yù)測(cè)值對(duì)比圖
表6 隨機(jī)生成的5組結(jié)構(gòu)參數(shù)
表7 預(yù)測(cè)值和計(jì)算值對(duì)比及誤差分析
粒子群算法是最近提出的一種新型人工智能算法,但因其優(yōu)化步驟較少、優(yōu)化時(shí)間較短[21-23],且一次完整優(yōu)化過(guò)程更可獲得足夠多的Pareto前沿解,現(xiàn)已在部分行業(yè)生產(chǎn)實(shí)踐中得到應(yīng)用且可靠有效[24-25]。其核心迭代步驟只有2個(gè),即粒子更新速度公式和粒子位置更新公式[26]
多目標(biāo)粒子群算法的基本工作流程:首先初始化粒子群和外部?jī)?chǔ)備集,在給定變量空間隨機(jī)生成粒子位置,初始化粒子速度,評(píng)價(jià)粒子適應(yīng)值并將非劣解保存到外部?jī)?chǔ)備集中;然后進(jìn)入循環(huán)階段,評(píng)價(jià)儲(chǔ)備集中粒子的適應(yīng)值,選取全局引導(dǎo)者;而后,根據(jù)引導(dǎo)者更新粒子速度和位置,并評(píng)價(jià)粒子的適應(yīng)值和Pareto支配關(guān)系[28];接著根據(jù)評(píng)價(jià)結(jié)果,更新粒子個(gè)體引導(dǎo)者并更新外部?jī)?chǔ)備集;最后,判定是否達(dá)到目標(biāo)或循環(huán)次數(shù)最大值,若沒(méi)有則重復(fù)上述循環(huán)步驟直至滿足循環(huán)要求。
本文采用的粒子群算法基本參數(shù)設(shè)置為:粒子規(guī)模=100,粒子儲(chǔ)備集規(guī)模=100,慣性權(quán)重=0.729 8,學(xué)習(xí)因子1,2=1.494 45,尋優(yōu)迭代次數(shù)=500。
多目標(biāo)粒子群優(yōu)化算法迭代500次后,得到含有100個(gè)非支配解的解集,以橫軸為效率,縱軸為揚(yáng)程做點(diǎn)圖,得到Pareto前沿分布圖4。由圖可知Pareto非支配解形成一條較為連續(xù)光滑的上凸的曲線,基本涵蓋各個(gè)效率和揚(yáng)程點(diǎn),具有一定的工程實(shí)用價(jià)值,給定在此范圍的一揚(yáng)程點(diǎn)或效率點(diǎn)可知其對(duì)應(yīng)的極限效率或揚(yáng)程以及對(duì)應(yīng)的幾何參數(shù)。此外,本曲線與以往文獻(xiàn)的Pareto前沿分布圖類似[29-30],可認(rèn)為本次粒子群算法求解出的結(jié)果可靠。
圖4 優(yōu)化后的Pareto前沿分布
為研究?jī)?yōu)化后的葉輪結(jié)構(gòu)與性能變化,選取揚(yáng)程最優(yōu)個(gè)體和效率最優(yōu)個(gè)體對(duì)應(yīng)的結(jié)構(gòu)參數(shù)進(jìn)行三維造型和數(shù)值模擬,并在清水、固液兩相流體介質(zhì)工況下與初始個(gè)體進(jìn)行比較分析。表8是優(yōu)化前后葉片結(jié)構(gòu)參數(shù)對(duì)比。其中,無(wú)論是要提高揚(yáng)程還是效率均需要增大包角,減小出口安放角。而出口寬度2對(duì)揚(yáng)程和效率的影響是不同的,2增加可使揚(yáng)程增加,減小可使效率增加。最后,為驗(yàn)證優(yōu)化結(jié)果的實(shí)用性,選取揚(yáng)程最優(yōu)個(gè)體和效率最優(yōu)個(gè)體進(jìn)行清水介質(zhì)性能測(cè)試,并與初始個(gè)體相比較。
表8 初始個(gè)體和最優(yōu)個(gè)體的結(jié)構(gòu)參數(shù)對(duì)比
圖5是優(yōu)化前后的清水介質(zhì)能曲線對(duì)比圖,流量范圍是0.5~1.3倍設(shè)計(jì)流量。其中,揚(yáng)程最優(yōu)個(gè)體的揚(yáng)程和效率在全流量范圍均高于初始個(gè)體,但功率也略有上升。在額定流量點(diǎn),揚(yáng)程最優(yōu)個(gè)體的揚(yáng)程升幅較大,達(dá)到19.31 m,比初始個(gè)體提高了1.58 m,增加了8.9%。但效率提升較小,只由初始個(gè)體的71.73%增加到74.11%;效率最優(yōu)個(gè)體的效率在全流量工況得到大幅提升,高效區(qū)范圍也得到擴(kuò)大,其中額定工況點(diǎn)效率由初始個(gè)體的71.73%增加到83.07%。揚(yáng)程較初始個(gè)體下降較多,只有16.1 m,但滿足設(shè)計(jì)要求15 m。此外,效率最優(yōu)個(gè)體的功率也減少較多。
圖5 優(yōu)化前后清水介質(zhì)中性能曲線對(duì)比
圖6是初始個(gè)體與優(yōu)化后個(gè)體在設(shè)計(jì)流量點(diǎn)過(guò)流通道中間剖面的靜壓分布對(duì)比。與初始個(gè)體相比,優(yōu)化后個(gè)體的包角增加、出口安放角減小,葉片長(zhǎng)度也增加,對(duì)流場(chǎng)的約束力增強(qiáng),沿葉輪徑向的壓力梯度更明顯,其中揚(yáng)程最優(yōu)個(gè)體的進(jìn)口壓力更低,效率最優(yōu)個(gè)體的進(jìn)口壓力則較高;而揚(yáng)程最優(yōu)個(gè)體的在蝸室的靜壓分布與初始個(gè)體相似,但效率最優(yōu)個(gè)體的高壓區(qū)分布范圍較廣,即動(dòng)能更早的在蝸室內(nèi)轉(zhuǎn)換為壓能。
圖6 優(yōu)化前后清水介質(zhì)中流道中間剖面靜壓對(duì)比
圖7是初始個(gè)體與優(yōu)化個(gè)體在清水介質(zhì)、設(shè)計(jì)流量點(diǎn)工況下的相對(duì)速度分布對(duì)比圖。與初始個(gè)體相比,揚(yáng)程最優(yōu)個(gè)體和效率最優(yōu)個(gè)體的葉片壓力面和吸力面的旋渦區(qū)強(qiáng)度和范圍顯著減小,且效率最優(yōu)個(gè)體的低速區(qū)減小幅度最為顯著。此外,揚(yáng)程最優(yōu)個(gè)體的葉輪出口最大相對(duì)速度與初始個(gè)體相比顯著增加,而效率最優(yōu)個(gè)體的葉輪出口最大速度與初始個(gè)體相比則略有減小。
圖7 優(yōu)化前后清水介質(zhì)中葉輪中間剖面的相對(duì)速度分布對(duì)比
圖8是初始個(gè)體和優(yōu)化后個(gè)體在輸運(yùn)初始固相濃度C=15%、固相粒徑d=1 mm的固液兩相流體時(shí)的性能曲線對(duì)比圖,其中固相密度為2200 kg/m3。性能曲線趨勢(shì)與輸運(yùn)清水介質(zhì)時(shí)相似,總體上揚(yáng)程最優(yōu)個(gè)體的揚(yáng)程曲線與初始個(gè)體相比大幅上升,效率曲線略有上升,功率在小流量時(shí)與初始個(gè)體相差不大,在大流量時(shí)略有上升;效率最優(yōu)個(gè)體的揚(yáng)程曲線提升明顯,但揚(yáng)程在大流量時(shí)下降較明顯,但全流量功率也大幅減小。
圖8 優(yōu)化前后固液兩相流體介質(zhì)中性能曲線對(duì)比
圖9是初始個(gè)體和優(yōu)化個(gè)體在設(shè)計(jì)流量點(diǎn)、工作介質(zhì)為固液兩相流體時(shí)過(guò)流通道中間剖面的靜壓分布圖。如圖所示,優(yōu)化后葉輪葉片變長(zhǎng),彎曲程度增加,葉輪流道間壓力分布層次性、對(duì)稱性更明顯;而蝸室的靜壓分布則有較大差異,與初始個(gè)體相比,揚(yáng)程最優(yōu)個(gè)體的蝸室高壓區(qū)出現(xiàn)位置靠后,效率最優(yōu)個(gè)體的高壓區(qū)則出現(xiàn)較前。
圖10是設(shè)計(jì)流量點(diǎn),初始個(gè)體和優(yōu)化個(gè)體在輸運(yùn)固液兩相流體時(shí)葉輪中間剖面的相對(duì)速度分布。總體上,優(yōu)化后個(gè)體的速度方向更清晰,低速區(qū)和旋渦區(qū)有明顯改善。與初始個(gè)體相比,揚(yáng)程最優(yōu)個(gè)體因其葉片變長(zhǎng)、變彎,對(duì)流體的約束性更強(qiáng),因此葉輪流道間的旋渦和低速區(qū)范圍更小。此外,揚(yáng)程最優(yōu)個(gè)體的液相速度略有提升,但固相速度沒(méi)有提升,這是由于固相慣性更大,葉片變長(zhǎng)固相更易于與葉片壁面碰撞造成能量損失。效率最優(yōu)個(gè)體的固液兩相相對(duì)速度分布是三者最好的,液相和固相的相對(duì)速度分布圖均沒(méi)有明顯的旋渦和低速區(qū),速度方向連貫、連續(xù)。然而與初始個(gè)體相比,效率最優(yōu)個(gè)體的液相葉輪出口速度沒(méi)有提升,固相葉輪出口速度反而下降,這個(gè)同揚(yáng)程最優(yōu)個(gè)體的固相速度沒(méi)有提升的原因一樣。揚(yáng)程最優(yōu)個(gè)體的固相相對(duì)速度沒(méi)有明顯的降低是因?yàn)閾P(yáng)程最優(yōu)個(gè)體的葉輪出口寬度更大,同濃度下的固體顆粒撞擊概率更小,固相能量損失也越小。
圖9 優(yōu)化前后固液兩相流介質(zhì)中流道中間剖面靜壓分布對(duì)比
注:左圖為在輸運(yùn)液相流體時(shí)葉輪中間剖面的相對(duì)速度分布,右圖為在輸運(yùn)固相流體時(shí)葉輪中間剖面的相對(duì)速度分布。
圖11是設(shè)計(jì)流量點(diǎn),初始個(gè)體與優(yōu)化個(gè)體輸運(yùn)固液兩相流時(shí)的中間剖面的固相濃度對(duì)比圖。與初始個(gè)體相比,優(yōu)化后個(gè)體在進(jìn)口處吸力面的固相濃度均高于初始個(gè)體,這是由于優(yōu)化后葉片長(zhǎng)度和彎曲度增加,不利于固體顆粒的排出。然而,揚(yáng)程最優(yōu)個(gè)體壓力面的固相濃度小于初始個(gè)體,效率最優(yōu)個(gè)體壓力面的固相濃度則相反,這是由于揚(yáng)程最優(yōu)個(gè)體的葉輪出口寬度增加,固體顆粒易于排出,而效率最優(yōu)個(gè)體的葉輪出口寬度減小,固體顆粒不易排出。
圖11 優(yōu)化前后固液兩相流體介質(zhì)中葉輪中間剖面固相濃度分布對(duì)比
為驗(yàn)證優(yōu)化結(jié)果的實(shí)用性,選取揚(yáng)程和效率最優(yōu)個(gè)體在清水介質(zhì)里進(jìn)行試驗(yàn)驗(yàn)證,試驗(yàn)在江蘇大學(xué)流體機(jī)械試驗(yàn)室C級(jí)閉式性能試驗(yàn)臺(tái)上進(jìn)行,揚(yáng)程、效率計(jì)算根據(jù)相關(guān)資料進(jìn)行,以常溫清水為試驗(yàn)介質(zhì),流量測(cè)量采用LWGY型渦輪流量傳感器,測(cè)量精度為±0.35%,揚(yáng)程測(cè)量采用WT-1151型智能電容式壓力變送器,測(cè)量精度為±0.25%,功率、轉(zhuǎn)速測(cè)量選用JN338-100AG型轉(zhuǎn)矩轉(zhuǎn)速儀,轉(zhuǎn)速測(cè)量精度為±0.05%。
本試驗(yàn)系統(tǒng)運(yùn)行穩(wěn)定,重復(fù)性好,其效率的綜合誤差為±0.816%,各測(cè)量精度均達(dá)到GB/T3216-2016標(biāo)準(zhǔn)中2B級(jí)規(guī)定的要求。
試驗(yàn)獲得的性能曲線與初始個(gè)體的試驗(yàn)性能曲線相比較,如圖12所示。與模擬結(jié)果相似,揚(yáng)程最優(yōu)個(gè)體的揚(yáng)程性能提升較大,效率性能提升不明顯;效率最優(yōu)個(gè)體的效率提升明顯,但在大流量工況下的揚(yáng)程大幅下降。
圖12 試驗(yàn)性能曲線對(duì)比
其中,揚(yáng)程最優(yōu)個(gè)體在設(shè)計(jì)流量點(diǎn)的試驗(yàn)揚(yáng)程為18.38 m,比初始個(gè)體增加0.96 m,增幅達(dá)到5.5%,效果明顯;效率略有提升,為72.11%,與初始個(gè)體相比僅增加1.6個(gè)百分點(diǎn)。效率最優(yōu)個(gè)體在設(shè)計(jì)流量點(diǎn)的試驗(yàn)揚(yáng)程為15.59 m,與初始個(gè)體相比有較大下降,但滿足15 m的設(shè)計(jì)要求;效率提升明顯,在初始個(gè)體效率的基礎(chǔ)上提升了10.11個(gè)百分點(diǎn),為80.62%。通過(guò)試驗(yàn)驗(yàn)證,證明本文所采用的優(yōu)化方法有效、可靠。
1)采用PB篩選試驗(yàn),確定葉輪出口寬度、葉片出口安放角以及葉片包角為對(duì)泵揚(yáng)程和效率顯著影響的因素。采用均勻試驗(yàn)表建立RBF神經(jīng)網(wǎng)絡(luò)的訓(xùn)練樣本,揚(yáng)程最大誤差為3.9%,效率最大誤差為1.7%,即采用這種方法建立的性能預(yù)測(cè)模型有較高精度。
2)優(yōu)化結(jié)果顯示:揚(yáng)程最優(yōu)個(gè)體在輸運(yùn)不同介質(zhì)時(shí)揚(yáng)程均顯著提升,效率有輕微提升;效率最優(yōu)個(gè)體在輸運(yùn)不同介質(zhì)時(shí)效率均大幅提升,揚(yáng)程有所下降。
3)優(yōu)化后葉片對(duì)流體的約束能力變強(qiáng),使性能提升,但在輸運(yùn)固液兩相流體時(shí)固相更不易排出并大量聚集在葉輪進(jìn)口處和葉片壓力面,使葉輪的磨損加劇并更易發(fā)生堵塞故障。然而,增加葉輪出口寬度可以促使固相顆粒排出。
4)選取揚(yáng)程和效率最優(yōu)個(gè)體在清水介質(zhì)里進(jìn)行試驗(yàn)。其中,揚(yáng)程最優(yōu)個(gè)體在設(shè)計(jì)流量點(diǎn)的試驗(yàn)揚(yáng)程比初始個(gè)體增加0.96 m,增幅達(dá)到5.5%,效率提升了 1.6個(gè)百分點(diǎn);效率最優(yōu)個(gè)體在初始個(gè)體效率的基礎(chǔ)上提升了10.11個(gè)百分點(diǎn),揚(yáng)程略有下降,提高了雙葉片泵的性能。
[1] 趙斌娟,侯多華,陳匯龍,等. 葉輪流道結(jié)構(gòu)對(duì)雙流道泵性能的影響[J]. 排灌機(jī)械,2013,31(4):294-299.
Zhao Binjuan, Hou Duohua, Chen Huilong et al. Influence of impeller runner structure on performance of dual-channel pump[J]. Drainage and Irrigation Machinery, 2013, 31(4): 294-299. (in Chinese with English abstract)
[2] 劉厚林,談明高. 雙流道泵[M]. 鎮(zhèn)江:江蘇大學(xué)出版社,2012.
[3] 曹新智. 螺旋離心泵內(nèi)部流場(chǎng)的數(shù)值計(jì)算[D]. 鎮(zhèn)江:江蘇大學(xué),2010.
Cao Xinzhi. Numerical Calculation of Internal Flow Field in Spiral Centrifugal Pump[D]. Zhenjiang: Jiangsu University, 2010. (in Chinese with English abstract)
[4] 張德勝,張啟華,施衛(wèi)東編著.葉片泵設(shè)計(jì)數(shù)值模擬基礎(chǔ)與應(yīng)用[M]. 北京:機(jī)械工業(yè)出版社,2015.
[5] 嚴(yán)俊峰,陳煒. 基于遺傳算法的低比轉(zhuǎn)速高速泵的優(yōu)化設(shè)計(jì)[J]. 火箭推進(jìn),2006,32(3):1-7.
Yan Junfeng, Chen Wei. Optimization design of low specific speed high speed pump based on genetic algorithm[J]. Rocket Propulsion, 2006, 32(3): 1-7. (in Chinese with English abstract)
[6] 劉峰. 柱塞式燃油泵多目標(biāo)結(jié)構(gòu)優(yōu)化[D]. 南京:南京航空航天大學(xué),2008.
Liu Feng. Multi-objective Structure Optimization of Plunger Fuel Pump[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008. (in Chinese with English abstract)
[7] 陶海坤, 曹樹(shù)良. 遺傳算法的改進(jìn)及其在流體機(jī)械領(lǐng)域的應(yīng)用[J]. 排灌機(jī)械工程學(xué)報(bào),2010,28(5):428-433.
Tao Haikun, Cao Shuliang. Improvement of genetic algorithm and its application in fluid machinery[J]. Journal of Drainage and Irrigation Machinery Engineering, 2010, 28 (5): 428-433. (in Chinese with English abstract)
[8] 朱增寶,李燦,季軍. 基于遺傳算法的三柱塞往復(fù)泵曲軸優(yōu)化設(shè)計(jì)[J]. 煤礦機(jī)械,2011,32(11):45-46.
Zhu Zengbao, Li Can, Ji Jun. Optimization design of crankshaft of three-piston reciprocating pump based on genetic algorithm[J]. Coal Mine Machinery, 2011, 32(11): 45-46. (in Chinese with English abstract)
[9] 劉毅,譚磊,曹樹(shù)良. 微遺傳算法及其在混流泵葉輪優(yōu)化設(shè)計(jì)中的應(yīng)用[J]. 機(jī)械設(shè)計(jì)與制造,2012(9):1-3.
Liu Yi, Tan Lei, Cao Shuliang. Micro-genetic algorithm and its application in optimization design of mixed flow pump impeller[J]. Machinery Design & Manufacture, 2012(9): 1-3. (in Chinese with English abstract)
[10] 鮑鵬飛. 代理模型的微蜂群優(yōu)化及在葉輪機(jī)械中的作用[D]. 大連:大連理工大學(xué),2014.
Bao Pengfei. Optimization of Micro-bee Colony in Proxy Model and its Role in Turbomachinery[D]. Dalian: Dalian University of Technology, 2014. (in Chinese with English abstract)
[11] 苗森春,楊軍虎,王曉暉,等. 基于神經(jīng)網(wǎng)絡(luò)-遺傳算法的液力透平葉片型線優(yōu)化[J]. 航空動(dòng)力學(xué)報(bào),2015,30(8):1918-1925.
Miao Senchun, Yang Junhu, Wang Xiaohui, et al. Optimization of hydraulic turbine blade profile based on neural network-genetic algorithm[J]. Journal of Aerospace Power, 2015, 30(8): 1918-1925. (in Chinese with English abstract)
[12] 葉劍. 基于徑向基神經(jīng)網(wǎng)絡(luò)與NAGA-II算法的渣漿泵多目標(biāo)優(yōu)化設(shè)計(jì)[D]. 鎮(zhèn)江:江蘇大學(xué),2016.
Ye Jian. Multi-objective Optimization Design of Slurry Pump Based on Radial Basis Neural Network and NAGA-II Algorithm[D]. Zhenjiang: Jiangsu University, 2016. (in Chinese with English abstract)
[13] 呂云. 混流泵能量性多參數(shù)優(yōu)化研究[D]. 鎮(zhèn)江:江蘇大學(xué),2017.
Lü Yun. Energy Multi-parameter Optimization Study of Mixed Flow Pump[D]. Zhenjiang: Jiangsu University, 2017. (in Chinese with English abstract)
[14] 趙斌娟. 雙流道泵內(nèi)非定常三維湍流數(shù)值模擬及PIV測(cè)試[D]. 鎮(zhèn)江:江蘇大學(xué),2007.
Zhao Binjuan. Unsteady Three-dimensional Turbulent Numerical Simulation and PIV Test in a Dual-channel Pump[D]. Zhenjiang: Jiangsu University, 2007. (in Chinese with English abstract)
[15] Shojaeefard M H, Tahani M, Ehghaghi M B, et al. Numerical study of the effects of some geometric characteristics of a centrifugal pump impeller that pumps a viscous fluid[J]. Computers and Fluids, 2012, 60: 61-70.
[16] 董亮,劉厚林. 葉片泵CFD數(shù)值計(jì)算實(shí)例詳解[M].北京:機(jī)械工業(yè)出版社,2015.
[17] Zheng Sulu, Wang Xiangping, et al. Computation of viscous flow inside a double-channel centrifugal pump[J]. The Open Mechanical Engineering Journal, 2014, 8(1): 613-618.
[18] 方開(kāi)泰. 在水平數(shù)不同的正交試驗(yàn)中決定因素主次關(guān)系的一種方法[J]. 數(shù)學(xué)的實(shí)踐與認(rèn)識(shí),1978(1):35-38.
Fang Kaitai. A method for determining the relationship between primary and secondary factors in orthogonal experiments with different levels[J]. Mathematics in Practice and Theory, 1978(1): 35-38. (in Chinese with English abstract)
[19] 朱增寶,李燦,季軍. 基于遺傳算法的三柱塞往復(fù)泵曲軸優(yōu)化設(shè)計(jì)[J]. 煤礦機(jī)械,2011,32(11):45-46.
Zhu Zengbao, Li Can, Ji Jun. Optimization design of crankshaft of three-piston reciprocating pump based on genetic algorithm[J]. Coal Mine Machinery, 2011, 32(11): 45-46. (in Chinese with English abstract)
[20] Mendes R. Population Topologies and their Influence in Particle Swarm Performance[D]. Minho: University of Minho, 2004.
[21] Srinivas N, Deb K. Multiobjective optimization using nondominated sorting in gentic algorithm [J]. Evolutionary Computation, 1994, 4(3): 221-248.
[22] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: Nsga-II[J]. IEEE Transactions on Evolutional Computations, 2002, 8(2): 182-197.
[23] 趙乃剛,鄧景順. 粒子群優(yōu)化算法綜述[J].科技創(chuàng)新導(dǎo)報(bào),2015,12(26):216-217.
Zhao Naigang, Deng Jingshun. Overview of particle swarm optimization algorithm[J]. Science and Technology Innovation Review, 2015, 12(26): 216-217. (in Chinese with English abstract)
[24] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197.
[25] Goldberg D E. Genetic Algorithm in Search, Optimization and Machine Learning[M]. Massachusetts: Addison-Westley Publishing Company, 1989.
[26] Tatsumi K , Ibuki T , Tanino T . A chaotic particle swarm optimization exploiting a virtual quartic objective function based on the personal and global best solutions[J]. Applied Mathematics and Computation, 2013, 219(17): 8991-9011.
[27] Sun Y, Zhu S, Li Q, et al. A Kind of Decay-Curve Inertia Weight Particle Swarm Optimization Algorithm[M]. Intelligent Computing and Information Science. Springer Berlin Heidelberg, 2011.
[28] Coello C C A, Van Veldhuizen D A, Lamount G B. Evolutionary Algorithms for Solving Multi-Objective Problems[M]. Norwell: Kluwer, 2002.
[29] 張勇,鞏敦衛(wèi). 先進(jìn)多目標(biāo)粒子群優(yōu)化理論及其應(yīng)用[M].北京:科學(xué)出版社,2005.
[30] 王春林,葉劍,曾成,等. 基于NSGA-II遺傳算法高比轉(zhuǎn)速混流泵多目標(biāo)優(yōu)化設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(18):100-106.
Wang Chunlin, Ye Jian, Zeng Cheng et al. Multi-objective optimization design of high specific speed mixed flow pump based on NSGA-II genetic algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(18): 100-106. (in Chinese with English abstract)
Multi-objective optimization of double vane pump based on radial basis neural network and particle swarm
Wang Chunlin, Hu Beibei, Feng Yiming, Liu Keke
(,212013,)
The double vane pump is a special type of flow vane centrifugal pump. It adopts a design with less blades, which leads to a disadvantage that the performance of the double vane pump is inferior to that of the multi-blade pump at the same specific velocity. Its stability is 3%-8% lower than of a vane centrifugal pump.Therefore, it is necessary to improve the work efficiency by optimizing the hydraulic design. This article took a double-passage sewage pump model 80QW50-15-4 as the research object. The optimization objective was to design the head and efficiency of the flow point. ANSYS CFX(computational fluid dynamics x) was used to perform numerical simulation to obtain performance data. According to the two-dimensional hydraulic drawing of the initial model pump, the three-dimensional modeling software Pro/Engineer5.0 was used to simulate the water body of the impeller and the volute and to perform mesh division and irrelevance verification. The model pump was subjected to numerical simulation and experiment of clear water medium, and the performance curve was obtained and compared. The error analysis showed that the maximum error of head and efficiency was 3.9% and 1.7%, which meant that the performance prediction model established by this method had high accuracy. Partial initial model impeller structure parameters were selected for performance impact analysis. The Plackett-Burman screening test was used to determine the blade wrap angle, blade outlet angle and impeller outlet width were significant factors affecting head and efficiency of design flow. According to Fang Kaitai's unified design table, training samples of RBF(radial basis function) neural network were arranged, so as to establish important structural parameters and performance prediction models, and generated 5 groups of structural parameters random for neural network testing and error analysis. The head and efficiency performance prediction model trained by radial basis neural network was introduced into the particle swarm optimization algorithm as the fitness evaluation model of particle swarm optimization algorithm. The Pareto optimal solution set of head and efficiency was obtained, and the optimal head and efficiency were selected. In addition, this paper also studied the performance and internal flow field differences of the initial individual, the optimal individual of head and the optimal individual of efficiency when transporting different media. It was known from the performance curve that the performance of individuals was improved when transporting different media. The reason for the performance improvement was revealed by the internal flow field distribution map. In order to verify the practicability of the optimization results, a clear water test was performed on the optimal head and the most efficient individual to obtain a performance curve and compared with the performance curve of the initial individual. Among them, the experimental head of the optimal head at the design flow point increased by 0.96 m than the initial individual, the increase rate reached 5.5%, the efficiency increased by 1.6percentage point; the efficiency of the best individual increased by 10.11 percentage point, the head decreased slightly but met the design requirements. The test proved that the optimization effect was obvious. This optimization method improves the hydraulic characteristics of impeller and the performance of double vane pump.
pumps; algorithms; optimization; numerical simulation; radial basis neural network
10.11975/j.issn.1002-6819.2019.02.004
TH311
A
1002-6819(2019)-02-0025-08
2018-08-01
2018-12-30
國(guó)家自然科學(xué)基金資助項(xiàng)目(51476070、51109094)
王春林,教授,主要從事流體機(jī)械理論、特性及流動(dòng)模擬的研究。Email:wang@ujs.edu.cn
王春林,胡蓓蓓,馮一鳴,劉軻軻. 基于徑向基神經(jīng)網(wǎng)絡(luò)與粒子群算法的雙葉片泵多目標(biāo)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(2):25-32. doi:10.11975/j.issn.1002-6819.2019.02.004 http://www.tcsae.org
Wang Chunlin, Hu Beibei, Feng Yiming, Liu Keke. Multi-objective optimization of double vane pump based on radial basis neural network and particle swarm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(2): 25-32. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.02.004 http://www.tcsae.org