• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Development and Application of CRISPR/Cas System in Rice

    2019-02-19 01:30:00RenJunHuXixunWangKejianWangChun
    Rice Science 2019年2期

    Ren Jun, Hu Xixun, Wang Kejian, Wang Chun

    ?

    Development and Application of CRISPR/Cas System in Rice

    Ren Jun#, Hu Xixun#, Wang Kejian, Wang Chun

    (,,, China; These authors contributed equally to this work)

    In the past several years, the CRISPR (clustered regularly interspaced short palindromic repeats)/Cas (CRISPR-associated protein) system has been harnessed as an efficient and powerful tool for targeted genome editing in different prokaryotic and eukaryotic species. Here, we review the development and application of CRISPR/Cas system in rice, emphasizing different varieties of CRISPR/Cas systems have been applied, strategies for multiplex editing, methods for precise gene insertion and replacement, and efficient systems for base editing and site-specific transcriptional regulation. In addition, the biosecurity of CRISPR/Cas system is also discussed, including transgene-free methods and off-target effects of CRISPR/Cas system. Thus, the development and application of CRISPR/Cas system will have significant impact on functional genomic research and variety improvement in rice.

    rice; CRISPR; Cas; genome editing; protospacer adjacent motif

    Although traditional mutagenesis methods, including chemical [e.g., ethyl methane sulfonate (EMS)] and physical (e.g., gamma ray) mutagenesis, can induce mutations in the rice genome, they still have some limitations, such as high randomness and low efficiency.In contrast, genome-editing technology using sequence- specific nucleases (SSNs) can edit specific genome loci with high accuracy and efficiency. The most prevalent SSNs are the zinc-finger nucleases (ZFNs) (Bibikova et al, 2003), transcription activator-like effector nucleases (TALENs) (Moscou and Bogdanove, 2009; Bogdanove and Voytas, 2011) and Cas proteins (Jinek et al, 2012). However, technologies using ZFNs and TALENs are difficult and costly, with relatively low efficiency, thus greatly limiting their wide application. The CRISPR (clustered regularly interspaced short palindromic repeats) / Cas (CRISPR-associated) system simplifies the operation of genome editing and provides a convenient and powerful tool for genetic engineering, and it has been widely used in rice for gene function analysis, breeding and so on (Shao et al, 2017; Shen et al, 2017b).

    Mechanism of CRISPR/Cas system

    As an adaptive defence system in bacteria and archaea, the CRISPR/Cas system protects organisms from invading viral and plasmid DNAs (Terns and Terns, 2011; Wiedenheft et al, 2012). Class 2 effectors are the most used Cas effectors, such as Cas9 (type II) and Cpf1 (type V). The fundamental components of the CRISPR/Cas9 system include the Cas9 protein, the trans-activating CRISPR RNA (tracrRNA) sequences and the CRISPR RNA (crRNA). The tracrRNA and crRNA are designed into single guide RNA (sgRNA), which is commonly used in genome editing (Jinek et al,2012). The Cas9 protein-sgRNA complex can generateDNA double-strand breaks (DSBs) at a specific genome locus via two domains of Cas9 endonucleases, HNH and RuvC-like domains. The HNH domain cleaves the complementary strand of sgRNA, and the RuvC-like domain cleaves the non-complementary strand. DSBs generated in eukaryotic organisms can be repaired via two mechanisms. One is the error-prone non-homologous end joining (NHEJ) pathway, which directly ligates two broken ends of DNA, thus often produces insertions and deletions (InDels) around DSBs (Mladenovand Iliakis, 2011). The other repair pathway is homology- directed repair (HDR), which accurately repairs DSBs by relying on a homologous DNA donor (Puchta and Fauser, 2014). This repair pathway occurs only in the G2 and S phases of cells with mitotic activity, whereas the NHEJ pathway exists in all types of cells at different points in the cell cycle.

    Zetsche et al (2015) reported that another Cas protein, Cpf1 (CRISPR fromand1), can also be used as an easily programmable tool for genome editing. The mechanism of CRISPR/Cpf1 is similar to that of CRISPR/Cas9. However, the CRISPR/Cpf1 system has its own features: 1) Cpf1 is a nuclease with DNase and RNase activities, which allow it to process the pre-crRNA into mature crRNA. In contrast, the generation of mature crRNA in the CRISPR/Cas9 system requires RNase III. 2) Cpf1 recognises and cleaves targeted DNA with the help of crRNA, whereas Cas9 needs a longer chimera of crRNA and tracrRNA. 3) Before the pairing between crRNA and DNA template, the Cas effector needs to recognise the protospacer adjacent motif (PAM). The PAM recognised by Cas9 is ‘NGG’, located downstream of the target site, whereas the PAM recognised by Cpf1 is a T-rich sequence located upstream of the target site. 4) Cpf1 and Cas9 cleave DNA at sites distal and proximal to PAM, respectively.

    CRISPR/Cas system in rice

    Gene knock-out mediated by CRISPR/Cas system

    Several research teams successively developed the CRISPR/Cas9 system in rice usingCas9 (SpCas9) following the successful achievement of genome editing in human and mice (Cong et al, 2013; Mali et al, 2013). Shan et al (2013) used codon-optimised SpCas9 to target rice endogenousgenes, in which the mutation frequency is 14.5%–38.0% in protoplasts and 4.0%–9.4% in transgenic lines. Meanwhile, Xie and Yang {Li, 2013 #38}(2013) used the CRISPR/ Cas9 system to editat three target sites to enhance the disease resistance of rice, and the mutation rates of these sites are 3%–8% in rice protoplasts. In addition, they reported that off-target mutations exist at a non-target site, and the editing efficiency is lower than the on-target site. Zhang et al (2014) and Ma et al (2015) indicated that homozygous mutations can be found in T0plants.

    Cpf1 also can introduce mutations in the rice genome (Endo et al, 2016; Wang et al, 2017b; Xu et al, 2017). Endo et al (2016) and Xu et al (2017) expressed codon-optimisedCpf1 (FnCpf1) andND2006 Cpf1 (LbCpf1), respectively, and successfully achieved gene editing in rice. Moreover, Xu et al (2017) found that pre- crRNAs with a full-length direct repeat sequence have higher editing efficiencies than mature crRNAs. Meanwhile, Hu et al (2017) and Tang et al (2017) codon-optimised LbCpf1 andsp.Cpf1 (AsCpf1) with matched crRNA expression arrays and targeted multiple rice genome loci, respectively, and showed that LbCpf1 can effectively edit the rice genome, whereas AsCpf1 cannot achieve efficient genome editing. The above reports showed that fragment deletion is the most common type of mutation caused by Cpf1 in rice.

    Establishment of multiplex gene-editing systems

    Many researchers have successfully achieved single gene editing using the CRISPR/Cas9 system in rice. However, simultaneously targeting multiple genes is required in many cases. Based on Golden Gate ligationor Gibson Assembly, multiplex genome-editingsystems have been developed (Xing et al, 2014; Ma et al, 2015). Multiple (2–4) gRNA expression cassettes are assembled into a single binary vector in as little as one cloning step to simultaneously target multiplex genes.

    Wang et al (2015) also established a system that can simultaneously integrate multiple gRNAs into a single vector based on the isocaudomer technique including two kinds of vectors in this system. To generate the final binary vector, these gRNAs generated by intermediate vectors will be integrated into the pC1300-Cas9 vector for multiplex genome editing. In this system, the number of targeting genes is not limited in theory. Shen et al (2017a) even successfully obtained an eight- mutant rice line using this system.

    In addition, several researchers have designed methods that co-expressed Cas9 protein and gRNAs from a single PolII promoter. Tang et al (2016) designed a single transcriptional unit (STU) CRISPR/Cas9 system. The polyA sequences were used as a linker to co-express the Cas9 protein and gRNAs cassettes from a PolII promoter. A self-cleaving hammerhead ribozyme (RZ) was used to release multiple gRNAs. Moreover, another method was developed based on the endogenous mRNA splicing and tRNA-processing mechanism for simultaneously targeting multiplex endogenous genes (Ding et al, 2018). The polycistronic tRNA-gRNA (PTG) was assembled into the intron of Cas9 to generate multiple gRNA expression cassettes.

    Expanding the scope of CRISPR/Cas system

    Although the CRISPR/Cas system has been widely used in rice genome editing, the range of genome editing is severely limited by PAMs. Kaya et al (2016) successfully introduced targeted gene mutations with a Cas9 homologous protein,Cas9(SaCas9), which recognises NNGRRT PAMs, and the editing efficiency of SaCas9 is similar to that of SpCas9. The mutations generated by SaCas9 mainly are small deletions and small insertions, whereas large deletions (> 25 bp) are rarely detected. In addition, the T at the 6th position of PAM is proved to be necessary for SaCas9 in this study.

    Cas effector variant (Kleinstiver et al, 2015; Gao et al,2017; Yamano et al, 2017) created by artificial evolution is another promising strategy in rice. Hu et al (2016) modified the codon-optimised SpCas9 protein to generate two kinds of Cas9 variants, VQR (D1135V/R1335Q/ T1337R) and VRER (D1135V/G1218R/R1335E/T1337R), in rice. The PAM sequences recognised by the VQR and VRER variants are NGA and NGCG, respectively. The development of the VQR and VRER variants doubles the scope of genome editing in rice.

    Li et al (2018b) introduced point mutations in rice codon-optimised LbCpf1 to generate two variants, RR (G532R/K595R) and RVR (G532R/K538V/Y542R). The result demonstrated that only the RR variant can efficiently target genes containing non-canonical TYCV PAMs, and the highest mutation efficiency is about 51%. Similarly, Zhong et al (2018) reported that the RR variant of LbCpf1 can successfully recognise the PAM sequences of CCCC and TYCV in the rice genome. In addition, they reported the RVR variant recognised TATG PAM.

    Meng et al (2018) reported that the CRISPR/Cas9 system can efficiently edit the gene locus containing NAG PAMs in rice, in which the efficiency is about three-quarters of NGG PAMs. It was accidentally discovered that SpCas9 can effectively recognise NAG PAMs when researchers detected potential off-target events. It is contrary to previous studies reported in animals and microorganisms, in which SpCas9 could rarely recognise NAG PAMs (about one-fifth of NGG) (Hsu et al, 2013; Jiang et al, 2013). This result not only expanded the available genome loci of SpCas9 in the rice genome but also reminded people that NAG PAMs should be considered when detecting off-target effect of the CRISPR/Cas9 system in rice.

    Optimisation of CRISPR/Cas system

    To easily and efficiently achieve multiplex genome editing, Xie et al (2015) and Hu et al (2017) engineered the endogenous tRNA-processing system as a robust tool to generate multiple sgRNAs and crRNAs for the CRISPR/Cas9 and CRISPR/Cpf1 systems, respectively. This method allows the multiple sgRNA/crRNA cassettes to be expressed under aU3/U6 promoter.

    Hu et al (2016) showed that the Cas9-VQR can recognise and cleave sites containing NGA PAM in rice, which greatly expands the range of genome editing. However, the editing efficiency of Cas9-VQR is relatively low, which limits its application. To increase its efficiency, Hu et al (2018) modified sgRNA structures, and the strong endogenous promoters of rice() and() were used in CRISPR/Cas9-VQR system. Compared with the previous system, the average editing efficiency of CRISPR/ Cas9-VQR increases from three to seven times.

    In addition, to improve the specificity of the CRISPR/Cas9 system, Zhang et al (2017) used three more specific Cas9 protein variants, eSpCas9 (1.0), eSpCas9 (1.1) and SpCas9-HF1, to achieve genome editing in rice. It has been demonstrated that the perfectly matched 20-nucleotide sgRNA sequences are necessary for high on-target editing efficiency and high fidelity of eSpCas9 and SpCas9-HF1 (Table 1).

    Gene insertion and replacement mediated by CRISPR/Cas system

    DSBs generated by the CRISPR/Cas system in the organism are mainly repaired via NHEJ pathway, which usually produce InDel mutations of several bases in DSBs. In certain cases, however, DNA fragment insertion and replacement can be achieved via the NHEJ and precise HDR-mediated repair.

    Li et al (2016) achieved intron-mediated gene insertion and replacement based on the NHEJ pathway in the ricegene using the CRISPR/Cas9 system at frequencies of 2.0% and 2.2%, respectively. However, there are still some factors that limit the frequency of gene insertion and gene replacement, such as few copies of the donor DNA template and low insertion efficiency. To deal with these problems, Wang et al (2017a) co-transformed CRISPR/Cas9 and geminiviral vectors offering donor DNA templates into rice cells. The wheat dwarf virus was selected to provide abundant donor DNA templates because of its strong replication ability. According to Wang et al (2017b), the efficiency of accurate knock-in is up to 19.4% in transgenic rice plants.

    Gene replacement was also achieved in the ricegene via the HDR pathway with CRISPR/Cas9 system (Sun et al, 2016). The designed vectors involves Cas9 expression cassettes, donor DNA template and two sgRNAs cassettes. The two sgRNAs were used to delete the fragment involving two sites of amino acid residues for substitution (W548L/S627I) in the ricegene. The two sites simultaneously target the vector to release the donor DNA, which include a 100-bp left homologous arm and 46-bp right homologous arm. he free 476-bp donor DNA templates and the vector were co-introduced into rice calli for providing enough donor fragments. The same substitution of amino acid in thegene is achieved by the CRISPR/Cpf1 system as well (Li et al, 2018a). It was also shown that precise targeted gene replacement mediated by HDR repair can be achieved with templates lacking the right homologous arm.

    Other systems based on CRISPR/Cas system

    Base editing

    Table 1. CRISPR/Cas system used in rice.

    PAM, Protospacer adjacent motif. N represents A/T/G/C base. R represents A/G base. Y represents T/C base. V represents A/C/G base.

    The precise modification, such as point mutations and gene replacements generated by CRISPR/Cas system, remains a serious challenge because of its limited frequency.

    Base editing (BE) systems combining CRISPR/ Cas9 and cytidine deaminase or adenine deaminase were first successfully applied in animal cells (Komor et al, 2016; Gaudelli et al, 2017), and were then quickly applied in rice. Researchers (Li J Y et al, 2017; Lu and Zhu, 2017; Zong et al, 2017) have reported the successful conversion of cytosine (C)-guanine (G) base pairs to adenine (A)-thymine (T) base pairs in rice using the BE system involving the cytidine deaminase enzyme APOBEC1, nSpCas9 (Cas9-D10A) and the uracil glycosylase inhibitor (UGI). The efficiency of the C to T conversion ranges from 0.39% to 43.48% in,and. Meanwhile, InDel mutations are also found in the target sites.

    Subsequently, the conversion of A?T base pairs to G?C base pairs is achieved in rice (Li C et al, 2018; Hua et al, 2018a; Yan et al, 2018). The wild-typegene and its mutants are fused together to nSpCas9 for generating several BE systems in rice. The efficiency of A to G conversion is up to 62.26%, when TadA and TadA*7.10 were fused together to the N-terminus of nSpCas9. To expand the scope of the adenine base editor, nSaCas9 (Hua et al, 2018a), SaCas9 and SpCas9 variants (Hua et al, 2018b) were used in rice for BE as well, such as VQR- nSpCas9, VRER-nSpCas9 and SaKKH-nCas9. Moreover, no InDel mutations are found in the target sites.

    Transcriptional regulation

    Similarly, transcriptional regulatory elements fused with dCas9 can achieve transcriptional inhibition or activation in an organism. Lowder et al (2018) developedCRISPR-Act2.0 (dCas9-VP64 coupled with MS2-VP64via gRNA2.0) in rice, which can perform transcriptionalactivation of multiple genes. The system has a stronger effect on transcriptional activation than the first- generation dCas9-VP64 system previously reported (Lowder et al, 2015), indicating its wider application prospects in plant gene regulation.

    Li Z X et al (2017) developed a dCas9-based transcriptional activation system, named dCas9-TV (dCas9-6TAL-VP128), which exhibits relatively strong transcriptional activation effects compared with the dCas9-VP64 activator inand rice. Moreover, dCas9-TV can also work in mammalian cells.

    Transgene-free genome editing in rice

    mediated callus infection, a prevalent transgenic technique used in rice, causes random insertions of T-DNA into the genome, which may lead to potential security problems. To achieve transgene- free genome editing, a new technology was developed.

    Preassembled Cas9 protein-gRNA ribonucleoproteins (RNPs) are directly delivered into rice protoplasts to induce targeted genome modifications, in which mutation frequencies range from 8.4% to 19.0% (Woo et al, 2015). Using this method, the rice genome is edited without integration of exogenous DNA, while it is technically challenging to regenerate the edited rice protoplast into plants. The CYP81A6-hpRNAi expression element was used with the CRISPR/Cas9 system to generate transgene-free rice with expected mutations (Lu et al, 2017). The rice plants with an integrated CRISPR/Cas9 system andRNAi are sensitive to bentazone, showing a lethal symptom. This strategy greatly simplifies the screening process of transgene-free rice. Another strategy for efficient screening and enriching of transgene-free plants was developed using both REG2-BARNASE and 35S-CMS2 expression cassettes (He et al, 2018). It has been demonstrated that the suicide transgenes BARNASE and CMS2 can be used to eliminate transgenic lines in the T0generation without affecting the genome-editing efficiency of CRISPR/Cas9.

    Off-target effects of CRISPR/Cas system

    Undesired off-target mutations of Cas9 were reported in many studies, which are caused by a few nucleotide mismatches when sgRNAs recognize DNA templates (Jinek et al, 2012; Cong et al, 2013; Fu et al, 2013; Tsai et al, 2015; Kleinstiver et al, 2016). Recently, Tang et al (2018) assessed off-target effects of Cas9 and Cpf1 by a large-scale whole-genome sequencing (WGS) in rice. They found that only one Cas9 sgRNA results in off-target mutations among 12 Cas9 sgRNAs in T0lines, which shows a higher specificity of Cpf1, and the off-target sites could be predicted.

    CONCLUSIONs

    Compared with the previous two generations of genome-editing technology, the emergence of the CRISPR/Cas9 technology provides a simple, cheap and efficient genome editing platform for researchers. The platform not only provides strong support for basic research, but also accelerates the transformation of research results to application.

    With the development and improvement of the CRISPR/Cas system in rice, new Cas9 variant proteins and homologous proteins, such as Cas9-VQR, Cas9-VRER, Cpf1-RR, Cpf1-RVR and SaCas9, have been created and applied in rice genome editing, which has greatly expanded its editing range. With the use of an endogenous promoter, improvement of sgRNA expression elements and other optimisation strategies, the editing efficiency of the rice CRISPR/ Cas9 system has been greatly improved, providing researchers with more powerful genome-editing tools. At the same time, genetic operating systems based on CRISPR/Cas9, such as gene insertion and replacement, single-BE and transcriptional regulation, have continued to emerge, providing new ideas for basic research and crop breeding. In terms of transgenic safety, rice transgene-free technology also achieves a great breakthrough. Mutants without transgenic ingredients can be obtained in their progeny through an instantaneousediting or screening system (e.g., resistanceand suicide genes). In addition, several studies have shown that the off-target effect of the CRISPR/Cas technology is generally controllable, and Cpf1 has a smaller off- target effect on the rice genome than Cas9.

    However, there are still some pressing problems for rice genome editing, such as the efficient delivery of the CRISPR/Cas9 system without integrating into the rice genome. The means to accurately knock-in and replace endogenous genes via the HDR repair are relatively limited. Previous studies have revealed significant differences in the efficiency of SpCas9 recognising NAG PAM in rice and human cells (Hsu et al, 2013; Jiang et al, 2013; Meng et al, 2018). Therefore, the investigation of the CRISPR/Cas system in rice still requires a lot of research due to the differences between mammalian and plant cells.

    Acknowledgements

    This study was supported by the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences and the National Natural Science Foundation of China (Grant No. 31871703).

    Bibikova M, Beumer K, Trautman J K, Carroll D. 2003. Enhancing gene targeting with designed zinc finger nucleases., 300: 764.

    Bogdanove A J, Voytas D F. 2011. TAL effectors: Customizable proteins for DNA targeting., 333: 1843.

    Cong L, Ran F A, Cox D, Lin S L, Barretto R, Habib N, Hsu P D, Wu X B, Jiang W Y, Marraffini L A, Zhang F. 2013. Multiplex genome engineering using CRISPR/Cas systems., 8(11): 819–823.

    Ding D, Chen K Y, Chen Y D, Li H, Xie K B. 2018. Engineering introns to express RNA guides for Cas9- and Cpf1-mediated multiplex genome editing., 11(4): 542–552.

    Endo A, Masafumi M, Kaya H, Toki S. 2016. Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from., 6: 38169.

    Fu Y, Foden J A, Khayter C, Maeder M L, Reyon D, Joung J K, Sander J D. 2013. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells., 31(9): 822–826.

    Gao L Y, Cox D B T, Yan W X, Manteiga J C, Schneider M W, Yamano T, Nishimasu H, Nureki O, Crosetto N, Zhang F. 2017. Engineered Cpf1 variants with altered PAM specificities., 35(8): 789–792.

    Gaudelli N M, Komor A C, Rees H A, Packer M S, Badran A H, Bryson D I, Liu D R. 2017. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage., 551: 464–471.

    He Y B, Zhu M, Wang L H, Wu J H, Wang Q Y, Wang R C, Zhao Y D. 2018. Programmed self-elimination of the CRISPR/Cas9 construct greatly accelerates the isolation of edited and transgene-free rice plants., 11(9): 1210–1213.

    Hsu P D, Scott D A, Weinstein J A, Ran F A, Konermann S, Agarwala V, Li Y, Fine E J, Wu X, Shalem O, Cradick T J, Marraffini L A, Bao G, Zhang F. 2013. DNA targeting specificity of RNA-guided Cas9 nucleases., 31(9): 827–832.

    Hu X X, Wang C, Fu Y P, Liu Q, Jiao X Z, Wang K J. 2016. Expanding the range of CRISPR/Cas9 genome editing in rice., 9(6): 943–945.

    Hu X X, Wang C, Liu Q, Fu Y P, Wang K J. 2017. Targeted mutagenesis in rice using CRISPR-Cpf1 system., 44(1): 71–73.

    Hu X X, Meng X B, Liu Q, Li J Y, Wang K J. 2018. Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice., 16(1): 292–297.

    Hua K, Tao X P, Yuan F T, Wang D, Zhu J K. 2018a. Precise A·T to G·C base editing in the rice genome., 11(4): 627–630.

    Hua K, Tao X P, Zhu J K. 2018b. Expanding the base editing scope in rice by using Cas9 variants., doi: 10.111/pbi.12993.

    Jiang W Y, Bikard D, Cox D, Zhang F, Marraffini L A. 2013. RNA-guided editing of bacterial genomes using CRISPR-Cas systems., 31(3): 233–239.

    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity., 337: 816–821.

    Kaya H, Mikami M, Endo A, Endo M, Toki S. 2016. Highly specific targeted mutagenesis in plants usingCas9., 6: 26871.

    Kleinstiver B P, Prew M S, Tsai S Q, Topkar V V, Nguyen N T, Zheng Z, Gonzales A P, Li Z, Peterson R T, Yeh J R, Aryee M J, Joung J K. 2015. Engineered CRISPR-Cas9 nucleases with altered PAM specificities., 523: 481–485.

    Kleinstiver B P, Tsai S Q, Prew M S, Nguyen N T, Welch M M, Lopez J M, McCaw Z R, Aryee M J, Joung J K. 2016. Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells., 34(8): 869–874.

    Komor A C, Kim Y B, Packer M S, Zuris J A, Liu D R. 2016. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage., 533: 420–424.

    Li C, Zong Y, Wang Y P, Jin S, Zhang D B, Song Q N, Zhang R, Gao C X. 2018. Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion., 19: 59.

    Li J, Meng X B, Zong Y, Chen K L, Zhang H W, Liu J X, Li J Y, Gao C X. 2016. Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9., 2: 16139.

    Li J Y, Sun Y W, Du J L, Zhao Y D, Xia L Q. 2017. Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system., 10(3): 526–529.

    Li S Y, Li J Y, Zhang J H, Du W M, Fu J D, Sutar S, Zhao Y D, Xia L Q. 2018a. Synthesis-dependent repair of Cpf1-induced double-strand DNA breaks enables targeted gene replacement in rice., 69(20): 4715–4721.

    Li S Y, Zhang X, Wang W S, Guo X P, Wu Z C, Du W M, Zhao Y D, Xia L Q. 2018b. Expanding the scope of CRISPR/Cpf1- mediated genome editing in rice., 11(7): 995–998.

    Li Z X, Zhang D D, Xiong X Y, Yan B Y, Xie W, Sheen J, Li J F. 2017. A potent Cas9-derived gene activator for plant and mammalian cells., 3(12): 930–936.

    Lowder L G, Zhang D W, Baltes N J, Paul J W, Tang X, Zheng X L, Voytas D F, Hsieh T F, Zhang Y, Qi Y P. 2015. A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation., 169(2): 971–985.

    Lowder L G, Zhou J P, Zhang Y X, Malzahn A, Zhong Z H, Hsieh T F, Voytas D F, Zhang Y, Qi Y P. 2018. Robust transcriptional activation in plants using multiplexed CRISPR-Act2.0 and mTALE-Act systems., 11(2): 245–256.

    Lu H P, Liu S M, Xu S L, Chen W Y, Zhou X, Tan Y Y, Huang J Z, Shu Q Y. 2017. CRISPR-S: An active interference element for a rapid and inexpensive selection of genome-edited, transgene-free rice plants., 15(11): 1371–1373.

    Lu Y, Zhu J K. 2017. Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system., 10(3): 523–525.

    Ma X L, Zhang Q Y, Zhu Q N, Liu W, Chen Y, Qiu R, Wang B, Yang Z F, Li H Y, Lin Y R, Xie Y Y, Shen R X, Chen S F, Wang Z, Chen Y, Guo J X, Chen L T, Zhao X C, Dong Z C, Liu Y G. 2015. A robust CRISPR/Cas9 system for convenient, high- efficiency multiplex genome editing in monocot and dicot plants., 8(8): 1274–1284.

    Mali P, Yang L H, Esvelt K M, Aach J, Guell M, DiCarlo J E, Norville J E, Church G M. 2013. RNA-guided human genome engineering via Cas9., 339: 823–826.

    Meng X B, Hu X X, Liu Q, Song X G, Gao C X, Li J Y, Wang K J. 2018. Robust genome editing of CRISPR-Cas9 at NAG PAMs in rice., 61(1): 122–125.

    Mladenov E, Iliakis G. 2011. Induction and repair of DNA double strand breaks: The increasing spectrum of non-homologous end joining pathways., 711: 61–72.

    Moscou M J, Bogdanove A J. 2009. A simple cipher governs DNA recognition by TAL effectors., 326: 1501.

    Puchta H, Fauser F. 2014. Synthetic nucleases for genome engineering in plants: Prospects for a bright future., 78(5): 727–741.

    Shan Q W, Wang Y P, Li J, Zhang Y, Chen K L, Liang Z, Zhang K, Liu J X, Xi J J Z, Qiu J L, Gao C X. 2013. Targeted genome modification of crop plants using a CRISPR-Cas system., 31(8): 686–688.

    Shao G N, Xie L H, Jiao G A, Wei X J, Sheng Z H, Tang S Q, Hu P S. 2017. CRISPR/CAS9-mediated editing of the fragrant genein rice., 31(2): 216–222. (in Chinese with English abstract)

    Shen L, Hua Y F, Fu Y P, Li J, Liu Q, Jiao X Z, Xin G W, Wang J J, Wang X C, Yan C J, Wang K J. 2017a. Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice., 60(5): 506–515.

    Shen L, Li J, Fu Y P, Wang J J, Hua Y F, Jiao X Z, Yang C J, Wang K J. 2017b. Orientation improvement of grain length and grain number in rice by using CRISPR/Cas9 system., 31(3): 223–231. (in Chinese with English abstract)

    Sun Y W, Zhang X, Wu C Y, He Y B, Ma Y Z, Hou H, Guo X P, Du W M, Zhao Y D, Xia L Q. 2016. Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase., 9(4): 628–631.

    Tang X, Zheng X L, Qi Y P, Zhang D W, Cheng Y, Tang A, Voytas D F, Zhang Y. 2016. A single transcript CRISPR-Cas9 system for efficient genome editing in plants., 9(7): 1088–1091.

    Tang X, Lowder L G, Zhang T, Malzahn A A, Zheng X, Voytas D F, Zhong Z H, Chen Y Y, Ren Q R, Li Q, Kirkland E R, Zhang Y, Qi Y P. 2017. A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants., 3: 17018.

    Tang X, Liu G Q, Zhou J P, Ren Q R, You Q, Tian L, Xin X H, Zhong Z H, Liu B L, Zheng X L, Zhang D W, Malzahn A, Gong Z Y, Qi Y P, Zhang T, Zhang Y. 2018. A large-scale whole- genome sequencing analysis reveals highly specific genome editing by both Cas9 and Cpf1 (Cas12a) nucleases in rice., 19: 84.

    Terns M P, Terns R M. 2011. CRISPR-based adaptive immune systems., 14(3): 321–327.

    Tsai S Q, Zheng Z L, Nguyen N T, Liebers M, Topkar V V, Thapar V, Wyvekens N, Khayter C, Iafrate A J, Le L P, Aryee M J, Joung J K. 2015. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases., 33(2): 187–197.

    Wang C, Shen L, Fu Y P, Yan C J, Wang K J. 2015. A simple CRISPR/Cas9 system for multiplex genome editing in rice., 42(12): 703–706.

    Wang M G, Lu Y M, Botella J R, Mao Y F, Hua K, Zhu J K. 2017a. Gene targeting by homology-directed repair in rice using a geminivirus-based CRISPR/Cas9 system., 10(7): 1007–1010.

    Wang M G, Mao Y F, Lu Y M, Tao X P, Zhu J K. 2017b. Multiplex gene editing in rice using the CRISPR-Cpf1 system., 10: 1011–1013.

    Wiedenheft B, Sternberg S H, Doudna J A. 2012. RNA-guided genetic silencing systems in bacteria and archaea., 482: 331–338.

    Woo J W, Kim J, Kwon S I, Corvalan C, Cho S W, Kim H, Kim S G, Kim S T, Choe S, Kim J S. 2015. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins., 33(11): 1162–1164.

    Xie K B, Yang Y N. 2013. RNA-guided genome editing in plants using a CRISPR-Cas system., 6(6): 1975–1983.

    Xie K B, Minkenberg B, Yang Y N. 2015. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system., 112(11): 3570–3575.

    Xing H L, Dong L, Wang Z P, Zhang H Y, Han C Y, Liu B, Wang X C, Chen Q J. 2014. A CRISPR/Cas9 toolkit for multiplex genome editing in plants., 14: 327.

    Xu R F, Qin R Y, Li H, Li D D, Li L, Wei P C, Yang J B. 2017. Generation of targeted mutant rice using a CRISPR-Cpf1 system., 15(6): 713–717.

    Yamano T, Zetsche B, Ishitani R, Zhang F, Nishimasu H, Nureki O. 2017. Structural basis for the canonical and non-canonical PAM recognition by CRISPR-Cpf1., 67(4): 633–645.

    Yan F, Kuang Y J, Ren B, Wang J W, Zhang D W, Lin H H, Yang B, Zhou X P, Zhou H B. 2018. Highly efficient A·T to G·C base editing by Cas9n-guided tRNA adenosine deaminase in rice., 11(4): 631–634.

    Zetsche B, Gootenberg J S, Abudayyeh O O, Slaymaker I M, Makarova K S, Essletzbichler P, Volz S E, Joung J, van der Oost J, Regev A, Koonin E V, Zhang F. 2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system., 163(3): 759–771.

    Zhang D B, Zhang H W, Li T D, Chen K L, Qiu J L, Gao C X. 2017. Perfectly matched 20-nucleotide guide RNA sequences enable robust genome editing using high-fidelity SpCas9 nucleases., 18(1): 191.

    Zhang H, Zhang J S, Wei P L, Zhang B T, Gou F, Feng Z Y, Mao Y F, Yang L, Zhang H, Xu N F, Zhu J K. 2014. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation., 12(6): 797–807.

    Zhong Z H, Zhang Y X, You Q, Tang X, Ren Q R, Liu S S, Yang L J, Wang Y, Liu X P, Liu B L, Zhang T, Zheng X L, Le Y, Zhang Y, Qi Y P. 2018. Plant genome editing using FnCpf1 and LbCpf1 nucleases at redefined and sltered PAM sites., 11(7): 999–1002.

    Zong Y, Wang Y P, Li C, Zhang R, Chen K L, Ran Y D, Qiu J L, Wang D W, Gao C X. 2017. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion.,35(5): 438–440.

    (Managing Editor: Wang Caihong)

    Copyright ? 2019, China National Rice Research Institute. Hosting by Elsevier B V

    This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Peer review under responsibility of China National Rice Research Institute

    http://dx.doi.org/10.1016/j.rsci.2019.01.001

    21 November 2018;

    8 January 2019

    Wang Chun (wangchun@caas.cn)

    一进一出好大好爽视频| e午夜精品久久久久久久| 成人18禁在线播放| 欧美日韩av久久| 天天躁狠狠躁夜夜躁狠狠躁| 俄罗斯特黄特色一大片| 国产97色在线日韩免费| 精品久久久精品久久久| 免费看a级黄色片| 人妻一区二区av| 69av精品久久久久久| aaaaa片日本免费| 丁香六月欧美| 女人高潮潮喷娇喘18禁视频| 俄罗斯特黄特色一大片| 成人三级做爰电影| 国产精品乱码一区二三区的特点 | 91大片在线观看| 色老头精品视频在线观看| 色在线成人网| 国产亚洲精品久久久久5区| 美女 人体艺术 gogo| 精品国内亚洲2022精品成人 | 欧洲精品卡2卡3卡4卡5卡区| 欧美性长视频在线观看| 精品一区二区三卡| 亚洲黑人精品在线| av一本久久久久| 欧美不卡视频在线免费观看 | 久久人妻福利社区极品人妻图片| 少妇的丰满在线观看| 黑人操中国人逼视频| 好男人电影高清在线观看| 99在线人妻在线中文字幕 | 亚洲全国av大片| 午夜免费观看网址| 中文欧美无线码| 国产人伦9x9x在线观看| 老司机靠b影院| 国产精品二区激情视频| 久99久视频精品免费| xxxhd国产人妻xxx| 国产视频一区二区在线看| 久久精品aⅴ一区二区三区四区| 51午夜福利影视在线观看| 国产97色在线日韩免费| 下体分泌物呈黄色| 亚洲成人国产一区在线观看| 十八禁人妻一区二区| 高清在线国产一区| 国产99白浆流出| 欧美黄色片欧美黄色片| 视频在线观看一区二区三区| 精品国产乱子伦一区二区三区| 一区二区三区激情视频| 国产午夜精品久久久久久| 久久香蕉激情| 人人澡人人妻人| 日本黄色视频三级网站网址 | 男男h啪啪无遮挡| 亚洲专区中文字幕在线| 午夜福利在线免费观看网站| 精品午夜福利视频在线观看一区| 黄色成人免费大全| 国产欧美日韩精品亚洲av| 亚洲人成电影观看| 日日夜夜操网爽| 亚洲国产欧美日韩在线播放| 99re6热这里在线精品视频| 国产av又大| 黄色怎么调成土黄色| 亚洲精品国产区一区二| 国产成人精品在线电影| av片东京热男人的天堂| 好看av亚洲va欧美ⅴa在| av天堂在线播放| 精品久久久久久久毛片微露脸| 很黄的视频免费| 国产成人精品久久二区二区免费| 免费黄频网站在线观看国产| 亚洲精华国产精华精| 欧洲精品卡2卡3卡4卡5卡区| 国产成人欧美| 丝袜美腿诱惑在线| 少妇的丰满在线观看| 女性被躁到高潮视频| 国产在线观看jvid| 亚洲五月天丁香| 午夜亚洲福利在线播放| 热99re8久久精品国产| 亚洲av成人一区二区三| 巨乳人妻的诱惑在线观看| 亚洲av熟女| 午夜久久久在线观看| 国产精品1区2区在线观看. | 国产精品一区二区在线不卡| 女人被躁到高潮嗷嗷叫费观| 女性生殖器流出的白浆| 精品久久蜜臀av无| 一二三四在线观看免费中文在| 久久天堂一区二区三区四区| 国产欧美日韩一区二区精品| 精品久久久精品久久久| 久久久精品免费免费高清| 亚洲一区二区三区欧美精品| 中文字幕av电影在线播放| 韩国精品一区二区三区| 夜夜爽天天搞| 窝窝影院91人妻| av线在线观看网站| 国产成人精品无人区| 国内久久婷婷六月综合欲色啪| 国产视频一区二区在线看| 国产91精品成人一区二区三区| 欧美成狂野欧美在线观看| 日日摸夜夜添夜夜添小说| 丝瓜视频免费看黄片| 丝袜美腿诱惑在线| 久久影院123| 欧美亚洲日本最大视频资源| 香蕉丝袜av| 一级片'在线观看视频| 亚洲专区国产一区二区| 成人亚洲精品一区在线观看| 成人18禁在线播放| 飞空精品影院首页| 国产伦人伦偷精品视频| 制服人妻中文乱码| 国产深夜福利视频在线观看| 亚洲一码二码三码区别大吗| 国产成人av激情在线播放| ponron亚洲| 国产精品av久久久久免费| 精品午夜福利视频在线观看一区| 中文亚洲av片在线观看爽 | 又黄又粗又硬又大视频| 黄片小视频在线播放| 国产精品美女特级片免费视频播放器 | 亚洲国产精品一区二区三区在线| 久久国产精品人妻蜜桃| 国产亚洲精品第一综合不卡| 国产精品偷伦视频观看了| 国精品久久久久久国模美| 十八禁高潮呻吟视频| 18禁美女被吸乳视频| 欧洲精品卡2卡3卡4卡5卡区| 欧美+亚洲+日韩+国产| 欧美日韩亚洲综合一区二区三区_| 成熟少妇高潮喷水视频| 女人被躁到高潮嗷嗷叫费观| 母亲3免费完整高清在线观看| 精品久久久久久久久久免费视频 | 国内毛片毛片毛片毛片毛片| 久久久国产一区二区| 中文亚洲av片在线观看爽 | 欧美不卡视频在线免费观看 | 别揉我奶头~嗯~啊~动态视频| 亚洲av成人一区二区三| 国产不卡av网站在线观看| 麻豆国产av国片精品| 黑人操中国人逼视频| 精品视频人人做人人爽| 99精品久久久久人妻精品| 国产成人精品久久二区二区免费| 国产淫语在线视频| 免费在线观看黄色视频的| 无限看片的www在线观看| 国产精品国产av在线观看| 欧美日韩福利视频一区二区| 下体分泌物呈黄色| 午夜福利在线免费观看网站| 9色porny在线观看| 亚洲成人免费av在线播放| 一级片免费观看大全| 怎么达到女性高潮| 久久狼人影院| 人人妻人人澡人人看| 亚洲国产精品合色在线| 视频区欧美日本亚洲| 久久精品国产99精品国产亚洲性色 | a在线观看视频网站| 男男h啪啪无遮挡| 国产精品香港三级国产av潘金莲| 18禁黄网站禁片午夜丰满| 欧美激情久久久久久爽电影 | 热99久久久久精品小说推荐| 欧美日韩一级在线毛片| 亚洲欧美精品综合一区二区三区| 欧美日韩亚洲综合一区二区三区_| 伦理电影免费视频| 亚洲欧美色中文字幕在线| 99riav亚洲国产免费| 亚洲av片天天在线观看| 在线免费观看的www视频| 久久久精品国产亚洲av高清涩受| 国产亚洲av高清不卡| 午夜福利在线免费观看网站| 色尼玛亚洲综合影院| 老熟妇仑乱视频hdxx| 满18在线观看网站| 黄片播放在线免费| 久久精品aⅴ一区二区三区四区| 欧美日韩福利视频一区二区| 麻豆乱淫一区二区| 国产伦人伦偷精品视频| 99国产精品99久久久久| 国产不卡av网站在线观看| 极品人妻少妇av视频| 亚洲精品成人av观看孕妇| 日韩熟女老妇一区二区性免费视频| 人妻久久中文字幕网| 美女视频免费永久观看网站| 国产精品久久视频播放| 精品卡一卡二卡四卡免费| 国产欧美日韩一区二区三| 热99re8久久精品国产| 久热爱精品视频在线9| 成人免费观看视频高清| 欧美精品av麻豆av| 精品视频人人做人人爽| 欧美丝袜亚洲另类 | 午夜福利影视在线免费观看| 捣出白浆h1v1| 高清av免费在线| 免费在线观看影片大全网站| 亚洲一区二区三区欧美精品| 国产亚洲精品一区二区www | 免费日韩欧美在线观看| 美女高潮到喷水免费观看| 国产精品免费大片| tube8黄色片| 亚洲熟女精品中文字幕| 国产精品1区2区在线观看. | 99久久99久久久精品蜜桃| 人妻 亚洲 视频| 黄色片一级片一级黄色片| 亚洲欧美精品综合一区二区三区| 一夜夜www| 精品国产乱子伦一区二区三区| 精品国产一区二区三区四区第35| 夜夜夜夜夜久久久久| 日韩中文字幕欧美一区二区| 中文字幕人妻丝袜制服| 真人做人爱边吃奶动态| 亚洲av成人av| 搡老乐熟女国产| 精品久久久久久,| 后天国语完整版免费观看| 岛国在线观看网站| 99国产综合亚洲精品| 91老司机精品| 国产免费av片在线观看野外av| aaaaa片日本免费| 久久久久久免费高清国产稀缺| 黄频高清免费视频| 精品国产国语对白av| 亚洲第一青青草原| 色尼玛亚洲综合影院| 国产野战对白在线观看| 三级毛片av免费| 欧美成人午夜精品| 最近最新免费中文字幕在线| 免费日韩欧美在线观看| 免费观看人在逋| 人妻丰满熟妇av一区二区三区 | av片东京热男人的天堂| 老熟妇仑乱视频hdxx| 久久精品91无色码中文字幕| 欧美不卡视频在线免费观看 | 成人国语在线视频| 嫩草影视91久久| 欧美日韩成人在线一区二区| 热99国产精品久久久久久7| 岛国毛片在线播放| 成人18禁高潮啪啪吃奶动态图| 亚洲国产毛片av蜜桃av| 亚洲成a人片在线一区二区| 国产成人欧美| 久久午夜亚洲精品久久| 久久久精品区二区三区| 国产黄色免费在线视频| 一二三四在线观看免费中文在| 中文字幕人妻丝袜制服| 女人爽到高潮嗷嗷叫在线视频| 天堂√8在线中文| 色尼玛亚洲综合影院| 亚洲欧美色中文字幕在线| 人人妻人人澡人人看| 精品一区二区三区视频在线观看免费 | 久久香蕉国产精品| 人人妻人人添人人爽欧美一区卜| 亚洲av美国av| 国产成人啪精品午夜网站| av中文乱码字幕在线| 欧美乱妇无乱码| 一级a爱视频在线免费观看| 中文字幕人妻丝袜制服| 成人永久免费在线观看视频| 黄色视频,在线免费观看| 一级毛片女人18水好多| 99热只有精品国产| 国产高清国产精品国产三级| 欧美性长视频在线观看| 久久中文字幕人妻熟女| 亚洲中文日韩欧美视频| 国产亚洲欧美在线一区二区| 啦啦啦在线免费观看视频4| 亚洲成人国产一区在线观看| 国产精品 欧美亚洲| 在线观看一区二区三区激情| 久久久国产成人精品二区 | 露出奶头的视频| 免费在线观看日本一区| 亚洲成av片中文字幕在线观看| 黑人猛操日本美女一级片| 欧美av亚洲av综合av国产av| 少妇的丰满在线观看| av天堂在线播放| 国产极品粉嫩免费观看在线| 午夜视频精品福利| 午夜精品久久久久久毛片777| 亚洲熟女毛片儿| 亚洲精华国产精华精| 久久久久国产精品人妻aⅴ院 | 亚洲欧美日韩另类电影网站| 亚洲精品中文字幕一二三四区| 亚洲午夜理论影院| 精品久久久久久久毛片微露脸| 啦啦啦在线免费观看视频4| 国产精品二区激情视频| 人妻丰满熟妇av一区二区三区 | 国产精品久久电影中文字幕 | 色婷婷av一区二区三区视频| 极品少妇高潮喷水抽搐| 国产97色在线日韩免费| tube8黄色片| 国产成人免费观看mmmm| 无遮挡黄片免费观看| 亚洲欧美激情综合另类| 国产亚洲精品第一综合不卡| 18禁裸乳无遮挡动漫免费视频| 精品人妻1区二区| 久久这里只有精品19| 每晚都被弄得嗷嗷叫到高潮| 免费观看a级毛片全部| 国产精品久久久久久精品古装| 国产精品影院久久| 男人操女人黄网站| 黄色 视频免费看| 国产精华一区二区三区| 999久久久精品免费观看国产| 国产黄色免费在线视频| 国产亚洲一区二区精品| 两性夫妻黄色片| 日本黄色视频三级网站网址 | 老熟女久久久| 老司机午夜十八禁免费视频| 亚洲少妇的诱惑av| 在线av久久热| 波多野结衣av一区二区av| e午夜精品久久久久久久| 亚洲伊人色综图| 久久午夜亚洲精品久久| 欧美 亚洲 国产 日韩一| av视频免费观看在线观看| 精品久久久久久电影网| 国产日韩一区二区三区精品不卡| 窝窝影院91人妻| 极品少妇高潮喷水抽搐| 老司机影院毛片| 男女高潮啪啪啪动态图| 久久婷婷成人综合色麻豆| 亚洲成人国产一区在线观看| 久久亚洲真实| 欧美最黄视频在线播放免费 | 黄色丝袜av网址大全| 久久香蕉精品热| 大型av网站在线播放| av电影中文网址| 女人久久www免费人成看片| 美女扒开内裤让男人捅视频| 久久国产精品影院| 成人免费观看视频高清| 国产片内射在线| 亚洲伊人色综图| 欧美人与性动交α欧美精品济南到| 一二三四在线观看免费中文在| 露出奶头的视频| 亚洲情色 制服丝袜| 美女午夜性视频免费| 中国美女看黄片| 中文字幕av电影在线播放| 午夜福利欧美成人| 精品一区二区三区四区五区乱码| 国产精品国产高清国产av | 欧美精品一区二区免费开放| 国产乱人伦免费视频| 亚洲av美国av| 大片电影免费在线观看免费| 午夜精品国产一区二区电影| 欧美在线一区亚洲| 免费观看精品视频网站| 亚洲精品美女久久久久99蜜臀| 久久久精品国产亚洲av高清涩受| 亚洲成人免费电影在线观看| 国产成人精品久久二区二区91| 最近最新中文字幕大全电影3 | av福利片在线| 一级a爱视频在线免费观看| 亚洲av电影在线进入| 最新在线观看一区二区三区| 国产精品综合久久久久久久免费 | 精品国产一区二区久久| 国产精品1区2区在线观看. | 日韩欧美在线二视频 | 99久久综合精品五月天人人| 亚洲九九香蕉| 欧美日韩成人在线一区二区| 免费在线观看完整版高清| 99久久综合精品五月天人人| 久久精品亚洲熟妇少妇任你| 亚洲人成77777在线视频| 美女福利国产在线| 欧美黄色片欧美黄色片| 亚洲精品国产色婷婷电影| 日本欧美视频一区| 高清黄色对白视频在线免费看| 午夜日韩欧美国产| 亚洲黑人精品在线| 日日爽夜夜爽网站| 午夜福利欧美成人| 国产成人av教育| 99国产精品一区二区三区| 五月开心婷婷网| 搡老乐熟女国产| 亚洲精品久久成人aⅴ小说| 在线观看日韩欧美| 精品少妇一区二区三区视频日本电影| 99在线人妻在线中文字幕 | 下体分泌物呈黄色| 久久中文看片网| 在线av久久热| 久久久久久人人人人人| 中文字幕另类日韩欧美亚洲嫩草| 亚洲成国产人片在线观看| 99久久人妻综合| 极品人妻少妇av视频| 黑人巨大精品欧美一区二区蜜桃| 欧美色视频一区免费| 王馨瑶露胸无遮挡在线观看| 日韩 欧美 亚洲 中文字幕| 欧美乱妇无乱码| 水蜜桃什么品种好| 狠狠婷婷综合久久久久久88av| 国产激情欧美一区二区| 亚洲久久久国产精品| 欧洲精品卡2卡3卡4卡5卡区| 久久人人97超碰香蕉20202| 国产成人精品在线电影| 成人18禁在线播放| videos熟女内射| 无人区码免费观看不卡| 欧美日韩精品网址| 国产精品av久久久久免费| 亚洲在线自拍视频| 欧美午夜高清在线| 丰满人妻熟妇乱又伦精品不卡| 亚洲全国av大片| 免费看十八禁软件| 两性午夜刺激爽爽歪歪视频在线观看 | 久久精品亚洲av国产电影网| 亚洲专区字幕在线| 国产精品久久久人人做人人爽| 国产精品亚洲av一区麻豆| 伊人久久大香线蕉亚洲五| 99香蕉大伊视频| 久热爱精品视频在线9| 亚洲精品自拍成人| 国产在视频线精品| 国产精品二区激情视频| 丰满人妻熟妇乱又伦精品不卡| 好男人电影高清在线观看| 麻豆av在线久日| 精品卡一卡二卡四卡免费| 人妻 亚洲 视频| 极品人妻少妇av视频| 飞空精品影院首页| 欧美亚洲 丝袜 人妻 在线| 亚洲专区国产一区二区| 亚洲欧美一区二区三区黑人| 人人妻人人添人人爽欧美一区卜| 黄色 视频免费看| 免费女性裸体啪啪无遮挡网站| 成人三级做爰电影| 老司机亚洲免费影院| 日韩欧美免费精品| xxxhd国产人妻xxx| 久久中文看片网| 日本vs欧美在线观看视频| 国产亚洲精品第一综合不卡| 国产精品亚洲av一区麻豆| 巨乳人妻的诱惑在线观看| 女警被强在线播放| 国产精品99久久99久久久不卡| 久久久国产精品麻豆| 中文字幕色久视频| 黄色 视频免费看| 亚洲aⅴ乱码一区二区在线播放 | 国产熟女午夜一区二区三区| 日本黄色视频三级网站网址 | 中文亚洲av片在线观看爽 | 超碰97精品在线观看| 国产精品偷伦视频观看了| 国产99白浆流出| 欧美色视频一区免费| 飞空精品影院首页| bbb黄色大片| 久久人人97超碰香蕉20202| 人人妻人人澡人人看| 嫩草影视91久久| 三级毛片av免费| av天堂在线播放| 两人在一起打扑克的视频| 国产亚洲精品第一综合不卡| 老司机午夜福利在线观看视频| 日韩精品免费视频一区二区三区| 午夜成年电影在线免费观看| 少妇被粗大的猛进出69影院| 久久久久久久久免费视频了| 久久久久精品人妻al黑| 国产精品久久电影中文字幕 | 亚洲片人在线观看| 国产日韩一区二区三区精品不卡| 国产午夜精品久久久久久| 美国免费a级毛片| 老鸭窝网址在线观看| 激情视频va一区二区三区| 99精品久久久久人妻精品| 亚洲精品在线观看二区| 久久久久视频综合| 一区福利在线观看| 人人澡人人妻人| 女性生殖器流出的白浆| 午夜福利影视在线免费观看| 大型av网站在线播放| 亚洲欧美精品综合一区二区三区| a在线观看视频网站| 成人av一区二区三区在线看| 国产麻豆69| 搡老岳熟女国产| av一本久久久久| 黄色视频不卡| 欧美 亚洲 国产 日韩一| 最新的欧美精品一区二区| 久久久久久久国产电影| 精品欧美一区二区三区在线| 精品国产美女av久久久久小说| 怎么达到女性高潮| 欧美日韩亚洲综合一区二区三区_| 美国免费a级毛片| 久久天躁狠狠躁夜夜2o2o| 中文字幕制服av| 狂野欧美激情性xxxx| 精品国产美女av久久久久小说| 脱女人内裤的视频| 亚洲av电影在线进入| 老司机亚洲免费影院| 一区二区三区精品91| 男人舔女人的私密视频| 中出人妻视频一区二区| 一区福利在线观看| 黑人欧美特级aaaaaa片| 视频区欧美日本亚洲| 色老头精品视频在线观看| 久久人人97超碰香蕉20202| 可以免费在线观看a视频的电影网站| 成年动漫av网址| 国产片内射在线| 91精品三级在线观看| 好看av亚洲va欧美ⅴa在| 1024视频免费在线观看| 三上悠亚av全集在线观看| 亚洲欧美激情综合另类| 久久精品aⅴ一区二区三区四区| 怎么达到女性高潮| 中文字幕人妻丝袜制服| 亚洲熟女毛片儿| 一级作爱视频免费观看| 91成人精品电影| 老司机福利观看| 欧美黄色片欧美黄色片| 丝袜美足系列| 大型av网站在线播放| 久久婷婷成人综合色麻豆| 亚洲成a人片在线一区二区| 另类亚洲欧美激情| 国产激情欧美一区二区| 极品教师在线免费播放| 欧美精品亚洲一区二区| 久久性视频一级片| 天天躁夜夜躁狠狠躁躁| 自拍欧美九色日韩亚洲蝌蚪91| 欧美午夜高清在线| 免费一级毛片在线播放高清视频 | 超碰97精品在线观看| 免费不卡黄色视频| 日韩欧美一区视频在线观看| 亚洲色图综合在线观看| 男女免费视频国产| 热re99久久精品国产66热6| 精品久久久久久电影网| 久久亚洲精品不卡| 亚洲欧美日韩高清在线视频| 国产av精品麻豆| 水蜜桃什么品种好|