• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Production of Two Elite Glutinous Rice Varieties by Editing Wx Gene

    2019-02-19 01:30:14FeiYunyanYangJieWangFangquanFanFangjunLiWenqiWangJunXuYangZhuJinyanZhongWeigong
    Rice Science 2019年2期

    Fei Yunyan, Yang Jie, 2, Wang Fangquan, 2, Fan Fangjun, 2, Li Wenqi, 2, Wang Jun, 2, Xu Yang, 2, Zhu Jinyan, 2, Zhong Weigong, 2

    ?

    Production of Two Elite Glutinous Rice Varieties by EditingGene

    Fei Yunyan1, Yang Jie1, 2, Wang Fangquan1, 2, Fan Fangjun1, 2, Li Wenqi1, 2, Wang Jun1, 2, Xu Yang1, 2, Zhu Jinyan1, 2, Zhong Weigong1, 2

    (Institute of Food Crops, Jiangsu Academy of Agricultural Sciences / Nanjing Branch of Chinese National Center for Rice Improvement / Jiangsu High Quality Rice Research & Development Center, Nanjing 210014, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China)

    Thegene () in rice, which encodes the granule bound starch synthase enzyme, is responsible for amylose synthesis. Glutinous (sticky) rice has little or no amylose that can be used in various applications, such as brewing. In this study, knockout of thegene with CRISPR/Cas9 technology was conducted in two eliterice lines, Huaidao 5 (HD5) and Suken 118 (SK118), aiming to develop elite sticky rice varieties. We achieved six homozygous T0plants with more than 200 bp deletion in thegene, as well as 36-HD5 and 18-SK118 homozygous transgene-free plants in the T1generation. The seeds of all the mutants were white and opaque, similar to those of sticky rice, and contained only 2.6%–3.2% amylose. Results of scanning electron microscopy showed that the quality of rice did not change. In conclusion, we successfully developed two elite sticky rice varieties.

    amylose; CRISPR; Cas9; rice; starch;

    Rice is one of the most important crops globally. High yield, good quality and resistant traits are important targets in its breeding programs (Kiswara et al, 2014), and genetic diversity in rice germplasm is crucial for these purposes. Various strategies, such as exploring wild rice germplasm and natural or artificial mutation, have been employed by breeders to broaden the genetic diversity of rice (Shen et al, 2017). However, these methods are time consuming, and in the case of gene mutations, randomly. The clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9) system is a novel technology, widely used in various fields because of its cost effective, simple, flexible and highly efficient (Wang et al, 2017a). In rice, numerous studies have been performed with the CRISPR/Cas9 system (Wang et al, 2016). Ma et al (2015) reported that editing efficiency of CRISPR/Cas9 is higher in rice than in. Mikami et al (2015) found that thepromoter performs better than thein mutation frequency. A 1-bp mismatch of an sgRNA is sufficient to avoid off-target in closely related genes in rice (Baysal et al, 2016). There is a greater probability of large gene deletions inrice than inrice (Wang et al, 2017b). With the rapid development of the CRISPR-Cas system, many researchers have begun to use this technology to improve agronomic traits in rice. For example, rice blast resistance lines are produced by CRISPR/Cas9-targeted mutagenesis of(Wang et al, 2016). Hybrid-compatible lines are developed by knocking out thegenes (Xie et al, 2017). Low-Cs+/Cd rice strains are also created by knocking out the corresponding metal transporter genes (Nieves-cordones et al, 2017; Tang et al, 2017).

    Amylose is a linear polymer composed of glucose units, linked by α-D-(1-4) glycosidic linkages. In rice, amylose content (AC) is a complex trait, influenced by multiple genes, mainly the() gene, and the environment (Chen et al, 2008). Thegene encodes the granule-bound starch synthase I (GBSSI), which catalyzes the synthesis of amylose. The expression ofis modulated by many factors, which can lead to a change in AC (Wang et al, 2015). Wu et al (2015) reported that dozens ofgenes regulate the splicing efficiency of. A tetratricopeptide domain-containing protein (flo2) regulates the expression of(Wu et al, 2015).,,,and, as transcription factors, modifyexpression (Wamnugu et al, 2017). Many QTLs, such as, have been identified as genes controlling AC (Fasahat et al, 2014). Glutelin, gibberellin receptor, ADP- glucose pyrophosphorylase and pullulanase also play minor roles in affecting AC (Wamnugu et al, 2017). Here, we used CRISPR/Cas9 technology to edit thegene and generate two elite glutinous rice varieties that could meet the demands of consumers and enrich the rice genetic resources.

    Materials and methods

    Rice materials and growth conditions

    Rice () inbred lines Huaidao 5 (HD5) and Suken 118 (SK118) were used for-mediated co-cultivationtransformation experiments, as described previously (Zheng et al, 2016). During growing seasons, all the materials were cultivated in the greenhouse of the Jiangsu Academy of Agricultural Sciences in Nanjing, Jiangsu Province, China.

    Plasmid construction

    Thegene (LOC_Os06g04200) was the target of Cas9 endonuclease. According to the principles outlined in Ma et al (2015), two sgRNAs (T1 and T2) were designed on the first extron of thegene from Nipponbare. The sgRNAs were assembled into one vector pYLCRISPR/Cas9-MH usingI (New England Biolabs, Country) and T4 ligase (New England Biolabs, Country). T1 and T2 were driven byandpromoters, respectively. The vector was transformed into thestrain DH5α, and the insertions were verified by sequencing. The primers sequences of the sgRNAs are listed in Table 1. A vector map was generated using vector NTI (Lu and Moriyama, 2004).

    Detection of mutations

    The genomic DNA of transgenic plants was isolated from rice leaves using the CTAB method (Murray and Thompson, 1980). The PCRs were conducted using a Golden Star T6 Super PCR Mix (TsingKe Biotech Co., Ltd, China) to amplify the sequences of T1 and T2. The reagents and reaction conditions of the PCRs were selected and programmed according to the manufacturer’s instructions. The obtained DNA fragments were sequenced, and then a similarity search using BLAST was performed with the wild-type (WT)sequence.

    Identification of transgene-free lines

    To identify the transgene-free lines, T1seedlings were examined using PCR with specific primers (Table 1) for the sequences of Cas9 and-resistance gene ().

    Evaluation of T1 phenotype

    The rice seeds were harvested at maturity and dried in an oven at 38 oC for two days after manual dehulling. The morphology of the seed endosperms was observed by visual inspection. Potassium iodide (I2-KI, 2%) staining was used to identify the starch types in the transgenic seeds T1generation(Kawagoe et al, 2005). Dried grains were ground into fine flour to pass through a 60 mesh sieve. Then, the AC of the powder was measured using a colorimetric method (Juliano et al, 1981). Scanning electron microscopy (SEM) was also performed to investigate the morphology of the rice starch. The polished rice seeds were cut with the blade of a scalpel, mounted on copper stubs, and coated with gold. All detailed procedures were performed according to Kasem et al (2011). Images were recorded on a Hitachi-S-3000Nscanning electron microscope (Hitachi, Co., Ltd. Japan).

    Table 1. Primers used in this study.

    Results

    Construction of CRISPR/Cas9 system

    To delete thegene inrice with the CRISPR/Cas9 technology, two different 20-bp sgRNAs (T1 and T2) at the first exon ofwere selected using the web-based tool CRISPR-P (http://cbi.hzau.edu.cn/cgi-bin/CRISPR), according to the criteria reported by Ma et al (2015). Two target sites were located at 15 and 217 bp downstream of the translation initiation codon (ATG) and were named T1 and T2, respectively (Fig. 1-A). The length between T1 and T2 was 202 bp, according to the coding sequence of. Two sgRNAs were sequentially assembled into pYLCRISPR/Cas9-MH as described by Wang et al (2017c). The T1 and T2 in the plasmid were driven by theandpromoters, respectively. Both Cas9 and, elements of the plasmid, were transcribed from the CaMV 35S promoter (Fig. 1-B).

    Fig. 1. Schematic diagrams of theand CRISPR/Cas9 vector.

    A, Overview of thegene structure and target sites for sgRNAs (T1 and T2). Exons and introns ingene are depicted by orange rectangles and white rectangles, respectively. The target sequences of sgRNAs are shown at the top of the gene structure in red. B, The structure of thegene editing system. T1 and T2 are driven by U3 and U6a promoters, respectively.

    RB, Right border; LB, Left border;,CRISPR associated protein 9 gene;,-resistance gene.

    Targets editing in T0 plants

    The CRISPR/Cas9-construct was transformed into two elite rice inbred lines HD5 and SK118. We obtained 36 and 32 independent T0transgenic plants of HD5 and SK118, respectively. The PCR tests of thegene confirmed that all T0plants were positive transgenic lines (Fig. 2-A). To analyze the mutation genotypes of the T0plants, three mutants of both-HD5 and-SK118 were randomly selected for PCR amplification (Fig. 2-B). The PCR products were sequenced. The genotype differences between the T0mutants and the WT lines are shown in Fig. 2-C. The results showed that the mutagenesis efficiency of the target sites was very high, the deletion fragments were larger than 200 bp in all individuals, the nucleotides between twoprotospacer adjacent motif (PAM) sites of the targets were all deleted by CRISPR/Cas9, and all T0plants were homozygous mutations.

    Selection of transgene-free homozygous mutant lines

    Because inherited Cas9 could also induce new mutations and lead to unpredicted segregation, distortion and chimerism in later generations, it is important to eliminate Cas9 by segregation in the T1generation and obtain stable mutants (Ishizaki, 2016; Yin et al, 2017). Three-SK118 (-SK118-1,-SK118-2 and-SK118-3) and three-HD5 (-HD5-1,-HD5-2 and-HD5-3) T0mutants were self-pollinated to generate T1plants. Transgene-free lines were analyzed by PCR using specific primers for theandsequences in the T1plants (Table 1). The results were determined using negative PCRs of bothand. The 235-HD5 and 118-SK118T1plants (including selections from all the six lines) were subjected to PCR tests, respectively, and 36-HD5 and 18-SK118transgene-free plants were isolated, respectively (Table 2).

    Fig. 2. CRISPR/Cas9-induced mutations in thegene.

    A, PCR analysis ofin T0lines (part of the picture). M, DNA marker; 1,-SK118-1; 2,-SK118-2; 3,-SK118-3; 4,-HD5-1; 5,-HD5-2; 6,-HD5-3; 7, Positive control of pYLCRISPR/Cas9-MH-; 8, Negative control of SK118; 9, Negative control of HD5; 10, Negative control of ddH2O. B, Polymerase chain reaction assays ofin T0lines. M, DNA marker; 1,-SK118-1; 2,-SK118-2; 3,-SK118-3; 4,-HD5-1; 5,-HD5-2; 6,-HD5-3; 7, Control of SK118; 8, Control of HD5. C, Sequencing results of T0mutant lines. sgRNA is shown in red letter; Insertion sequence is shown in green letter; Deletion sequence is shown by dashed line.

    Table 2. Segregation of transgene-free rice in T1 generation.

    Amylose content of rice grains

    The phenotypes of the mutant grains were compared with those of the WT. As shown in Fig. 3-A, the grains of the mutants were all white and opaque, which showed similar characteristics to those of typical glutinous rice varieties. The starch properties of the mutants were identified by a screen with I2-KI staining, as the seeds with more amylose have higher iodine binding capacity. Non-glutinous rice varieties have granules that are stained with a dark blue color. Seeds with more amylopectin, such as sticky rice, have a lower iodine binding capacity, and therefore, granules are stained with a reddish brown color (Kawagoe et al, 2005). As shown in Fig. 3-B, all the seeds of the mutants were reddish brown, while the WT grains were dark blue. The results revealed that the amylose content in the mutants was dramatically decreased. Further analysis showed that the AC of the mutants was 2.6%–3.2%, while the AC of the WT grains was 15.4%–15.7% (Fig. 3-C). As expected, the dramatic decrease of AC in the mutants was closely associated with the grain appearance and iodine staining results. The-HD5 and-SK118 rice strains were turned into glutinous lines.

    Microstructural features

    The cross sections of the grains were observed with SEM (Fig. 4). Results in Fig. 4-A revealed that the grain surfaces of the mutants were smoother and flatter than in the wild-types. Radiation from the rectangular columns, as revealed by cross-sections of grains, was reduced in the mutants, especially in-HD5. The fractured surfaces of grains from both the mutants and WTs were all densely packed with starch granules, and all the starch granules displayed large and irregular polygonal shapes with sharp edges (Fig. 4-B).

    Fig. 3. Phenotype of themutants.

    A, Intact polished rice. B, Grains stained with iodine solution. C, Amylose content ofmutants.

    Data represent Mean ± SD (= 3). **, Significant at the 0.01 level by the-test.

    Fig. 4. Cross-sections of endosperm in rice.

    DisCussion

    The first application of CRISPR/Cas9-based genome editing in rice was presented in 2013 (Cho et al, 2013). Since then, the technology has been widely used to improve agronomic traits and create novel germplasm in rice. Li et al (2016) and Zhou et al (2016) developed photoperiod-controlled and thermo-sensitive male sterile lines by disrupting theandgenes, respectively. Mutants of the,andgenes, which function as negative regulators of grain weight, were generated through CRISPR/Cas9-mediated targeted mutagenesis (Xu et al, 2016). Li et al (2017) designed sgRNAs to target,and, and produced early-maturing rice germplasm, which can improve the ecological adaptability of those rice varieties. Sun et al (2017) created high amylose rice plants through CRISPR/Cas9-mediated target gene editing ofand. The CRISPR/Cas9 technology has a great potential to facilitate plant breeding. Given this, we developed two elite glutinous rice varieties using the CRISPR/Cas9 technology by editing thegene.

    We designed two sgRNAs (T1 and T2), targeting the first exon of thegene. The GC contents of T1 and T2 were 70% and 65% respectively, and the secondary structures of sgRNAs had less than 6 bp complete matching. Using these sgRNAs, we observed extremely high editing efficiency in thegene. The design parameters of the sgRNA are in line with the reported critia (Ma et al, 2015), which might be a reason for the high sgRNA editing efficiency in this study. It was very interesting that the genotypes of all mutants generated from six lines were homozygous with more than 200 bp deletions and that the fragment between T1 and T2 was missing. It has been reported that CRISPR/Cas9 induces modifications that are small, presumably because of the blunt-ended double-strand breaks (Zheng et al, 2016). In this study, the CRISPR/Cas9 systerm seemed to preferentially induced full-length deletions, rather than small modifications. When the number of base pairs between the two target sites in Wx was 202 bp, and so that we found that the genetypes of all the six selected T0transgenic plants were about 200 bp-fragment deletion. A similar phenomenon was described by (Wang et al, 2017a), but the distance between the sgRNAs required to induce large deletions should be further explored.

    mutation with different amylose content has been reported (Toru and Naoko, 2017). Rice varieties can be classified as waxy (0–2%), very low (3%–9%), low (10%–19%), intermediate (20%–25%) and high (> 25%) according to their AC (Cai et al, 2015). Thegene is the principal gene controlling the AC and can explain almost 90% of the AC variation in some cultivars (Wamnugu et al, 2017). Variousmutations (Wx,Wx,Wx,Wx,Wxand) generate a wide range of variation in AC (Yang et al, 2016; Wang et al, 2018). Studies have reported that different types ofmutations, such as a G/T mutation at the 5′ splice site of intron 1, a C deletion at intron 5, a G/A SNP in thepromoter region, or a T/G SNP at the intron 1-exon 1 junction, would result in amylose content decreased (Wang et al, 2015; Shahid et al, 2016). Ma et al (2015) disrupted thegene by CRISPR/Cas9 system in arice Taichung 65, and the AC in the mutants decreased to 2.6%, which is similar to a natural glutinous rice. Zhang et al (2018) used the CRISPR/Cas9 to target the first exon ofin tworice varieties, Xiushui 134 and Wuyunjing 7, and the results showed that the AC of mutants is reduced without affecting the other desirable agronomic traits. Our results generally agree with those reported in other studies.

    In conclusion, we precisely edited thegene using CRISPR/Cas9technology and generated high-quality glutinous rice. This work would provide new materials for traditional breeding and broaden the genetic diversity of glutinous rice.

    ACKNOWLEDGEMENTS

    This work was supported by the National Key Research and Development Program (Grant No. 2017YFD0100403), the Jiangsu Province Key Research and Development Program (Modern Agriculture) Project (Grant No. BE2017345-2), the Exploratory Project of the Jiangsu Academy of Agricultural Sciences [Grant No. ZX(17)2014], and the Jiangsu Province Natural Science Foundation (Grant No. BK20171326).

    Baysal C, Bortesi L, Zhu C, Farre G, Schillberg S, Christou P. 2016. CRISPR/Cas9 activity in the ricegene does not induce off-target effects in the closely related paralog., 36: 108.

    Cai J W, Man J M, Huang J, Liu Q Q, Wei W X, Wei C X. 2015. Relationship between structure and functional properties of normal rice starches with different amylose contents., 125: 35–44.

    Chen M H, Bergman C, Pinson S, Fjellstrom R. 2008.gene haplotypes: Associations with apparent amylose content and the effect by the environment in an international rice germplasm collection., 47(3): 536–545.

    Cho S W, Kim S, Kim J M, Kim JS. 2013. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease., 31: 230–232.

    Fasahat P, Rahman S, Ratnam W. 2014. Genetic controls on starch amylose content in wheat and rice grains., 93(1): 279–292.

    Ishizaki T. 2016. CRISPR/Cas9 in rice can induce new mutations in later generations, leading to chimerism and unpredicted segregation of the targeted mutation., 36(12): 165.

    Juliano B O, Perez C M, Blakeney A B, Castillo D T, Kongseree N, Laignelet B, Lapis E T, Murty V V S, Paule C M, Webb B D. 1981. International cooperative testing on the amylose content of milled rice., 33(5): 157–162.

    Kasem S, Waters D L E, Rice N F, Shapter F M, Henry R J. 2011. The endosperm morphology of rice and its wild relatives as observed by scanning electron microscopy., 4(1): 12–20.

    Kawagoe Y, Kubo A, Satoh H, Takaiwa F, Nakamura Y. 2005. Roles of isoamylase and ADP-glucose pyrophosphorylase in starch granule synthesis in rice endosperm., 42: 164–174.

    Kiswara G, Lee J H, Hur Y J, Cho J H, Lee J Y, Kim S Y, Sohn Y B, Song Y C, Nam M H, Yun B W. 2014. Genetic analysis and molecular mapping of low amylose gene(t) in rice (L.)., 127(1): 51–57.

    Li Q L, Zhang D B, Chen M J, Liang W Q, Wei J J, Qi Y P, Yuan Z. 2016. Development ofphoto-sensitive genic male sterile rice lines by editing carbon starved anther using CRISPR/Cas9., 43(6): 415–419.

    Li X F, Zhou W J, Ren Y K, Tian X J, Lv T X, Wang Z Y, Fang J, Chu C C, Yang J, Bu Q Y. 2017. High-efficiency breeding of early-maturing rice cultivars via CRISPR/Cas9-mediated genome editing., 44(3): 175–178.

    Lu G, Moriyama E N. 2004. Vector NTI, a balanced all-in-one sequence analysis suite., 5(4): 378–388.

    Ma X L, Zhang Q Y, Zhu Q L, Liu W, Chen Y, Qiu R, Wang B, Yang Z F, Li H Y, Lin Y R, Xie Y Y, Shen R X, Chen S F, Wang Z, Chen Y L, Guo J X, Chen L T, Zhao X C, Dong Z C, Liu Y G. 2015. A robust CRISPR/Cas9 system for convenient, high- efficiency multiplex genome editing in monocot and dicot plants., 8(8): 1274–1284.

    Mikami M, Toki S, Endo M. 2015. Comparison of CRISPR/Cas9 expression constructs for efficient targeted mutagenesis in rice., 88(6): 561–572.

    Murray M G, Thompson W F. 1980. Rapid isolation of high molecular weight plant DNA., 8(19): 4321–4325.

    Nieves-cordones M, Mohamed S, Tanoi K, Kobayashi N I, Takagi K, Vernet A, Guiderdoni E, Périn C, Sentenac H, Véry A A. 2017. Production of low-Cs(+) rice plants by inactivation of the K(+) transporter OsHAK1 with the CRISPR-Cas system., 92(1): 43–56.

    Peng B, Sun Y F, Pang R H, Li H L, Song X H, Yuan H Y, Zhang S H, Zhou Q Y, Li Q R, Li D, Song S Z. 2016. Study on chalkiness character and endosperm structure of rice grain in differentvarieties., 28(11): 1803–1811. (in Chinese with English abstract)

    Shahid S, Begum R, Razzaque S, Jesmin, Seraj Z I. 2016. Variability in amylose content of Bangladeshi rice cultivars due to unique SNPs inallele., 71: 1–9.

    Shen L, Hua Y F, Fu Y P, Jian L, Liu Q, Jiao X Z, Xin G W, Wang J J, Wang X C, Yan C J, Wang K J. 2017. Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice., 60(5): 506–515.

    Sun Y W, Jiao G A, Liu Z P, Zhang X, Li J Y, Guo X P, Du W M, Du J L, Francis F, Zhao Y D, Xia L Q. 2017. Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes., 8: 298.

    Tang L, Mao B G, Li Y K, Lv Q M, Zhang L P, Chen C Y, He H J, Wang W P, Zeng X F, Shao Y, Pan Y L, Hu Y Y, Peng Y, Fu X Q, Li H Q, Xia S T, Zhao B R. 2017. Knockout ofusing the CRISPR/Cas9 system produces low Cd-accumulatingrice without compromising yield., 7(1): 14438.

    Toru T, Naoko F. 2017. Thermal and rheological characteristics of mutant rice starches with widespread variation of amylose content and amylopectin structure., 62: 83–93.

    Wamnugu P, Ndjiondjop M N, Furtado A, Henry R. 2017. Sequencing of bulks of segregants allows dissection of genetic control of amylose content in rice., 16: 100–110.

    Wang B K, Zhang H, Hong R K, Zhang J W, Yang R, Luo Q, Zeng Q C. 2018.gene editing via CRISPR/Cas9 system in rice., 32(1): 35–42. (in Chinese with English abstract)

    Wang F J, Wang C L, Liu P Q, Lei C L, Hao W, Gao Y, Liu Y G, Zhao K J. 2016. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene., 11(4): e0154027.

    Wang F Q, Fan F J, Li W Q, Zhu J Y, Wang J, Zhong W G, Yang J. 2016. Knock out efficiency analysis ofgene using CRISPR/Cas9 in rice., 30(5): 469–478. (in Chinese with English abstract)

    Wang K, Hasjim J, Wu A C, Li E, Henry R J, Gilbert R G. 2015. Roles ofandin determining amylose fine structure., 127: 264–274.

    Wang M G, Mao Y F, Lu Y M, Tao X P, Zhu J K. 2017a. Multiplex gene editing in rice using the CRISPR-Cpf1 system., 10(7): 1011–1013.

    Wang Q X, Zhao H, Jiang J P, Xu J Y, Xie W B, Fu X K, Liu C, He Y Q, Wang G W. 2017b. Genetic architecture of natural variation in rice nonphotochemical quenching capacity revealed by genome-wide association study., 8: 1773.

    Wang Y, Geng L Z, Yuan M L, Wei J, Jin C, Li M, Yu K, Zhang Y, Jin H B, Wang E, Chai Z J, Fu X D, Li X G. 2017c. Deletion of a target gene inrice via CRISPR/Cas9., 36(8): 1333–1343.

    Wu Y P, Pu C H, Lin H Y, Huang H Y, Huang Y C, Hong C Y, Chang M C, Lin Y R. 2015. Three novel alleles of() confer dull grains with low amylose content in rice., 233: 44–52.

    Xie Y Y, Niu B X, Long Y M, Li G S, Tang J T, Zhang Y L, Ren D, Liu Y G, Chen L T. 2017. Suppression or knockout of/overcomes the-mediated hybrid male sterility in rice., 59(9): 669–679.

    Xu R F, Yang Y C, Qin R Y, Li H, Qiu C H, Li L, Wei P C, Yang J B. 2016. Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice., 43(8): 529–532.

    Yang X H, Nong B X, Xia X Z, Zhang Z Q, Zeng Y, Liu K Q, Deng G F, Li D T. 2016. Rapid identification of a new gene influencing low amylose content in rice landraces (L.) using genome-wide association study with specific-locus amplified fragment sequencing., 60(6): 465–472.

    Yin X J, Biswal A K, Dionora J, Perdigon K M, Balahadia C P, Mazumdar S, Chater C, Lin H C, Coe R A, Kretzschmar T, Guick J E, Quick P W, Bandyopadhyay A. 2017. CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental genein rice., 36(5): 745–757.

    Zhang H, Xu H, Feng M J, Zhu Y. 2018. Suppression ofin rice endosperm stabilizes amylose content under high temperature stress., 16(1): 18–26.

    Zhang J S, Zhang H, Botella J R, Zhu J K. 2018. Generation of new glutinous rice by CRISPR/Cas9-targeted mutagenesis of thegene in elite rice varieties., 60(5): 369–375.

    Zheng X L, Yang S X, Zhang D W, Zhong Z H, Tang X, Deng K J, Zhou J P, Qi Y P, Zhang Y. 2016. Effective screen of CRISPR/Cas9-induced mutants in rice by single-strand conformation polymorphism., 35(7): 1545–1554.

    Zhou H, He M, Li J, Chen L, Huang Z F, Zheng S Y, Zhu L Y, Ni E, Jiang D G, Zhao B R, Zhuang C X. 2016. Development of commercial thermo-sensitive genic male sterile rice accelerates hybrid rice breeding using the CRISPR/Cas9-mediatedediting system., 6: 37395.

    (Managing Editor: Wang Caihong)

    Copyright ? 2019, China National Rice Research Institute. Hosting by Elsevier B V

    This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Peer review under responsibility of China National Rice Research Institute

    http://dx.doi.org/10.1016/j.rsci.2018.04.007

    26 February 2018;

    27 April 2018

    Yang Jie (yangjie168@aliyun.com)

    午夜福利在线观看免费完整高清在| 亚洲五月天丁香| 人妻系列 视频| 久久久久久久久久久丰满| 国产伦理片在线播放av一区| 日本与韩国留学比较| 国产精品人妻久久久影院| 日本av手机在线免费观看| 在线免费观看不下载黄p国产| 精品99又大又爽又粗少妇毛片| 欧美日本视频| 亚洲色图av天堂| 边亲边吃奶的免费视频| 日本色播在线视频| 床上黄色一级片| 免费看av在线观看网站| 久久亚洲国产成人精品v| 边亲边吃奶的免费视频| 欧美一区二区国产精品久久精品| 久久久色成人| 亚洲人成网站高清观看| 人妻夜夜爽99麻豆av| 色综合亚洲欧美另类图片| 观看美女的网站| 午夜爱爱视频在线播放| 欧美潮喷喷水| 亚洲电影在线观看av| 久久99热这里只有精品18| av在线天堂中文字幕| 国产麻豆成人av免费视频| 亚洲在线观看片| 九九在线视频观看精品| 亚洲av男天堂| 国内精品宾馆在线| 国产成人精品一,二区| 九九在线视频观看精品| 色吧在线观看| 免费观看的影片在线观看| 国产久久久一区二区三区| 一个人看视频在线观看www免费| 久久精品人妻少妇| 亚洲av电影在线观看一区二区三区 | 免费观看a级毛片全部| 美女xxoo啪啪120秒动态图| 亚洲欧美一区二区三区国产| 国产淫语在线视频| 精品人妻偷拍中文字幕| 国产亚洲最大av| 精品人妻熟女av久视频| 国产欧美日韩精品一区二区| 久久久午夜欧美精品| 欧美一区二区国产精品久久精品| 人人妻人人澡人人爽人人夜夜 | 国产高清国产精品国产三级 | 亚洲激情五月婷婷啪啪| 日韩在线高清观看一区二区三区| 免费看a级黄色片| 国产一区亚洲一区在线观看| 成人av在线播放网站| 国产国拍精品亚洲av在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 黄色日韩在线| 久久久久久久久久成人| 亚洲在久久综合| 日韩在线高清观看一区二区三区| 不卡视频在线观看欧美| 熟妇人妻久久中文字幕3abv| 22中文网久久字幕| 国产精品久久久久久久电影| 亚洲三级黄色毛片| 国产69精品久久久久777片| 一边摸一边抽搐一进一小说| 青青草视频在线视频观看| 卡戴珊不雅视频在线播放| 国产亚洲一区二区精品| 成人亚洲精品av一区二区| 性插视频无遮挡在线免费观看| 色哟哟·www| 搡女人真爽免费视频火全软件| 亚洲av中文av极速乱| 黄片wwwwww| 床上黄色一级片| 亚洲精品国产av成人精品| 又爽又黄a免费视频| 人人妻人人澡人人爽人人夜夜 | 波多野结衣高清无吗| 亚洲精品成人久久久久久| 免费看光身美女| 国产欧美日韩精品一区二区| 成年av动漫网址| av线在线观看网站| 国产免费又黄又爽又色| 国产亚洲精品av在线| 美女脱内裤让男人舔精品视频| 久久婷婷人人爽人人干人人爱| 日本免费在线观看一区| 久久久久久九九精品二区国产| 亚洲成色77777| a级一级毛片免费在线观看| 又黄又爽又刺激的免费视频.| av在线老鸭窝| 日韩在线高清观看一区二区三区| 你懂的网址亚洲精品在线观看 | 国产精品久久久久久精品电影| 国产不卡一卡二| 亚洲av中文av极速乱| 亚洲精品自拍成人| 日本色播在线视频| 我的女老师完整版在线观看| 亚洲国产欧洲综合997久久,| 亚洲国产精品专区欧美| 蜜臀久久99精品久久宅男| 欧美精品一区二区大全| 看十八女毛片水多多多| 久久精品国产亚洲av涩爱| 国产精品电影一区二区三区| 天堂av国产一区二区熟女人妻| 国产午夜精品一二区理论片| 久久久亚洲精品成人影院| 中文字幕熟女人妻在线| 久久精品久久久久久久性| 天天一区二区日本电影三级| 国产成年人精品一区二区| 日韩亚洲欧美综合| 久久久久久久久久成人| 亚州av有码| 亚洲人与动物交配视频| 国产毛片a区久久久久| 国产精品国产三级专区第一集| eeuss影院久久| 亚洲精品日韩在线中文字幕| 亚洲精品aⅴ在线观看| 国产高清不卡午夜福利| 熟女电影av网| 欧美日韩在线观看h| 色综合亚洲欧美另类图片| 精品久久国产蜜桃| 亚洲精品色激情综合| 高清日韩中文字幕在线| 国产精品一及| 欧美bdsm另类| av国产免费在线观看| 亚洲第一区二区三区不卡| 插逼视频在线观看| 日本熟妇午夜| 国产精品不卡视频一区二区| 岛国毛片在线播放| 国产成人精品久久久久久| 久久国产乱子免费精品| 七月丁香在线播放| 男女下面进入的视频免费午夜| 久久99精品国语久久久| ponron亚洲| 2021天堂中文幕一二区在线观| 七月丁香在线播放| 久久精品影院6| 国产黄a三级三级三级人| 精品一区二区免费观看| 久久欧美精品欧美久久欧美| 亚洲精品色激情综合| 一个人观看的视频www高清免费观看| 精品欧美国产一区二区三| 久久久国产成人精品二区| 中文字幕人妻熟人妻熟丝袜美| 晚上一个人看的免费电影| 晚上一个人看的免费电影| 内地一区二区视频在线| 国产亚洲av片在线观看秒播厂 | 18禁裸乳无遮挡免费网站照片| 精品无人区乱码1区二区| 午夜爱爱视频在线播放| 人妻系列 视频| 国产精品久久久久久久久免| 观看免费一级毛片| 中文资源天堂在线| av在线蜜桃| or卡值多少钱| 色尼玛亚洲综合影院| 精品国产一区二区三区久久久樱花 | 精品久久久久久久人妻蜜臀av| 又黄又爽又刺激的免费视频.| 中文资源天堂在线| 午夜福利高清视频| 国产高清有码在线观看视频| 女人被狂操c到高潮| 成人一区二区视频在线观看| 免费人成在线观看视频色| 尾随美女入室| 久久精品国产亚洲av涩爱| 网址你懂的国产日韩在线| 神马国产精品三级电影在线观看| 99久久中文字幕三级久久日本| 亚洲av熟女| 久久精品久久精品一区二区三区| 美女内射精品一级片tv| 精品一区二区三区视频在线| 中文字幕免费在线视频6| 国产伦在线观看视频一区| av.在线天堂| 国产女主播在线喷水免费视频网站 | 日日摸夜夜添夜夜爱| 国产亚洲av嫩草精品影院| 一级毛片aaaaaa免费看小| 久久久午夜欧美精品| 国产精品日韩av在线免费观看| 免费搜索国产男女视频| 久久久久网色| 国产精品蜜桃在线观看| 亚洲不卡免费看| 最近最新中文字幕大全电影3| 亚洲精华国产精华液的使用体验| 国产爱豆传媒在线观看| 好男人视频免费观看在线| 亚洲人成网站高清观看| 精品熟女少妇av免费看| 国产成人免费观看mmmm| 亚洲精品乱久久久久久| 一边亲一边摸免费视频| 偷拍熟女少妇极品色| 麻豆成人午夜福利视频| 99热这里只有精品一区| 少妇的逼水好多| 日本午夜av视频| 亚洲精品国产av成人精品| 日本一本二区三区精品| 免费av不卡在线播放| 小说图片视频综合网站| 日日啪夜夜撸| 日日撸夜夜添| 99国产精品一区二区蜜桃av| 国产美女午夜福利| 国产在线男女| 免费电影在线观看免费观看| 午夜激情欧美在线| 国产激情偷乱视频一区二区| 色网站视频免费| av在线亚洲专区| 少妇高潮的动态图| 老师上课跳d突然被开到最大视频| 午夜精品一区二区三区免费看| 一个人看的www免费观看视频| av播播在线观看一区| 舔av片在线| 国产黄色视频一区二区在线观看 | 色综合色国产| 麻豆久久精品国产亚洲av| 亚洲怡红院男人天堂| 国产高清有码在线观看视频| 非洲黑人性xxxx精品又粗又长| 免费一级毛片在线播放高清视频| 成人毛片60女人毛片免费| 自拍偷自拍亚洲精品老妇| 久久精品久久久久久噜噜老黄 | 久久久国产成人精品二区| 少妇的逼水好多| 你懂的网址亚洲精品在线观看 | 亚洲精品456在线播放app| 天堂网av新在线| 精品少妇黑人巨大在线播放 | 一夜夜www| 国产成人aa在线观看| 国产免费又黄又爽又色| av.在线天堂| 亚洲伊人久久精品综合 | 国产精品久久久久久av不卡| 熟女人妻精品中文字幕| 国产精品麻豆人妻色哟哟久久 | 日本熟妇午夜| 纵有疾风起免费观看全集完整版 | 亚洲人成网站在线观看播放| 欧美三级亚洲精品| 亚洲av中文av极速乱| 亚洲欧洲日产国产| 大香蕉97超碰在线| 成人鲁丝片一二三区免费| 亚洲在线观看片| 国产精品1区2区在线观看.| 日韩中字成人| 成人午夜高清在线视频| 欧美3d第一页| 国产午夜精品论理片| 国产高潮美女av| 国产精品无大码| 精品久久久久久久久av| 亚洲精品影视一区二区三区av| a级毛色黄片| 一级毛片aaaaaa免费看小| 国产精品国产高清国产av| 亚洲精品,欧美精品| 又粗又硬又长又爽又黄的视频| 午夜福利视频1000在线观看| 中文字幕免费在线视频6| av.在线天堂| 卡戴珊不雅视频在线播放| 久久久久免费精品人妻一区二区| 91久久精品国产一区二区三区| 成人美女网站在线观看视频| 男女下面进入的视频免费午夜| 能在线免费看毛片的网站| 精品人妻一区二区三区麻豆| 91狼人影院| 欧美一区二区精品小视频在线| 久久久久久伊人网av| 亚洲高清免费不卡视频| 亚洲av电影不卡..在线观看| 欧美不卡视频在线免费观看| 精品免费久久久久久久清纯| 久久久久久久久中文| 精品人妻视频免费看| 日日干狠狠操夜夜爽| 在线免费观看不下载黄p国产| 国产 一区 欧美 日韩| 高清视频免费观看一区二区 | 国产白丝娇喘喷水9色精品| 国产一区二区在线观看日韩| 亚洲高清免费不卡视频| 日韩 亚洲 欧美在线| 亚洲天堂国产精品一区在线| 人人妻人人看人人澡| 亚洲电影在线观看av| 五月伊人婷婷丁香| 成人午夜高清在线视频| 午夜久久久久精精品| 亚洲av日韩在线播放| 蜜臀久久99精品久久宅男| 色综合站精品国产| 国语对白做爰xxxⅹ性视频网站| 别揉我奶头 嗯啊视频| 亚洲av二区三区四区| 婷婷六月久久综合丁香| 美女内射精品一级片tv| 色视频www国产| 中文在线观看免费www的网站| 欧美日韩国产亚洲二区| 男人舔奶头视频| 国产亚洲91精品色在线| 成年免费大片在线观看| 国产三级在线视频| 亚洲一区高清亚洲精品| 日韩人妻高清精品专区| av视频在线观看入口| 日本一本二区三区精品| 国产高清不卡午夜福利| 欧美日韩在线观看h| 在线观看美女被高潮喷水网站| 久久精品夜色国产| 一个人看视频在线观看www免费| 国产真实伦视频高清在线观看| 国产精品久久久久久av不卡| 亚洲,欧美,日韩| 九色成人免费人妻av| 精品人妻一区二区三区麻豆| 日韩av不卡免费在线播放| 一级二级三级毛片免费看| 精品欧美国产一区二区三| 午夜久久久久精精品| 国产白丝娇喘喷水9色精品| 亚洲欧美成人综合另类久久久 | 亚洲国产日韩欧美精品在线观看| 精品一区二区三区视频在线| 中国美白少妇内射xxxbb| 亚洲欧洲国产日韩| 国产精品嫩草影院av在线观看| 丝袜喷水一区| 国产午夜福利久久久久久| 国产精品国产三级国产av玫瑰| 国产精品久久久久久av不卡| 大又大粗又爽又黄少妇毛片口| 成人毛片60女人毛片免费| 欧美一区二区国产精品久久精品| 精品久久久久久成人av| 久久婷婷人人爽人人干人人爱| 国产91av在线免费观看| 亚洲欧美成人综合另类久久久 | 日本wwww免费看| 国产精品永久免费网站| 美女黄网站色视频| 免费观看精品视频网站| 成人特级av手机在线观看| 午夜视频国产福利| 男女国产视频网站| 亚洲久久久久久中文字幕| 国产成人精品久久久久久| 熟女电影av网| 久久国产乱子免费精品| 欧美zozozo另类| 直男gayav资源| 欧美日本亚洲视频在线播放| 极品教师在线视频| 日本wwww免费看| 99久久成人亚洲精品观看| 99热网站在线观看| 国产亚洲午夜精品一区二区久久 | 国产成人精品久久久久久| 国产精品精品国产色婷婷| 欧美成人精品欧美一级黄| 黄色配什么色好看| 亚洲综合色惰| 性色avwww在线观看| 国产伦精品一区二区三区四那| 人人妻人人澡欧美一区二区| av卡一久久| 国产高清三级在线| 久久人人爽人人爽人人片va| 小蜜桃在线观看免费完整版高清| 听说在线观看完整版免费高清| 亚洲av中文字字幕乱码综合| 免费播放大片免费观看视频在线观看 | 日本与韩国留学比较| 亚洲av一区综合| 成人亚洲精品av一区二区| 边亲边吃奶的免费视频| 成人漫画全彩无遮挡| 国产在线一区二区三区精 | 毛片女人毛片| 麻豆久久精品国产亚洲av| 亚洲国产精品成人综合色| 小蜜桃在线观看免费完整版高清| 欧美日本亚洲视频在线播放| 日日摸夜夜添夜夜爱| 老师上课跳d突然被开到最大视频| 中文亚洲av片在线观看爽| 少妇的逼好多水| 日韩一区二区三区影片| av福利片在线观看| 嫩草影院精品99| 99热这里只有是精品50| 精品久久久久久久久亚洲| 国产精品久久视频播放| 成人美女网站在线观看视频| 波多野结衣高清无吗| 乱人视频在线观看| 国产在视频线在精品| 国产成人精品久久久久久| 国产精品女同一区二区软件| 国产色爽女视频免费观看| 亚洲精品日韩av片在线观看| 日本一二三区视频观看| 国产成人a区在线观看| 午夜日本视频在线| 午夜视频国产福利| 熟女电影av网| 人妻少妇偷人精品九色| 日本与韩国留学比较| 午夜激情欧美在线| 我的老师免费观看完整版| 免费观看性生交大片5| 久久久精品大字幕| 日日啪夜夜撸| videossex国产| 日日摸夜夜添夜夜添av毛片| 黑人高潮一二区| 免费看av在线观看网站| 国产精品综合久久久久久久免费| 最后的刺客免费高清国语| 精品国产露脸久久av麻豆 | 三级经典国产精品| 五月玫瑰六月丁香| 亚洲av电影不卡..在线观看| 亚洲电影在线观看av| 狠狠狠狠99中文字幕| 国产淫语在线视频| 中文欧美无线码| 日韩一区二区三区影片| 一区二区三区高清视频在线| 午夜福利视频1000在线观看| 老司机影院毛片| 日本爱情动作片www.在线观看| 国产日韩欧美在线精品| 村上凉子中文字幕在线| 99在线视频只有这里精品首页| 国产精品乱码一区二三区的特点| 久久人人爽人人爽人人片va| 久久精品国产亚洲av天美| 日产精品乱码卡一卡2卡三| 国产精品久久久久久精品电影小说 | 日韩 亚洲 欧美在线| 免费av不卡在线播放| 亚洲欧洲日产国产| 尤物成人国产欧美一区二区三区| 国产三级在线视频| 国产精品久久久久久精品电影小说 | 国产黄色视频一区二区在线观看 | 亚洲av电影在线观看一区二区三区 | 三级国产精品欧美在线观看| 久久韩国三级中文字幕| 秋霞伦理黄片| 日韩精品有码人妻一区| 午夜激情福利司机影院| 免费无遮挡裸体视频| 观看美女的网站| 亚洲无线观看免费| 一边亲一边摸免费视频| 中文字幕人妻熟人妻熟丝袜美| 成人国产麻豆网| 国产 一区 欧美 日韩| 亚洲一级一片aⅴ在线观看| 99久久人妻综合| av免费观看日本| 午夜爱爱视频在线播放| 亚洲经典国产精华液单| 听说在线观看完整版免费高清| 国产综合懂色| eeuss影院久久| 婷婷色av中文字幕| 日韩一本色道免费dvd| 久久久色成人| 久久久久国产网址| 国产黄片视频在线免费观看| 人人妻人人看人人澡| 免费电影在线观看免费观看| 特大巨黑吊av在线直播| 婷婷色麻豆天堂久久 | 18+在线观看网站| 国产精品三级大全| 久久久久久久亚洲中文字幕| 精品久久久久久电影网 | 免费看a级黄色片| 成人性生交大片免费视频hd| 精品不卡国产一区二区三区| 偷拍熟女少妇极品色| 啦啦啦韩国在线观看视频| 婷婷六月久久综合丁香| 18禁动态无遮挡网站| 成人三级黄色视频| 久久99热6这里只有精品| 男人舔奶头视频| 亚洲av电影不卡..在线观看| 国产成人精品婷婷| 精品国内亚洲2022精品成人| 免费电影在线观看免费观看| 亚洲精品乱码久久久v下载方式| 只有这里有精品99| 国产精品一区www在线观看| .国产精品久久| 日韩成人av中文字幕在线观看| 国产精品野战在线观看| 亚州av有码| 国产在视频线在精品| 国产伦精品一区二区三区视频9| 国产乱人偷精品视频| 国内揄拍国产精品人妻在线| 又爽又黄无遮挡网站| 久久99蜜桃精品久久| 99热全是精品| 日本色播在线视频| 午夜福利成人在线免费观看| 黄片wwwwww| 99久国产av精品| 亚洲成人精品中文字幕电影| 在线免费观看不下载黄p国产| 日韩一本色道免费dvd| 99久国产av精品国产电影| 你懂的网址亚洲精品在线观看 | 日韩在线高清观看一区二区三区| 精品久久国产蜜桃| 99久久精品一区二区三区| 国产精品三级大全| 久久久欧美国产精品| 色哟哟·www| 欧美潮喷喷水| 精品久久久久久久久av| 夜夜爽夜夜爽视频| АⅤ资源中文在线天堂| 一级爰片在线观看| 国产精品人妻久久久影院| 国产高清三级在线| 国产一区亚洲一区在线观看| 亚洲天堂国产精品一区在线| 日韩精品有码人妻一区| 欧美成人精品欧美一级黄| 国产 一区精品| 99热全是精品| 免费看a级黄色片| 国产69精品久久久久777片| 国产精品福利在线免费观看| 国产一级毛片在线| 日韩精品有码人妻一区| 中文在线观看免费www的网站| 国产欧美另类精品又又久久亚洲欧美| 亚洲av成人精品一区久久| 国产成年人精品一区二区| 丝袜喷水一区| 美女黄网站色视频| 国产精品麻豆人妻色哟哟久久 | 成人三级黄色视频| 99热这里只有是精品在线观看| 村上凉子中文字幕在线| 精品99又大又爽又粗少妇毛片| 日韩三级伦理在线观看| 国产精品国产高清国产av| 在线免费观看不下载黄p国产| 最近最新中文字幕免费大全7| 国产午夜精品一二区理论片| 天美传媒精品一区二区| 国产精品一区二区在线观看99 | 久久久久精品久久久久真实原创| 欧美成人午夜免费资源| 3wmmmm亚洲av在线观看| 国产91av在线免费观看| 97超视频在线观看视频| 一级毛片aaaaaa免费看小| 噜噜噜噜噜久久久久久91| 日韩国内少妇激情av| 18禁在线无遮挡免费观看视频| 国产精品久久久久久久电影| 国产精品一区www在线观看| 久久欧美精品欧美久久欧美| 麻豆av噜噜一区二区三区| 日本色播在线视频| 精品99又大又爽又粗少妇毛片| 久久婷婷人人爽人人干人人爱| 老师上课跳d突然被开到最大视频| 亚洲av福利一区| a级一级毛片免费在线观看|