鄭曉淵,王調(diào)蘭,張靜榮,姜紅,王斌,畢陽
?
二氧化氯處理促進厚皮甜瓜果實的采后愈傷
鄭曉淵,王調(diào)蘭,張靜榮,姜紅,王斌,畢陽
(甘肅農(nóng)業(yè)大學食品科學與工程學院,蘭州 730070)
【目的】研究二氧化氯(ClO2)處理對厚皮甜瓜果實采后愈傷的影響,為厚皮甜瓜的采后愈傷提供方法和理論依據(jù)。【方法】以‘瑪瑙’厚皮甜瓜為試材,人工模擬損傷后,用25 mg·L-1的ClO2浸泡損傷果實10 min,于常溫黑暗條件下進行愈傷。測定愈傷期間損傷果實的失重率以及損傷接種粉紅單端孢果實的病情指數(shù),通過甲苯胺藍和間苯三酚—鹽酸染色法觀察聚酚軟木脂、聚酯軟木脂和木質素在傷口部位的積累,并用IS Capture圖像軟件對聚酚軟木脂、聚酯軟木脂和木質素積累量進行分析。測定傷口表面的色度值,分析傷口處組織愈傷期間苯丙烷代謝活性以及過氧化物酶和多酚氧化酶的活性變化?!窘Y果】ClO2處理顯著降低了損傷果實的失重率和損傷接種果實的病情指數(shù),愈傷第7天時,處理比對照低10.3%。果實在損傷后不同時間段接種粉紅單端孢,經(jīng)1周培養(yǎng)觀察,處理果實的病情指數(shù)顯著低于對照,第7天時處理果實的病情指數(shù)比對照低56.9%。處理顯著促進了果實傷口處聚酚軟木脂、聚酯軟木脂和木質素的積累,處理果實的積累量在愈傷的中后期顯著高于對照,三者比對照分別高25.3%、77.7%和35.5%。愈傷期間,處理果實傷口處的值顯著低于對照,值顯著高于對照,在愈傷第5天時,處理果實的值比對照低6.1%,第3天時的值比對照高17.8%。處理明顯提高了果實傷口處的苯丙氨酸解氨酶、過氧化物酶和多酚氧化酶活性,在愈傷第7天時,處理果實傷口處的苯丙氨酸解氨酶、過氧化物酶和多酚氧化酶活性分別高于對照34.3%、80.5%和15.7%。此外,處理果實傷口處的總酚、類黃酮和木質素含量也顯著高于對照,第7天時,分別高于對照14.7%、16.8%和15.6%?!窘Y論】ClO2處理可有效促進厚皮甜瓜果實的采后愈傷,ClO2對愈傷的促進作用與激活傷口處的苯丙烷代謝,提高POD和PPO活性,促進軟木脂和木質素的積累密切相關。
ClO2;厚皮甜瓜;采后;愈傷
【研究意義】厚皮甜瓜(L.)是我國西北地區(qū)特色水果,由于果實個體較大,在采收和采后過程中易受機械損傷[1],而機械損傷造成的表面?zhèn)跒椴≡锏那秩咎峁┝送ǖ?,加劇了采后腐爛的發(fā)生[2]。因此,有效降低傷口性病原菌的侵染率是采后厚皮甜瓜亟待解決的問題?!厩叭搜芯窟M展】不同果實表面形成的傷口具有不同程度的愈合能力,通過在傷口部位積累軟木脂和木質素等具有保護作用的天然聚合物[3],從而抑制傷口部位水分的大量蒸騰,阻止病原物經(jīng)由傷口的侵入[4]。近期研究發(fā)現(xiàn),某些化學藥物還具有促進傷口愈合的作用。例如,苯丙噻重氮可以促進采后梨果實的愈傷[5],脫落酸能提高采后番茄[4]和獼猴桃[6]果實的愈傷能力。ClO2是國際公認的A1級安全高效消毒劑,可殺滅病原物,對果蔬風味和品質無明顯影響[7-8]。有報道表明,ClO2處理可減輕龍眼[9-10]和番茄果實[11]的采后病害,延緩蘋果成熟衰老,減輕采后腐爛[12],還可一定程度上抑制鮮切哈密瓜的后熟[13]。而ClO2在減輕采后病害中的作用與增強果實苯丙烷代謝和提高氧化酶活性密切相關[14]。【本研究切入點】雖然已有ClO2誘導采后果實抗病性的報道,但該化合物是否影響厚皮甜瓜果實采后愈傷尚未見報道?!緮M解決的關鍵問題】本研究以‘瑪瑙’厚皮甜瓜果實為試材,用ClO2處理人工損傷的果實后在常溫條件下進行愈傷,測定愈傷期間損傷果實的失重率以及接種果實的病情指數(shù),觀察愈傷組織的色度以及聚酚軟木脂、聚酯軟木脂和木質素的積累變化。分析氧化酶和苯丙烷代謝關鍵酶活性及其代謝產(chǎn)物的含量。評價ClO2處理對厚皮甜瓜果實采后愈傷能力的影響,為ClO2處理在厚皮甜瓜的采后應用提供方法和理論依據(jù)。
供試‘瑪瑙’甜瓜于2017年7月采自甘肅省民勤縣收成鄉(xiāng)露地大田,選取八成熟、外觀整齊、大小一致、無病蟲傷和機械傷的果實,單果套網(wǎng)套后裝入瓦楞紙包裝箱,于當天運抵實驗室,在常溫下(20—25℃,RH 70%—80%)貯藏待用。
粉紅單端孢()為甘肅厚皮甜瓜產(chǎn)區(qū)最常見的采后病原真菌[15],由本實驗室提供,于PDA培養(yǎng)基上保存待用。
ClO2購自天津張大科技有限公司,有效濃度120 mg·g-1,于4℃冰箱保存。
刮皮刀(HF036型,陽江市陽東區(qū)焦點刀具有限公司,中國);恒溫培養(yǎng)箱(SPX-30085H-II型,上海新苗醫(yī)療器械制造有限公司,中國);超凈工作臺(SW-CJ-2FD型,蘇凈集團蘇州安泰空氣技術有限公司,中國);立式壓力蒸汽滅菌鍋(LDZX-30KBS 型,上海申安醫(yī)療器械廠,中國);正置萬能顯微鏡(CX21FS1C型,OLYMPUS公司,日本);Ci6x分光光度儀(Ci6x型,日本愛色麗有限公司,日本);臺式高速冷凍離心機(3K30型,Sigma公司,德國);紫外-可見光分光光度計(UV-2450 型,島津,日本)。
1.2.1 果實人工損傷及愈傷 參照姜紅等[16]的方法并進行修改。果實先用清水沖洗,然后用1%的次氯酸鈉浸泡1 min進行表面消毒,再用無菌水沖洗,晾干后用刮皮刀在果實的赤道部位分別刮出4條長30 mm、寬30 mm、深2 mm的傷口。在室溫條件下暴露0.5 h后,將損傷的果實浸入25 mg?L-1的ClO2浸泡10 min,取出晾干后分別裝入打孔的聚乙烯保鮮袋(25 cm×40 cm,厚度0.02 mm),于常溫、避光條件下進行愈傷,以清水處理作對照。每處理用果實120個,重復3次。
1.2.2 愈傷效果的評價
1.2.2.1 失重率及病情指數(shù)的測定 失重率的測定采用重量法[17]。每處理用果實9個,重復3次。
病情指數(shù)的測定參照姜紅等[16]的方法并修改。在培養(yǎng)了1周的培養(yǎng)皿中加入一定量的無菌水,用涂布器刮下孢子用4層紗布過濾至錐形瓶中,在振蕩器上振蕩15 s,經(jīng)過血球計數(shù)板計數(shù)配置成濃度為1×106個/mL的孢子懸浮液。分別在果實損傷后的第0、1、3、5、7天,用涂布器將20 μL配好的孢子懸浮液均勻涂于創(chuàng)口表面,晾干后裝入打孔的聚乙烯保鮮袋中,常溫培養(yǎng)7天后統(tǒng)計病情指數(shù)。每個處理用果實8個,重復3次。
式中,發(fā)病級別的標準為:4級,創(chuàng)口表面全部發(fā)病;3級,創(chuàng)口表面3/4的面積發(fā)??;2級,創(chuàng)口表面1/2面積發(fā)病;1級,創(chuàng)口表面1/4面積發(fā)?。?級,創(chuàng)口表面不發(fā)病。
1.2.2.2 聚酚軟木脂、聚酯軟木脂和木質素沉積的觀察 聚酚軟木脂(suberin poly phenolic,SPP)和聚酯軟木脂(suberin poly aliphatic,SPA)的沉積觀察參照Lulai[18-19]的方法并修改。用不銹鋼刀片垂直傷口表面切成厚0.2—0.3 mm,長和寬各為1 cm左右的薄片。采用如下步驟進行染色:用0.1%小檗堿(0.05%甲苯胺藍)染色45 min后,先吸去染料,再用蒸餾水和75%酒精洗2—3遍,最后用95%酒精洗1—2遍,即脫去染料,緊接著在0.25%甲苯胺藍(1%中性紅)中放置1—2 min進行復染,最后用蒸餾水和75%酒精洗去染料,SPP(SPA)即染為紫藍色。將染好色的薄片置于載玻片上,在顯微鏡下熒光觀察拍照。每個果實切片4處,重復3次。
木質素的沉積觀察參照Alba等[20]的方法并修改。用不銹鋼刀片垂直傷口表面切成厚0.2—0.3 mm,長和寬各為1 cm左右的薄片,滴加1%間苯三酚染色1.5 min后再加1—2滴濃鹽酸,木質素即染為紅色,置于顯微鏡下觀察拍照。每個果實切片4處,重復3次。
愈傷組織的SPP、SPA和木質化細胞層的厚度根據(jù)文獻[21]的方法通過IS Capture圖像軟件進行測量計算。
1.2.3 愈傷組織色度的測定 在愈傷的0、1、3、5和7 d用Ci6x分光光度儀垂直于愈傷組織表面進行色度的測定,依次測定、和值,每個處理測12處愈傷組織。
1.2.4 生化測定取樣 參照Bi等[22]的方法。在愈傷的0、1、3、5和7 d,用不銹鋼刀片垂直傷口表面下取2—3 mm深的傷口組織3 g,用錫箔紙包好后用液氮冷凍,在-80℃超低溫冰箱中保存?zhèn)溆谩?/p>
1.2.5 苯丙氨酸解氨酶、過氧化物酶和多酚氧化酶的活性測定 苯丙氨酸解氨酶(phenylalnine ammonia- lyase,PAL)的測定參照Liu等[23]的方法并修改。取冷凍樣品3 g,于5 mL硼酸-硼砂緩沖液(pH 8.8,含40 g?L-1聚乙烯吡咯烷酮(polyvinyl pyrrolidone,PVP),2 mmol?L-1乙二胺四乙酸(ethylenediaminetetraacetic acid,EDTA)和5 mmol?L-1β-巰基乙醇)中冰浴研磨成漿,在4℃、12 000×條件下離心30 min,上層酶液即為粗酶液。反應體系包括:0.1 mL粗酶液,3 mL硼酸-硼砂緩沖溶液(50 mmol?L-1、pH 8.8)液,0.5 mL食物L-苯丙氨酸(20 mmol?L-1),以蒸餾水為參比,測定反應體系混合10 s后在290 nm波長處的吸光值作為初始值(OD0),將混合液在37℃水浴鍋中保溫1 h后在290 nm波長處的吸光值作為終止值(OD1)。以每小時吸光值變化值增加0.01為一個酶活性單位(U),以U·g-1FW表示。
過氧化物酶(peroxidase,POD)和多酚氧化酶(polyphenol oxidase,PPO)的測定參照LI[24]的方法。取冷凍樣品3 g,于5 mL乙酸-乙酸鈉緩沖液(pH 5.5,含1 mmol?L-1聚乙二醇(polyethylene glycol,PEG),4%交聯(lián)聚乙烯吡咯烷酮(crosslinking polyvingypyrrolidone,PVPP)和1%聚乙二醇辛基苯基醚(Triton X-100))中研磨成漿,在4℃、12 000×條件下離心30 min,收集上層液用即為粗酶液。POD反應體系:3 mL 25 mmol?L-1愈創(chuàng)木酚,0.1 mL酶提取液,0.2 mL H2O2(5 mmol?L-1)。以蒸餾水為參比,在反應進行到15 s時測定混合液在470 nm波長處的吸光值2 min。以每分鐘吸光值變化值增加1為一個酶活性單位(U),以U·g-1FW表示,重復3次。PPO反應體系:4 mL的乙酸-乙酸鈉緩沖液(50 mmol?L-1、pH 5.5),1 mL鄰苯二酚溶液(50 mmol?L-1),0.1 mL酶提取液。以蒸餾水為參比,在反應進行到15 s時測定混合液在420 nm波長處的吸光值2 min。以每分鐘吸光值變化值增加1為一個酶活性單位(U),以U·mg-1FW表示。
1.2.6 總酚、類黃酮和木質素的含量測定 總酚和類黃酮的測定參照Pirie等[25]的方法并作修改。取冷凍樣品3 g,于預冷的4 mL HCL-甲醇溶液中冰浴研磨成漿,在4℃避光條件提取20 min,期間搖動數(shù)次,過濾收集上層清液待用。以1% HCL-甲醇溶液做為參比,分別測定濾液在280 nm和325 nm波長處的吸光度值作為總酚和類黃酮的含量,分別以OD280·g-1FW和OD325·g-1FW表示。
木質素的含量測定參照YIn等[26]的方法進行測定。取冷凍樣品3 g,于預冷5 mL 95%乙醇中研磨成漿,在4℃,14 000×條件下離心30 min,棄去上清液,將沉淀物依次用95%乙醇,乙醇(V)﹕正己烷(V)=1﹕2沖洗3次,將清洗后的沉淀物在60℃烘箱中干燥24 h后轉移至離心管中,溶于1 mL 25%溴化乙酰冰醋酸溶液,70℃恒溫水浴30 min后加入1 mL NaOH(2 mol?L-1)終止反應。最后加入2 mL冰醋酸和0.1mL鹽酸羥胺(7.5 mol?L-1),在4℃、12 000×條件下離心30 min,取上清液0.5 mL并用冰醋酸定容至5 mL,在280 nm波長處測定吸光值,木質素含量以OD280·g-1FW表示。
上述測定均重復3次。全部數(shù)據(jù)用Excel 2010計算平均值和標準誤(±SE),用SPSS 19.0進行Duncan’s多重差異顯著性分析及相關性分析(<0.05)。
愈傷期間,處理和對照果實的失重率均逐漸升高,但處理果實的失重率顯著低于對照,第7天時,比對照低10.3%(<0.05)(圖1-A)。處理和對照果實的病情指數(shù)均隨愈傷時間的延長逐漸下降,處理果實顯著低于對照,第7天時,僅如對照的43.1%(<0.05)(圖1-B)。失重率和病情指數(shù)的結果表明,ClO2處理有效促進了厚皮甜瓜果實的采后愈傷。
愈傷期間,處理和對照果實傷口處的SPP和SPA積累量均逐漸增加,處理果實的積累量在愈傷的中后期均顯著高于對照(圖2-A、B)。SPP和SPA的積累差異分別始于第1天和第3天,第7天時SPP和SPA的積累厚度分別比對照高25.3%和77.7%(<0.05)(圖3-A、B)。處理和對照果實傷口處的木質素積累始于愈傷中期,處理顯著高于對照。在第7天時,處理果實木質素的積累厚度比對照高35.5%(<0.05)(圖3-C)。SPP、SPA和木質素的積累結果表明,ClO2有效促進了厚皮甜瓜果實傷口處的木栓化。
*代表顯著性差異(P<0.05)。下同 * indicate significant differences (P<0.05). The same as below
P:聚酚軟木脂Suberin poly phenolic;A:聚酯軟木脂 Suberin poly aliphatic;L:木質素 Lignin
圖3 ClO2處理對傷口處SPP(A)、SPA(B)和木質化(C)細胞層厚度的影響
愈傷期間,處理和對照果實傷口處的值均先上升后下降,在愈傷的后期顯著低于對照,第5天和第7天時,分別比同期對照低6.1%和5.8%(<0.05)(圖4-A)。處理和對照果實的值差異不顯著(結果未顯示)。兩者值總體先降后升,在愈傷的前期和中期顯著高于對照。第3天時,比對照高17.8%(<0.05)(圖4-B)。
圖4 ClO2處理對傷口處的L*值(A)和b*值(B)的影響
愈傷期間,處理和對照果實傷口處的PAL活性均逐漸升高,但處理果實的PAL活性顯著高于對照,第7天時,比對照高34.3%(<0.05)(圖5-A)。對照果實的POD和PPO活性隨愈傷時間的延長逐漸升高,而處理果實的活性則先略有降低后顯著升高,在愈傷的后期顯著高于對照,第7天時,POD和PPO活性分別比對照高80.5%和15.7%(<0.05)(圖5-B、C)。處理果實傷口處的總酚、類黃酮和木質素含量在愈傷期間均呈先降后升的趨勢,在愈傷的后期顯著高于對照。第7天時,分別比對照高14.7%、16.8%和15.6%(<0.05)(圖5-D、E、F)。PAL、POD和PPO活性以及總酚、類黃酮和木質素含量的增加結果表明,ClO2激活了厚皮甜瓜果實傷口處的苯丙烷代謝以及氧化酶活性。
ClO2可通過增強苯丙烷代謝和提高氧化酶活性來誘導果實的采后抗病性[12]。本研究發(fā)現(xiàn),ClO2處理可通過激活采后厚皮甜瓜果實傷口處的苯丙烷代謝及氧化酶活性,加速軟木脂和木質素在傷口處的沉積,從而促進厚皮甜瓜果實的采后愈傷。
苯丙烷代謝可合成愈傷組織形成所需的多種次生代謝產(chǎn)物,在果實愈傷中具有積極的作用[27]。PAL是苯丙烷代謝的限速酶[4],可催化苯丙烷代謝的第一步反應,使L-苯丙氨酸脫氨生成反式肉桂酸[27],反式肉桂酸又會進一步轉化生成多酚和類黃酮以及木質素等愈傷組織的基本成分[28-29]。PAL的活性高低與果實的愈傷能力顯著相關[6],果實的愈傷能力越強,其PAL活性就越高。本研究發(fā)現(xiàn),ClO2處理顯著提高了厚皮甜瓜傷口處PAL活性,該結果與趙明惠等[12]采用ClO2處理蘋果后觀察到的結果類似。苯丙烷代謝產(chǎn)生的肉桂酸、富馬酸和咖啡酸等酚類物質[29],在細胞質內(nèi)合成后被運送至細胞壁,與肉桂酸羥化酶催化形成的羥基肉桂酸和羥基肉桂酰醇在POD和H2O2的作用下氧化交聯(lián)并開始沉積,形成SPP[30]。此外,傷口處的脂肪代謝也發(fā)生了顯著的變化[31]。細胞內(nèi)一些新的脂肪酸單體開始合成,主要包括超長鏈脂肪酸、-鏈烷醇、-羥基脂肪酸和,-二酸等,這些脂肪酸單體經(jīng)質膜上的ATP結合通道轉運蛋白被運送至膜外,在質膜和細胞壁間聚合形成SPA[30-31]。但這些脂肪酸單體或低聚物如何和甘油組裝形成SPA尚有待揭示。在番茄果實上的研究結果表明,SPP和SPA都對病原物具有抵抗作用,但兩者之間存在著差異。其中,SPP對細菌性病害有防御作用,SPA對真菌性病害有抵抗作用[32]。至于SPP和SPA在甜瓜果實愈傷中的功能是否與番茄一致尚有待證實。本研究觀察到,ClO2處理促進了SPP、SPA以及木質素的積累,對于SPP的促進作用要先于SPA和木質素。苯丙烷代謝形成的4-香豆酸、阿魏酸和芥子酸等是木質素的合成前體,這些酚酸首先在CAD的作用下還原,形成相應的醇后再通過POD的作用聚合為木質素[33]。木質素是苯丙烷代謝的終產(chǎn)物,是細胞壁次生壁的組成物質,木質素在保持水分和維持細胞結構穩(wěn)定中發(fā)揮著重要作用[28]。木質素也是傷口周皮的主要成分,可使細胞壁更加堅固[34],從而在傷口表面形成一個有效的物理屏障,限制病原物從傷口處獲取營養(yǎng),提高果實對病原物侵染的抵抗能力[35]。黃酮類物質在傷口處的含量隨PAL活性的提高而增加[6]。黃酮類物質作為抗氧化劑,具有較強的抗氧化和自由基清除能力,可直接抑制真菌的孢子萌發(fā)和菌絲生長[33]。本研究發(fā)現(xiàn),ClO2處理在愈傷后期顯著提高了POD活性,促進了總酚、類黃酮和木質素的積累。但在愈傷前期,ClO2處理的POD活性以及總酚、類黃酮和木質素含量均顯著低于對照,這可能與ClO2抑制POD活性和苯丙烷代謝相關。
圖5 ClO2處理對厚皮甜瓜果實傷口處PAL(A)、POD(B)和PPO(C)活性以及總酚(D)、類黃酮(E)和木質素(F)含量的影響
本研究發(fā)現(xiàn),ClO2處理可顯著提高厚皮甜瓜果實傷口處的PPO活性。處理果實傷口處值高于對照,值低于對照的結果表明,PPO參與了愈傷組織的形成,處理果實傷口處的值在0 d顯著高于對照可能源于ClO2的漂白作用。在愈傷中由于細胞內(nèi)膜被破壞,液泡中的酚類底物會和PPO發(fā)生反應,氧化為醌,醌再進一步聚合為黑色或褐色的物質[36]。這些聚合物不僅引起果實組織褐變,而且可直接抑制病原菌生長,鈍化病原菌分泌的胞外酶[37],該結果與Wei[38]等在獼猴桃愈傷期間觀察到的結果一致。
ClO2采后處理可有效降低損傷果實的失重率和損傷接種果實的病情指數(shù),促進厚皮甜瓜的采后愈傷。ClO2處理對采后厚皮甜瓜愈傷的促進作用與激活果實苯丙烷代謝,提高POD和PPO活性,促進SPP、SPA和木質素在傷口處的積累密切相關。
[1] BI Y, GE Y H, Li X W. Melon production in China., 2007, 731: 493-500.
[2] HARDENBURG R E, WATADA A E, YANG C Y.. USDA, Agriculture Handbook, 1990, 66: 130.
[3] VISHWANATH S J, DELUD C, DOMERGUE F, ROWLAND O. Suberin: biosynthesis, regulation, and polymer assembly of a protective extracellular barrier., 2015, 34(4): 573-586.
[4] TAO X Y, MAO L C, LI J Y, CHEN J X, LU W J, HHUANG S. Abscisic acid mediates wound-healing in harvested tomato fruit., 2016, 118: 128-133.
[5] 張靜榮, 王斌, 姜紅, 王毅, 李雪, 司敏, 李永才, 畢陽.采后苯丙噻重氮處理促進梨果實的愈傷. 食品科學, 2018, 39(9): 190-195.
ZHANG J R, WANG B, JIANG H, WANG Y, LI X, SI M, LI Y C, BI Y. Effect of BTH treatments promotes wound healing of pear fruit., 2018, 39(9): 190-195. (in Chinese).
[6] HAN X Y, MAO LC, WEI X P, LU W J. Stimulatory involvement of abscisic acid in wound suberization of postharvest kiwifruit., 2017, 224: 244-250.
[7] DU J, HAN Y, LINTON R H. Efficacy of chlorine dioxide gas in reducingO157:H7 on apple surfaces., 2003, 20(5): 583-591.
[8] ELPHICK A. The growing use of chlorine dioxide., 1998, 34: 122-125.
[9] CHUMYAMA, SHANK L, FAIYUE B, UTHAIBUTRA J, SAENGNIL K. Effects of chlorine dioxide fumigation on redox balancing potential of antioxidative ascorbate-glutathione cycle in ‘Daw’ longan fruit during storage., 2017, 222: 76-83.
[10] SAENGNIL K, CHUMYAM A, FAIYUE B, UTHAIBUTRA J. Use of chlorine dioxide fumigation to alleviate enzymatic browning of harvested ‘Daw’ longan pericarp during storage under ambient conditions., 2014, 91: 49-56.
[11] SUN X, BALDWIN E, PLOTTO A, NARCISO J, FERENCE C, RITENOUR M, HAMISON K, GANGEMI J, BAI J. Controlled- release of chlorine dioxide in a perforated packaging system to extend the storage life and improve the safety of grape tomatoes.. 2017, 122: 1-6.
[12] 趙明慧, 饒景萍, 辛付存, 夏源苑. 紅富士蘋果采后二氧化氯處理的保鮮作用. 果樹學報, 2011, 28(2): 252-256.
ZHAO M H, RAOJ P, XIN F C, XIA Y Y. Effects of postharvest chlorine dioxide treatment on fresh-keeping of Red Fuji apple., 2011, 28(2): 252-256. (in Chinese).
[13] GUO Q, LV X, XU F, ZHANG Y L, WANG J D, LIN H H, WU B. Chlorine dioxide treatment decreases respiration and ethylene synthesis in fresh-cut ‘Hami’ melon fruit., 2013, 48(9): 1775-1782.
[14] 趙明慧, 饒景萍, 辛付存, 夏源苑. 二氧化氯采前處理對紅富士蘋果的保鮮. 食品科學, 2011, 32(16): 352-356.
ZHAO M H, RAO J P, XIN F C, XIA Y Y. Fresh-keeping effect of pre-harvest chlorine dioxide treatment of red Fuji apple., 2011, 32(16): 352-356. (in Chinese).
[15] BI Y, GE Y H, LI Y C, WANG J J, MIAO X Y, LI X W. Postharvest acibenzolar-S-methyl treatment suppresses decay and induces resistance in Hami melons., 2006, 712: 393-399.
[16] 姜紅, 畢陽, 李昌健, 王毅, 李生娥, 劉耀娜, 王斌. 馬鈴薯品種‘青薯168’和‘隴薯3號’塊莖愈傷能力的比較. 中國農(nóng)業(yè)科學, 2017, 50(4): 774-782.
JIANG H, BI Y, LI CJ, WANG Y, LI S E, LIU Y N, WANG B. Comparison of healing ability on potato tuber cultivars ‘Qingshu No. 168’ and ‘Longshu No. 3’.2017, 50(4): 774-782. (in Chinese).
[17] DUAN J Y, WU R Y, BEMADINE C S, ZHAO Y Y. Effect of edible coatings on the quality of fresh blueberries (Duke and Elliott) under commercial storage conditions., 2011, 59(1): 71-79.
[18] LULAI E C, MORGAN W C. Histochemical probing of potato periderm with neutral red: a sensitive cytofluorochrome for the hydrophobic domain of suberin., 1992, 67(4): 185-195.
[19] LULAI E C, CORSINI D L. Differential deposition of suberin phenolic and aliphatic domains and their roles in resistance to infection during potato tuber (L.) wound-healing., 1998, 53(4): 209-222.
[20] ALBA C M, FORCHETTI S M D, TIGIER H A. Phenoloxidase of peach () endocarp: Its relationship with peroxidases and lignification., 2010, 109(4): 382-387.
[21] OIRSCHOT Q E A V, REES D, AKED J, KIHURANI A. Sweetpotato cultivars differ in efficiency of wound healing., 2006, 42(1): 65-74.
[22] BI Y, TIAN S P, ZHAO J, GE Y H. Harpin induces local and systemic resistance against, in harvested Hami melons., 2005, 38(2): 183-187.
[23] LIU H X, JIANG W B, BI Y, LUO Y B. Postharvest BTH treatment induces resistance of peach (L. cv. Jiubao) fruit to infection byand enhances activity of fruit defense mechanisms., 2005, 35: 263-269.
[24] LI Y, BI Y, GE Y H, WANG Y, LIU Y Y, LI G L. Postharvest hot water dipping reduces decay by inducing disease resistance and maintaining firmness in muskmelon (L) fruit., 2013, 161(2): 101-110.
[25] PIRIE A, MULLINS M G. Changes in anthocyanin and phenolics content of grapevine leaf and fruit tissues treated with sucrose, nitrate, and abscisic acid., 1976, 58(4): 468-472.
[26] YIN Y, LI Y C, BI Y, CHENG S J, LI Y C, YUAN L, WANG Y, WANG D. Postharvest treatment with-aminobutyric acid induces resistance against dry rot caused byin potato tuber., 2010, 9(9): 1372-1380.
[27] HAN X Y, LU W J, WEI X P, LI L, MAOL C, ZHAO Y Y. Proteomics analysis to understand the ABA stimulation of wound suberization in kiwifruit., 2018, 173: 42-51.
[28] BERNARDS M A, SUSAG L M, BEDGAR D L, ANTEROLA A M, LEWIS N G. Induced phenylpropanoid metabolism during suberization and lignification: a comparative analysis, 2000, 157(6): 601-607.
[29] VOGT T. Phenylpropanoid biosynthesis., 2010, 3(1): 2-20.
[30] LULAI E C. Skin-set, wound healing and related defects//:, 2007: 471-500.
[31] WOOLFSON K N, HAGGITT M L, ZHANG Y,KACHURA, BJELICA A, RINCON M A R, KABERI, K M, BERNARD M A. Differential induction of polar and non-polar metabolism during wound-induced suberization in potato (L.) tubers., 2018, 93(5): 931-942.
[32] LEID J, HILDEBRANDTU, HARTUNG W, RIEDERER M, VOGG G. Abscisic acid mediates the formation of a suberized stem scar tissue in tomato fruits., 2012, 194(2): 402-415.
[33] HAHLBROCK K, GRISEBACH H. Enzymic controls in the biosynthesis of lignin and flavonoids., 1976, 30: 105-130.
[34] SHAO X F, TU K, TU S C, SU J, ZHAO Y. Effects of heat treatment on wound healing in Gala and red Fuji apple fruits., 2010, 58(7): 4303-4309.
[35] Ramamurthy M S, Ussuf K K, Nair P M, Thomas P. Lignin biosynthesis during wound healing of potato tubers in response to gamma irradiation., 2000, 18(3): 267-272.
[36] THIPYAPONG P, STEFFENS J C. Differential expression and turnover of the tomato polyphenol oxidase gene family during vegetative and reproductive development., 1997, 113(3): 707-718.
[37] MAYER A M. Polyphenol oxidases in plants and fungi: going places? A review., 2007, 38(5): 2318-2331.
[38] WEI X P, MAO L C, HAN X Y, LV W J, XIE D D, REN X C, ZHAO Y Y. High oxygen facilitates wound-induced suberin polyphenolics formation in kiwifruit: High oxygen promotes wound-healing of kiwifruit., 2018, 98(6): 2223-2230.
Using Chlorine Dioxide Treatment to Promote Wound Healing of Postharvest Muskmelon Fruit
ZHENG XiaoYuan, WANG TiaoLan, ZHANG JingRong, JIANG Hong, WANG Bin, BI Yang
(College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070)
【Objective】The aims of this study were to investigate effect of chlorine dioxide (ClO2) treatment on the wound healing of harvested muskmelons and its mechanism, providing methods and theoretical basis for wound healing of postharvest muskmelon fruit.【Method】The muskmelon fruit ‘cv. Manao’ was used as material. After artificially wounded, fruits were dipped with ClO2at 25 mg?L-1for 10 min, and the treated fruit and control were wound healed at ambient temperature in dark. The weight loss of fruit and the disease index ofinoculated fruit were measured during healing. The accumulation of suberin poly phenolic, suberin poly aliphatic and lignin at the wounded sites of fruit were observed by Toluidin blue O-neutral red staining and phloroglucinol-HCl staining method, and the amount of accumulation of the three compositions were measured by IS Capture image software. Moreover, the color values of wounded surface were measured. The enzyme activities of phenylpropanoid metabolism and changes of peroxidase and polyphenol oxidase enzyme activities were analyzed during the fruit wound healing stage. 【Result】The weight loss of wounded fruit and the disease index of inoculated fruit were significantly reduced by ClO2treatment. The weight loss of treated fruit was 10.3% lower than that of control after 7 days of healing. Wounded fruit were inoculated byat different wound healing periods. After one week cultivated, the disease index of the treated fruit was significantly lower than that of control, which was 56.9% lower at 7 days of healing. The ClO2treatment significantly promoted the accumulation of suberin poly phenolic, suberin poly aliphatic and lignin. The treated fruit were significantly higher than that of control at the mid and late stage of healing. After 7 days of healing, the thickness of suberin poly phenolic cell layers, suberin poly aliphatic and lignin cell layers of treated fruit was 25.3%, 77.7% and 35.5% higher than that of control, respectively. Compared with the control, thevalue of wounded surface in the treated fruit was significantly lower andvalue was significantly higher during healing. Thevalue of the treated fruit was 6.1% lower than that of control after 5 days of healing. And thevalue of the treated fruit was 17.8% higher than that of control after 3 days of healing. The ClO2treatments increased enzymes activities of phenylalanine ammonia-lyase, peroxidase and polyphenol oxidase at wounded sites of fruit, which were 34.3%, 80.5% and 15.7% higher than that of control after 7 days of healing, respectively. Meanwhile, the treatment also improved the accumulation of total phenols, flavonoids and lignin at wounded sites, which were 14.7%, 16.8%, and 15.6% higher than that of control after 7 days of healing, respectively.【Conclusion】ClO2treatment effectively promoted wound healing of harvested muskmelons by eliciting the phenylpropanoid metabolism. In addition, it also increased the enzymes activities of peroxidase and polyphenol oxidase, and promoted accumulation of suberin and lignin at wounded sites.
chlorine dioxide; muskmelons; postharvest; wound healing
10.3864/j.issn.0578-1752.2019.03.011
2018-07-18;
2018-09-13
國家公益性行業(yè)(農(nóng)業(yè))科研專項(201303075)
鄭曉淵,Tel:18894310260;E-mail:1427426541@qq.com。通信作者畢陽,Tel:13119421362;E-mail:biyang@gsau.edu.cn
(責任編輯 趙伶俐)