• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CRISPR/Cas9-Mediated Adenine Base Editing in Rice Genome

    2019-02-19 01:28:54LiHaoQinRuiyingLiuXiaoshuangLiaoShengxiangXuRongfangYangJianboWeiPengcheng
    Rice Science 2019年2期

    Li Hao, Qin Ruiying, Liu Xiaoshuang, Liao Shengxiang, Xu Rongfang, Yang Jianbo, Wei Pengcheng

    ?

    CRISPR/Cas9-Mediated Adenine Base Editing in Rice Genome

    Li Hao#, Qin Ruiying#, Liu Xiaoshuang, Liao Shengxiang, Xu Rongfang, Yang Jianbo, Wei Pengcheng

    (Key Laboratory of Rice Genetics & Breeding, Institute of Rice Research, Anhui Academy of Agricultural Science; Hefei 230031, China; These authors contribute equally to this work)

    Precise base editing is highly desired in plant functional genomic research and crop molecular breeding. In this study, we constructed a rice-codon optimized adenine base editor (ABE)-nCas9 tool that induced targeted A?T to G?C point mutation of a key single nucleotide polymorphism site in an important agricultural gene. Combined with the modified single-guide RNA variant, our plant ABE tool can efficiently achieve adenine base editing in the rice genome.

    The CRISPR/Cas9 system has been successfully employed in targeted genome mutagenesis in rice and various plant species, providing a promising strategy to accelerate crop improvement. The system is generally used to create gene knockouts or loss-of-function mutations by inducing the random deletions or insertions through the error-prone non-homologous end joining (NHEJ) mechanism. However, a number of agricultural traits are conferred by single nucleotide polymorphisms (SNPs). Despite extensive efforts in developing reliable point mutations or base replacement methods through the homology-directed repair (HDR) mechanism (Miki et al, 2018), it is haunted by a troublesome fact that the low amounts of donor DNA templates limit the efficiency of precise gene editing in plant cells. Base editing is a novel approach that induces single base conversion without requiring HDR or DNA double-strand breaks (DSBs) (Komor et al, 2016). The most well-known base editor tool, base editor 3 (BE3), is consisted of an nCas9 (Cas9-D10A nickase), the rat APOBEC1 cytidine deaminase, and the uracil DNA glycosylase inhibitor (UGI) (Komor et al, 2016). Cooperating with single-guide RNA (sgRNA), the nCas9 fusion protein is directed to the target genome site, and efficiently induces C to T or G to A substitutions (Komor et al, 2016). The BE3 system is highly capable of precise crop breeding by mediating C?G to T?A conversion at key functional SNP loci associated with various important agricultural traits, such as herbicide resistance, plant type and nitrogen use efficiency (Lu and Zhu, 2017; Zong et al, 2017).

    A?T to G?C mutations frequently occur as functional SNPs. Recently, a novel base editing tool, the adenine base editor (ABE), was developed by extensive protein engineering based on the bacterial tRNA adenosine deaminase (TadA) (Gaudelli et al, 2017). Natural TadA converts A to inosine (I) in tRNA but not DNA. After several rounds of protein evolution, severalTadA (TadA) mutants (TadA*) with DNA- modifying capabilities were created (Gaudelli et al, 2017). To assemble the ABE, a heterodimer consisting of TadA* and wild-type TadA was formed into a modified Cas9 enzyme. In mammalian cells, the late-stage ABE tool, e.g., ABE7.10, can be programmed to induce A?T to G?C conversion at target loci without undesired InDels or off-target effects (Gaudelli et al, 2017). In this study, we reported the efficient A?T to G?C conversion in the rice genome using the ABE7.10 system.

    We first synthesized the rice codon-optimizedTadA- XTEN-TadA*7.10, which was then attached to the N-terminalCas9 (D10A) nickase (Supplemental Fig. 1). The sequence of the recombinant protein was cloned to our previously modified pHUN411 binary vector under the control of a maize ubiquitin promoter. This vector, designated as pHUN411-ABE (Fig. 1-A), still contains a rice U3 promoter cassette for protospacer sequence integration and sgRNA expression (Xing et al, 2014).

    The vector was tested in the rice amylose synthesis gene.is a minor mutant allele that results in low amylose content in rice endosperm (Sato et al, 2002). Theallele contains a T to C substitution at position 595, resulting in the replacement of a tyrosine by a histidine at residue 191. To mimic this mutation, a sgRNA (Wx-sg) was designed (Fig. 1-B) and constructed into the pHUN411-ABE vector. The construct was transformed into rice plants via, and 28 independent transgenic events were regenerated. The target mutants were screened by high-resolution melting analysis and then confirmed by PCR sequencing. Two targeted mutants were identified (Supplemental Table 2). One line (Wx6, the 2nd chromatogram) harbored a T to C substitution at position 6 (the first nucleotide of the 20-bp sgRNA distal from PAM is position 1) (Fig. 1-C), whereas the other line (Wx15, the 3rd chromatogram) had two T to C mutations at positions 5 and 6 (Fig. 1-C). The genotype of the Wx15 line was further assessed by clone sequencing. We found that approximately 16.67% clones had the desired T to C conversion at position 5, and approximately 27.78% clones harbored the substitution at position 6 (Supplemental Fig. 2). To increase editing efficiency, an extended version of the sgRNA was used to replace the conventional sequence in pHUN411-ABE (Supplemental Fig. 3) (Dang et al, 2015), generating the pHUN411-ABE-sg2.0 vector. The Wx-sg was fused into the ABE-sg2.0 binary vector, and base changes were observed in 5 out of the 33 transgenic lines (Fig. 1-D). Among these lines, Wx-sg2.07 and Wx-sg2.022 were edited at positions 5 and 6, respectively. Three lines (Wx-sg2.02, Wx-sg2.015 and Wx-sg2.021) were potentially chimeric (Supplemental Table 2). After detailed genotyping, Wx-sg2.021 showed that the T at positions 5 and 6 was simultaneously mutated to C in a single strand (Supplemental Fig. 2). Furthermore, a T to C substitution at position 9 was detected in Wx-sg2.015 (Fig. 1-C and Supplemental Fig. 2), although the editing window of ABE was believed to be limited to 4 bases, ranging from positions 4 to 7 (Gaudelli et al, 2017).

    Fig. 1. Targeted adenine base editing (ABE) in rice genome.

    A, Schematic diagrams of rice codon-optimized tools pHUN411-ABE and pHUN411-ABE-sg2.0. B, Schematic illustration of the target site in thegene. The protospacer adjacent motif (PAM) and sgRNA sequences are underlined. The desired point mutation of-is indicated in red. C, Representative Sanger sequencing chromatograms of the ABE-editedallele. Arrows mark the T to C substitutions. The protospacer sequence is underlined. D, The base editing efficiency of the different sgRNAs and different targets. E, Schematic illustration of the target site in theandgenes by the GL2-sg protospacer. The PAM and sgRNA sequences are underlined. The binding sequence of the miR396 is indicated in red. The asterisks show the mutation sites in the wild-typeallele with large grain size. F, Representative Sanger sequencing chromatograms of the ABE-editedallele.

    RB, Right border; LB, Left border; NTL, Number of transgenic line; NEL, Number of edited line; BEE, Base editing efficiency.

    To further test the editing feature of the ABE vectors in rice, we targeted the/andgenes, which is responsible for grain size and yield. It has been shown that the 2-bp substitution mutation located in the miR396 recognition sequence ofdisrupts miR396-directedtranscript cleavage, resulting in heavier grain weight and higher yield (Che et al, 2015). Fig. 1-E shows that the miR396 binding site inwas targeted by sgRNA GL2-sg. This protospacer also exhibits 100% sequence identity to the miR396-binding region of(Fig. 1-E)(Liu et al, 2014). We found that 4 out of the 35 transgenic lines of the pHUN411-ABE-GL2-sg harbored the targeted base mutations (Fig. 1-D and Supplemental Table 3). Among these, three lines had the substitution in the target region of bothand, whereas one harbored the mutation inbut not(Supplemental Table 3). At the target region in, three lines carried the T to C substitution at position 7, and the T to C substitution at position 8 was only observed in one transgenic event (Fig. 1-F and Supplemental Table 3). In addition, we observed that the mutation only occurred at position 7 in the target of(Supplemental Figs. 3 and 4, and Supplemental Table 3), suggesting that the targeting feature of the ABE tool has position preference for the editing window. The protospacer was also fused to the extended sgRNA variant, and 4 out of 30 transgenic lines harbored the targeted base mutation in thesequence (Fig. 1-D and Supplemental Table 3). Furthermore, editing in the target region ofwas also detected in five independent lines (achieving 16.67% efficiency), which included three lines that were targeted at both sites (Fig. 1-D and Supplemental Table 3). In most of the mutated plants, the conversion of nucleotide T at positions 7 and/or 8 into C was heterozygous or chimeric (Supplemental Fig. 5 and Supplemental Table 3). Off-target effects of the plant ABE tool were also detected. The most frequent off-target region in GL2-sg was located in the miR396-binding site of, with a single base mismatch (Supplemental Fig. 6) (Liu et al, 2014). Assessment of all transgenic plants using both vectors showed no off-target mutations (Supplemental Table 4).

    In this study, we reported the efficient A?T to G?C base editing in rice. The A?T to G?C mutation can result desired amino acid substitution or potential interference of miRNA binding in the target regions (Supplemental Fig. 7). We noticed the mutation frequency induced by the pHUN411-ABE vector was < 10% at theandtargets. A possible explanation is that a high resolution method (HRM) analysis was used to pre-screen the target mutations, which may ignore some lines with low-frequency chimeric mutations. In plants, the mutagenesisefficiency of the Cas9 variantCas9-VQR could be significantly increased by the adapted sgRNA with extended Cas9-binding hairpin structure and mutations on the potential terminator of the pol III promoter (Hu et al, 2018). Using this version of the sgRNA variant, the base editing efficiency of the Cas9-ABE tool was substantially increased, suggesting that the modification of the sgRNA structure improves the efficiency of the ABE tool. Three groups also most recently and independently described a similar A?T to G?C base editing by ABE in plants (Hua et al, 2018; Li et al, 2018; Yan et al, 2018). The rBE14 system exhibits 16.67% to 62.26% editing efficiency at three different genomic loci in rice (Yan et al, 2018). The pRABEsp-OsU6 system could achieve as high as 26% editing efficiency in the T0rice transgenic population (Hua et al, 2018), and the PABE-7 system, developed by a series optimization on position of TadA, nuclear localization sequences locations, and also sgRNA expression, strategies exhibits A to G substitution efficiency of 15.8% to 59.1% in the stable transformed rice lines (Li et al, 2018). The nucleotide sequence context might be a major contributing factor to the efficiency variations of differentCas9-based plant ABE tools. It will be interesting to test them, including our ABE system, in the same target loci under the same transformation procedure. Furthermore, a recent study in mammalian cells indicated that base editing efficiency could be affected by multiple factors during engineering, including the different commercial source of codon-optimization (Koblan et al, 2018). Taken together, the plant ABE systems greatly expand the application of CRISPR-Cas9 tools as well as provide a reliable and efficient method for fundamental plant research and precise crop breeding.

    Acknowledgements

    We appreciate Prof. Chen Qijun for providing the pHUN411 vector. This study was supported by the National Natural Science Foundation of China (Grant No. 31501239) and the Genetically Modified Breeding Major Projects (Grant No. 2016ZX08010-002-008).

    SUPPLEMENTAL DATA

    The following materials are available in the online version of this article at http://www.sciencedirect.com/science/journal/ 16726308; http://www.ricescience.org.

    Supplemental File 1.Materials and methods used in this study.

    Supplemental Table 1. The primers used in this study.

    Supplemental Table 2. Identification of targetedmutants induced by adenine base editor tools in transgenic rice.

    Supplemental Table 3. Identification of targetedand/ormutants induced by adenine base editor tools in transgenic rice.

    Supplemental Table 4. Detection of the putative off-target effects of the rice adenine base editor tools on the high-similarity site of the GL2-sgprotospacer.

    Supplemental Fig. 1. Sequence of rice codon-optimized ABE7.10.

    Supplemental Fig. 2. Genotyping of some targetedmutants.

    Supplemental Fig. 3. The sequence of the extended sgRNA scaffold.

    Supplemental Fig. 4. Sanger sequencing chromatograms of thetarget region of representative ABE-Gl2-sg edited lines.

    Supplemental Fig. 5. Genotyping of some transgenic plants targeted by ABE-GL2-sg.

    Supplemental Fig. 6. Alignment of the miR396 binding region in the rice growth-regulating factor family.

    Supplemental Fig. 7. The mutation of protein sequence resulting from the adenine base editor-induced editing.

    Che R H, Tong H N, Shi B H, Liu Y Q, Fang S R, Liu D P, Xiao Y H, Hu B, Liu L C, Wang H R, Zhao M F, Chu C C. 2015. Control of grain size and rice yield by GL2-mediated brassinosteroid responses., 2: 15195.

    Dang Y, Jia G X, Choi J, Ma H M, Anaya E, Ye C T, Shankar P, Wu H Q. 2015. Optimizing sgRNA structure to improve CRISPR- Cas9 knockout efficiency., 16: 280.

    Gaudelli N M, Komor A C, Rees H A, Packer M S, Badran A H, Bryson D I, Liu D R. 2017. Programmable base editing of A?T to G?C in genomic DNA without DNA cleavage., 551: 464–471.

    Hu X X, Meng X B, Liu Q, Li J Y, Wang K J. 2018. Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice., 16(1): 292–297.

    Hua K, Tao X P, Yuan F T, Wang D, Zhu J K. 2018. Precise A?T to G?C base editing in the rice genome., 11(4): 627–630.

    Koblan L W, Doman J L, Wilson C, Levy J M, Tay T, Newby G A, Maianti J P, Raguram A, Liu D R. 2018. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction., doi: 10.1038/nbt.4172.

    Komor A C, Kim Y B, Packer M S, Zuris J A, Liu D R. 2016. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage., 533: 420–424.

    Li C, Zong Y, Wang Y P, Jin S, Zhang D B, Song Q N, Zhang R, Gao C X. 2018. Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion., 19: 59.

    Liu H H, Guo S Y, Xu Y Y, Li C H, Zhang Z Y, Zhang D J, Xu S J, Zhang C, Chong K. 2014. OsmiR396d-regulatedfunction in floral organogenesis in rice through binding to their targetsand., 165(1): 160–174.

    Lu Y, Zhu J K. 2017. Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system., 10(3): 523–525.

    Miki D, Zhang W X, Zeng W J, Feng Z Y, Zhu J K. 2018. CRISPR/ Cas9-mediated gene targeting inusing sequential transformation., 9: 1967.

    Sato H, Suzuki Y, Sakai M, Imbe T. 2002. Molecular characterization of, a novel mutant gene for low-amylose content in endosperm of rice (L.)., 52(2): 131–135

    Xing H L, Dong L, Wang Z P, Zhang H Y, Han C Y, Liu B, Wang X C, Chen Q J. 2014. A CRISPR/Cas9 toolkit for multiplex genome editing in plants., 14: 327.

    Xu R F, Yang Y C, Qin R Y, Li H, Qiu C H, Li L, Wei P C, Yang J B. 2016. Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice., 43(8): 529–532.

    Yan F, Kuang Y J, Ren B, Wang J W, Zhang D W, Lin H H, Yang B, Zhou X P, Zhou H B. 2018. Highly efficient A?T to G?C base editing by Cas9n-guided tRNA adenosine deaminase in rice., 11(4): 631–634.

    Zong Y, Wang Y P, Li C, Zhang R, Chen K L, Ran Y D, Qiu J L, Wang D W, Gao C. 2017. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion., 35(5): 438–440.

    (Managing Editor: Wang Caihong)

    Copyright ? 2019, China National Rice Research Institute. Hosting by Elsevier B V

    This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Peer review under responsibility of China National Rice Research Institute

    http://dx.doi.org/10.1016/j.rsci.2018.07.002

    9 June 2018;

    26 July 2018

    Wei Pengcheng (weipengcheng@gmail.com); Yang Jianbo (yjianbo@263.net)

    免费久久久久久久精品成人欧美视频 | √禁漫天堂资源中文www| 一级片免费观看大全| 亚洲国产精品999| 久久99热6这里只有精品| 一本久久精品| 成人漫画全彩无遮挡| 成人手机av| 99国产精品免费福利视频| 国产乱来视频区| av片东京热男人的天堂| 日本-黄色视频高清免费观看| 韩国av在线不卡| 丁香六月天网| 纯流量卡能插随身wifi吗| 久久影院123| 制服诱惑二区| 熟女av电影| 国产精品人妻久久久久久| 国产精品不卡视频一区二区| 肉色欧美久久久久久久蜜桃| 黑人高潮一二区| 人妻人人澡人人爽人人| 在线观看一区二区三区激情| 国产福利在线免费观看视频| 各种免费的搞黄视频| 丰满少妇做爰视频| 国产色爽女视频免费观看| 大陆偷拍与自拍| 国产精品秋霞免费鲁丝片| 久久国产亚洲av麻豆专区| 国产精品蜜桃在线观看| 亚洲av电影在线进入| 久久久久精品久久久久真实原创| 亚洲婷婷狠狠爱综合网| 高清在线视频一区二区三区| 色94色欧美一区二区| 又大又黄又爽视频免费| 精品卡一卡二卡四卡免费| 国产爽快片一区二区三区| 不卡视频在线观看欧美| 少妇人妻 视频| 亚洲精品av麻豆狂野| 香蕉精品网在线| 色5月婷婷丁香| av在线观看视频网站免费| 成人影院久久| 一级黄片播放器| 日韩欧美一区视频在线观看| 蜜臀久久99精品久久宅男| 搡老乐熟女国产| 最近的中文字幕免费完整| 亚洲精品国产av蜜桃| 999精品在线视频| 国产黄色免费在线视频| 最黄视频免费看| 我的女老师完整版在线观看| 精品国产一区二区久久| 欧美bdsm另类| 国产精品偷伦视频观看了| 高清黄色对白视频在线免费看| 亚洲精品自拍成人| 中国三级夫妇交换| 两个人看的免费小视频| 多毛熟女@视频| 夫妻午夜视频| 大片免费播放器 马上看| 精品久久久精品久久久| 在线 av 中文字幕| 一级毛片我不卡| 在线看a的网站| 国产精品国产三级专区第一集| 国产亚洲最大av| 最近2019中文字幕mv第一页| 精品少妇黑人巨大在线播放| 美女国产视频在线观看| 欧美日韩av久久| 亚洲国产精品国产精品| 人成视频在线观看免费观看| 欧美日韩视频高清一区二区三区二| 欧美丝袜亚洲另类| 国产一区二区三区综合在线观看 | 久久精品国产综合久久久 | 亚洲欧洲日产国产| 亚洲av综合色区一区| 亚洲精品美女久久久久99蜜臀 | 一个人免费看片子| 一级,二级,三级黄色视频| 搡老乐熟女国产| 国产精品久久久久久精品古装| 捣出白浆h1v1| 十分钟在线观看高清视频www| 精品久久久精品久久久| 国产又色又爽无遮挡免| 成人国产麻豆网| 99九九在线精品视频| videos熟女内射| 中文字幕人妻丝袜制服| 狂野欧美激情性xxxx在线观看| 性色av一级| 免费看光身美女| 免费在线观看黄色视频的| 亚洲成人手机| h视频一区二区三区| 2022亚洲国产成人精品| 丝袜美足系列| 国产淫语在线视频| 日韩人妻精品一区2区三区| 国产激情久久老熟女| 侵犯人妻中文字幕一二三四区| 欧美激情 高清一区二区三区| 制服诱惑二区| 免费在线观看完整版高清| 天堂8中文在线网| 久久热在线av| 亚洲 欧美一区二区三区| 欧美性感艳星| 综合色丁香网| 咕卡用的链子| 少妇猛男粗大的猛烈进出视频| 卡戴珊不雅视频在线播放| 国产精品久久久久久精品电影小说| 久久精品夜色国产| 青春草国产在线视频| 亚洲国产精品国产精品| 精品国产一区二区三区四区第35| 亚洲欧美一区二区三区黑人 | 久久久久久伊人网av| 男女高潮啪啪啪动态图| 国产国语露脸激情在线看| 一级毛片电影观看| 成年人午夜在线观看视频| 51国产日韩欧美| 老熟女久久久| 亚洲精品一二三| 亚洲成人av在线免费| 亚洲激情五月婷婷啪啪| 欧美另类一区| 亚洲色图综合在线观看| 男人爽女人下面视频在线观看| 丰满饥渴人妻一区二区三| 国产日韩欧美亚洲二区| 国产探花极品一区二区| 国产熟女欧美一区二区| 亚洲精品久久久久久婷婷小说| 日日撸夜夜添| 亚洲欧洲精品一区二区精品久久久 | 国产免费一区二区三区四区乱码| www日本在线高清视频| 蜜桃国产av成人99| 精品亚洲乱码少妇综合久久| 国产又色又爽无遮挡免| 精品一区二区免费观看| 少妇人妻精品综合一区二区| 大陆偷拍与自拍| 亚洲欧洲日产国产| 久久精品国产a三级三级三级| 久久99一区二区三区| 搡老乐熟女国产| 国产精品久久久久久精品古装| 色5月婷婷丁香| 国产亚洲精品第一综合不卡 | 亚洲精品美女久久av网站| 肉色欧美久久久久久久蜜桃| 欧美精品一区二区免费开放| 国产麻豆69| 欧美少妇被猛烈插入视频| av在线播放精品| 人妻少妇偷人精品九色| 国产爽快片一区二区三区| 成人综合一区亚洲| 亚洲精品美女久久av网站| 22中文网久久字幕| 成人国产av品久久久| 韩国高清视频一区二区三区| 午夜视频国产福利| 九九在线视频观看精品| www.色视频.com| 午夜福利视频精品| 久久久久久人人人人人| 在线天堂最新版资源| 久久久精品94久久精品| 新久久久久国产一级毛片| 日韩人妻精品一区2区三区| av在线播放精品| 亚洲欧美色中文字幕在线| 亚洲av中文av极速乱| 久久 成人 亚洲| 成人综合一区亚洲| 日韩制服骚丝袜av| 在线观看www视频免费| 国产高清不卡午夜福利| 国产成人av激情在线播放| 新久久久久国产一级毛片| 丝袜人妻中文字幕| 99久国产av精品国产电影| 欧美人与善性xxx| 我的女老师完整版在线观看| 欧美日韩亚洲高清精品| 丝袜人妻中文字幕| www日本在线高清视频| 欧美激情国产日韩精品一区| 国产国拍精品亚洲av在线观看| 激情视频va一区二区三区| 国产高清不卡午夜福利| 久久久久久久精品精品| 午夜免费观看性视频| 欧美人与性动交α欧美精品济南到 | av天堂久久9| 精品亚洲乱码少妇综合久久| av免费观看日本| 亚洲av免费高清在线观看| 人妻一区二区av| 精品一区二区免费观看| 亚洲国产欧美日韩在线播放| 制服丝袜香蕉在线| 亚洲高清免费不卡视频| 热99久久久久精品小说推荐| 啦啦啦在线观看免费高清www| 丝袜在线中文字幕| 视频在线观看一区二区三区| 王馨瑶露胸无遮挡在线观看| 十八禁网站网址无遮挡| 成人影院久久| 国产淫语在线视频| 亚洲一级一片aⅴ在线观看| 亚洲av综合色区一区| 国产成人精品久久久久久| 亚洲精品久久午夜乱码| 亚洲人成网站在线观看播放| 日韩中文字幕视频在线看片| 韩国精品一区二区三区 | 久久人人97超碰香蕉20202| 22中文网久久字幕| 热99国产精品久久久久久7| 看免费成人av毛片| 丰满乱子伦码专区| 极品少妇高潮喷水抽搐| 婷婷色综合大香蕉| 美女国产高潮福利片在线看| 大陆偷拍与自拍| 国产综合精华液| 免费少妇av软件| 美女主播在线视频| 亚洲精品第二区| 在线天堂最新版资源| 国产成人av激情在线播放| 国产又爽黄色视频| 草草在线视频免费看| 一边摸一边做爽爽视频免费| 大话2 男鬼变身卡| 丰满少妇做爰视频| 女性生殖器流出的白浆| 国产精品欧美亚洲77777| 高清毛片免费看| 如日韩欧美国产精品一区二区三区| 国产成人a∨麻豆精品| a级片在线免费高清观看视频| 日日撸夜夜添| av线在线观看网站| 美女主播在线视频| 亚洲精品中文字幕在线视频| 一级,二级,三级黄色视频| 日韩免费高清中文字幕av| 久久婷婷青草| 亚洲精品,欧美精品| 少妇的丰满在线观看| 性色av一级| 人体艺术视频欧美日本| 九色成人免费人妻av| 黄网站色视频无遮挡免费观看| 久久久国产精品麻豆| 国产精品欧美亚洲77777| 中文字幕制服av| 中文字幕另类日韩欧美亚洲嫩草| 国产日韩一区二区三区精品不卡| 久久精品国产a三级三级三级| 22中文网久久字幕| 国精品久久久久久国模美| 日韩视频在线欧美| 日产精品乱码卡一卡2卡三| 欧美精品国产亚洲| 中文乱码字字幕精品一区二区三区| 久久久国产欧美日韩av| 国产av精品麻豆| 亚洲美女视频黄频| 久久韩国三级中文字幕| 97在线人人人人妻| 精品久久久精品久久久| 久热久热在线精品观看| 国产精品人妻久久久久久| 男女啪啪激烈高潮av片| 欧美精品av麻豆av| 亚洲五月色婷婷综合| 欧美激情极品国产一区二区三区 | 久久精品aⅴ一区二区三区四区 | 99香蕉大伊视频| 精品卡一卡二卡四卡免费| 国产日韩欧美亚洲二区| a级毛片在线看网站| 日本猛色少妇xxxxx猛交久久| 亚洲精品中文字幕在线视频| 久久人妻熟女aⅴ| 国产av国产精品国产| 欧美亚洲日本最大视频资源| 人体艺术视频欧美日本| 一边亲一边摸免费视频| 亚洲精品456在线播放app| 精品酒店卫生间| 18在线观看网站| 又黄又粗又硬又大视频| 国产色婷婷99| 国产极品天堂在线| 久久久久久久精品精品| 夜夜爽夜夜爽视频| 制服诱惑二区| 男女边吃奶边做爰视频| 亚洲精品第二区| 亚洲精品美女久久久久99蜜臀 | 观看美女的网站| 水蜜桃什么品种好| 日本黄色日本黄色录像| 国产精品欧美亚洲77777| 天天影视国产精品| 成人国产麻豆网| 亚洲精品456在线播放app| 免费高清在线观看视频在线观看| a级毛色黄片| 亚洲av欧美aⅴ国产| 欧美人与性动交α欧美软件 | 国产片特级美女逼逼视频| 人体艺术视频欧美日本| 夜夜骑夜夜射夜夜干| 久久国产精品大桥未久av| 亚洲 欧美一区二区三区| 伦精品一区二区三区| 欧美精品av麻豆av| 尾随美女入室| 青青草视频在线视频观看| a级片在线免费高清观看视频| av一本久久久久| 久久狼人影院| 有码 亚洲区| 青春草视频在线免费观看| 精品久久蜜臀av无| 成人综合一区亚洲| 精品久久国产蜜桃| 一级爰片在线观看| 大香蕉久久成人网| 18禁在线无遮挡免费观看视频| 精品一区在线观看国产| 韩国av在线不卡| 美女脱内裤让男人舔精品视频| 久久人人爽人人爽人人片va| 我要看黄色一级片免费的| 亚洲欧美色中文字幕在线| 18在线观看网站| 91精品国产国语对白视频| 夜夜爽夜夜爽视频| 成人黄色视频免费在线看| 我要看黄色一级片免费的| 欧美+日韩+精品| 中文精品一卡2卡3卡4更新| 热re99久久精品国产66热6| 人体艺术视频欧美日本| 国产日韩一区二区三区精品不卡| 亚洲少妇的诱惑av| 男女边摸边吃奶| 性色avwww在线观看| 国产精品不卡视频一区二区| 桃花免费在线播放| 国产精品国产三级国产专区5o| 亚洲人成77777在线视频| 97在线视频观看| 97在线人人人人妻| 国产精品成人在线| 国内精品宾馆在线| 欧美激情国产日韩精品一区| 国产xxxxx性猛交| 边亲边吃奶的免费视频| 美国免费a级毛片| 人妻一区二区av| 国产精品三级大全| 女人被躁到高潮嗷嗷叫费观| 欧美精品人与动牲交sv欧美| 18禁裸乳无遮挡动漫免费视频| 午夜精品国产一区二区电影| 精品人妻偷拍中文字幕| 国精品久久久久久国模美| 国产色婷婷99| 精品国产乱码久久久久久小说| 国产精品99久久99久久久不卡 | av国产久精品久网站免费入址| 少妇的逼水好多| 黑人高潮一二区| 晚上一个人看的免费电影| 亚洲av日韩在线播放| 久久99热这里只频精品6学生| 精品视频人人做人人爽| 欧美bdsm另类| 国产日韩欧美视频二区| 熟女电影av网| 午夜免费鲁丝| 久热这里只有精品99| 一区二区av电影网| 少妇熟女欧美另类| 中文字幕人妻丝袜制服| 久久国产亚洲av麻豆专区| 精品人妻在线不人妻| 亚洲av.av天堂| 女人被躁到高潮嗷嗷叫费观| 亚洲av国产av综合av卡| 热99国产精品久久久久久7| 久久99一区二区三区| 九色亚洲精品在线播放| 欧美日韩成人在线一区二区| 亚洲精品456在线播放app| 最新中文字幕久久久久| av在线老鸭窝| 精品久久国产蜜桃| 伦精品一区二区三区| 一区二区三区四区激情视频| 日韩熟女老妇一区二区性免费视频| 欧美日韩国产mv在线观看视频| 日本-黄色视频高清免费观看| 下体分泌物呈黄色| 中文欧美无线码| 国产欧美日韩一区二区三区在线| 亚洲一级一片aⅴ在线观看| 男女无遮挡免费网站观看| 狂野欧美激情性xxxx在线观看| 高清视频免费观看一区二区| 久久韩国三级中文字幕| 亚洲欧美精品自产自拍| 在线免费观看不下载黄p国产| av播播在线观看一区| 午夜精品国产一区二区电影| 18禁裸乳无遮挡动漫免费视频| 免费人成在线观看视频色| 搡老乐熟女国产| 欧美日本中文国产一区发布| 性色avwww在线观看| 国产成人精品无人区| 久久精品夜色国产| 最黄视频免费看| 男女午夜视频在线观看 | 亚洲成av片中文字幕在线观看 | 日本欧美国产在线视频| 丝袜人妻中文字幕| 国产爽快片一区二区三区| 日韩大片免费观看网站| 国产精品国产av在线观看| 人人澡人人妻人| 大香蕉久久网| 2021少妇久久久久久久久久久| 日韩人妻精品一区2区三区| 国产无遮挡羞羞视频在线观看| 视频区图区小说| av在线老鸭窝| 一本色道久久久久久精品综合| 内地一区二区视频在线| av免费在线看不卡| 精品一品国产午夜福利视频| 9色porny在线观看| 国产免费现黄频在线看| 老司机影院成人| 免费女性裸体啪啪无遮挡网站| 成人综合一区亚洲| 大码成人一级视频| 尾随美女入室| 成人无遮挡网站| 交换朋友夫妻互换小说| 性色av一级| 人人妻人人澡人人看| 又黄又爽又刺激的免费视频.| 高清av免费在线| 色5月婷婷丁香| 嫩草影院入口| 永久网站在线| 啦啦啦啦在线视频资源| 99热国产这里只有精品6| 亚洲成国产人片在线观看| 亚洲国产看品久久| 9色porny在线观看| 99国产综合亚洲精品| 国产精品99久久99久久久不卡 | 久久久亚洲精品成人影院| 久久久精品区二区三区| 久久这里只有精品19| 日韩电影二区| 视频中文字幕在线观看| 一级毛片黄色毛片免费观看视频| 韩国av在线不卡| 少妇人妻 视频| 美女中出高潮动态图| 欧美日韩视频高清一区二区三区二| 久久久久久久久久人人人人人人| 欧美xxxx性猛交bbbb| av福利片在线| 亚洲欧美色中文字幕在线| 国产日韩一区二区三区精品不卡| 国产高清不卡午夜福利| 免费黄色在线免费观看| 视频区图区小说| 日韩电影二区| 一区二区三区四区激情视频| 最近最新中文字幕大全免费视频 | 日日撸夜夜添| 蜜桃在线观看..| 99久久综合免费| 国产永久视频网站| 另类精品久久| 一区在线观看完整版| 蜜桃国产av成人99| 日本-黄色视频高清免费观看| 成人手机av| 最近的中文字幕免费完整| 久久久亚洲精品成人影院| 色婷婷久久久亚洲欧美| 欧美激情极品国产一区二区三区 | 国产深夜福利视频在线观看| 欧美日韩精品成人综合77777| 黄网站色视频无遮挡免费观看| 国产黄色免费在线视频| 亚洲欧美日韩另类电影网站| 国产精品 国内视频| 国产精品99久久99久久久不卡 | 九九爱精品视频在线观看| 成人黄色视频免费在线看| 蜜桃国产av成人99| 最黄视频免费看| 亚洲美女搞黄在线观看| 成人国产麻豆网| 国产在线一区二区三区精| 国产一区二区在线观看av| 乱码一卡2卡4卡精品| 亚洲av男天堂| 亚洲国产毛片av蜜桃av| 99热网站在线观看| 乱码一卡2卡4卡精品| 十分钟在线观看高清视频www| 免费黄色在线免费观看| 韩国精品一区二区三区 | 一本久久精品| av有码第一页| 久久久久久久精品精品| 国产探花极品一区二区| 最近中文字幕高清免费大全6| 欧美激情极品国产一区二区三区 | 久久久国产精品麻豆| 丝袜美足系列| 一级毛片黄色毛片免费观看视频| 精品一区二区三区视频在线| 亚洲av日韩在线播放| a 毛片基地| 丝袜人妻中文字幕| 欧美亚洲日本最大视频资源| 国产免费现黄频在线看| 久久av网站| 国国产精品蜜臀av免费| 赤兔流量卡办理| 国产精品女同一区二区软件| 欧美+日韩+精品| 王馨瑶露胸无遮挡在线观看| 欧美日韩一区二区视频在线观看视频在线| 五月天丁香电影| 国产精品国产三级专区第一集| 亚洲成人一二三区av| 视频区图区小说| 亚洲国产毛片av蜜桃av| 激情五月婷婷亚洲| www.av在线官网国产| 我要看黄色一级片免费的| 2022亚洲国产成人精品| 自线自在国产av| 又大又黄又爽视频免费| 欧美精品高潮呻吟av久久| 日本午夜av视频| 99久久人妻综合| 久久久国产一区二区| 伦精品一区二区三区| 美女内射精品一级片tv| 边亲边吃奶的免费视频| 激情视频va一区二区三区| 亚洲色图 男人天堂 中文字幕 | 一级爰片在线观看| 日韩av免费高清视频| 亚洲精华国产精华液的使用体验| 人妻人人澡人人爽人人| 一区在线观看完整版| 久久精品aⅴ一区二区三区四区 | 狂野欧美激情性bbbbbb| 99久久中文字幕三级久久日本| 人人妻人人爽人人添夜夜欢视频| a级毛片黄视频| 99热国产这里只有精品6| 国产色爽女视频免费观看| 国产激情久久老熟女| 尾随美女入室| 欧美性感艳星| 捣出白浆h1v1| 亚洲高清免费不卡视频| 亚洲精品aⅴ在线观看| 亚洲国产欧美日韩在线播放| 日韩三级伦理在线观看| 18禁国产床啪视频网站| 丝袜美足系列| 亚洲一码二码三码区别大吗| 天堂俺去俺来也www色官网| 一区在线观看完整版| 黑人巨大精品欧美一区二区蜜桃 | 三上悠亚av全集在线观看| 极品人妻少妇av视频| 免费少妇av软件| 国产男人的电影天堂91|