• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mn2O3納米結(jié)構(gòu)的簡(jiǎn)易合成與電化學(xué)性質(zhì)

    2010-11-10 01:00:40譚金山季倩倩張進(jìn)濤趙修松郭培志
    關(guān)鍵詞:青島大學(xué)水熱熱處理

    趙 丹 譚金山 季倩倩 張進(jìn)濤 趙修松, 郭培志*,

    (1青島大學(xué)纖維新材料與現(xiàn)代紡織國(guó)家重點(diǎn)實(shí)驗(yàn)室培育基地多功能材料研究所,青島 266071)

    (2青島大學(xué)化學(xué)化工與環(huán)境學(xué)院,青島 266071)(3Department of Chemical and Biomolecular Engineering,National University of Singapore,4 Engineering Drive 4,Singapore 117576)

    Mn2O3納米結(jié)構(gòu)的簡(jiǎn)易合成與電化學(xué)性質(zhì)

    趙 丹1,2譚金山1季倩倩1,2張進(jìn)濤3趙修松1,2,3郭培志*,1,2

    (1青島大學(xué)纖維新材料與現(xiàn)代紡織國(guó)家重點(diǎn)實(shí)驗(yàn)室培育基地多功能材料研究所,青島 266071)

    (2青島大學(xué)化學(xué)化工與環(huán)境學(xué)院,青島 266071)(3Department of Chemical and Biomolecular Engineering,National University of Singapore,4 Engineering Drive 4,Singapore 117576)

    用簡(jiǎn)易的室溫或水熱方法制備出不同形貌的MnCO3微結(jié)構(gòu)。經(jīng)600℃熱處理后,室溫制備MnCO3轉(zhuǎn)變成Mn2O3膠體片,而水熱制備MnCO3樣品則形成多孔Mn2O3納米結(jié)構(gòu)。然而,室溫制備MnCO3經(jīng)120℃熱處理后形成Mn2O3晶相。制備樣品經(jīng)過XRD和SEM表征表明,熱處理MnCO3前驅(qū)物形成Mn2O3過程導(dǎo)致產(chǎn)物形貌與結(jié)構(gòu)變化。其形成機(jī)理又通過TEM和FTIR進(jìn)一步研究。Mn2O3納米結(jié)構(gòu)的電容性質(zhì)通過循環(huán)伏安法表征,結(jié)果表明Mn2O3形貌與結(jié)構(gòu)對(duì)其電容有重要影響。

    Mn2O3;MnCO3;水熱合成;電容

    Nanostructured materials for energy storage and conversation have been received more and more attention due to their potential applications in the fields of portable electronic devices and hybrid electric vehicles(HEVs)[1-3].Supercapacitors become promising energy storage devices because of its high power density,high cycle efficiency,and long cycle life[4-5].Precious metal oxides can show ideal pseudocapacitive behaviors,however,the high cost limits their practical applications[6-7].Over the past decades,manganese oxides(MnOx)have been explored due to its low cost,variable oxidation states,excellent capacitance and cycle performances[8-12].Various manganese oxides with controlled morphologies and structures have been successfully synthesized using different approaches including hydrothermal method[13-15],sol-gel process[16-19],electrochemical route[20-21],template synthesis[22],and solution-chemical synthesis[23-25].For example,MnO2film electrode showed a capacitance as high as 1 380 F·g-1,in which MnO2spherical grains were fabricated by a coprecipitation method using KMnO4and MnSO4as the reagents[12].Mn2O3nanoparticles can be formedviahydrothermalprocessesofaqueousKMnO4solutions with the addition of different alcohols[25],while Mn2O3nanowires with excellent electrocatalytic properties for the reduction of O2can be synthesized controllably based on the systems containing Mn(NO3)2and sodium dodecylbenzenesulfonate(SDBS)[15].Our recent results show that organized mesoporous carbon decorated with Mn2O3nanoparticles can be used as the electrode materialsforsupercapacitorand Mn2O3nanoparticles display high specific capacitances as calculated from the content of Mn2O3phase in the electrode and the increase in capacitance of the composite electrode[26].However,the relationship between the structures and capacitances of Mn2O3nanomaterials still need to be further clarified.

    In this paper,the morphology-controlled synthesis of Mn2O3nanostructures as well as their effect on the capacitance isstudied.Itisfound thatMnCO3aggregates or Mn2O3nanostructures can be obtained based on the systems containing biomolecule L-cysteine and KMnO4.These results are different from our earlier results that hexagonal γ-MnS nanorod crystals can be controllably fabricated after the hydrothermal processes of the mixed solutions containing manganesesalts and L-cysteine[27].The present experimental results reveal that hexagonal Mn2O3nanoplates can be obtained after high-temperature treatments of the roomtemperature products(Mn-RT)prepared from the reaction of KMnO4and L-cysteine.However,porous Mn2O3nanostructures are formed after heat treatments of MnCO3precursors synthesized by hydrothermal treatments of Mn-RT samples.The electrochemical properties of these Mn2O3nanostructures are studied by cyclic voltammetry.

    1 Experimental

    1.1 Materials

    Alcohols,KMnO4,Na2SO4and L-cysteine were of analytical grade(Sinopharm Chemical Reagent Company)and used without further purification.Acetylene carbon black(99.99%)and polytetrafluorothylene latex(PTFE,60%)were purchased form Strem Chemicals and Sigma-Aldrich,respectively.

    1.2 Synthesis of Mn2O3nanoplates and porous nanostructures

    In a typical synthesis,aqueous KMnO4(0.474 g)solution(15 mL)was dropped into aqueous L-cysteine(0.363 g)solution(15 mL)under stirring.After 5 min stirring,the solution was transferred to a 40 mL teflonlined autoclave.Hydrothermal synthesis was carried out in an oven at 120 or 150℃for 24 h.The solid was collected and washed with distilled water and absolute ethanol thoroughly,and then dried in an oven at 60℃for 6 h.The products obtained at room temperature,120 and 150℃are abbreviated as Mn-RT,MnCO3-120 and MnCO3-150,respectively.These three products were further calcined in a tube furnace at 600℃in air for 3 h to obtain the as-prepared products Mn2O3-RT,Mn2O3-120 and Mn2O3-150,respectively.Furthermore,Mn2O3-RT-L sample is referred to the product of Mn-RT sample after heat treatment at 120℃in air for 3 h.

    1.3 Characterization

    XRD patterns were recorded on a Bruker D8 Advance X-ray diffractometer equipped with graphite monochromatized Cu Kα radiation(λ =0.154 18 nm)from 10°to 80°(2θ)using a solid detector.SEM images were taken with a JSM-6390LV scanning electron microscope operated at 20 kV.TEM images were obtained with a JEM-2000EX transmission electron microscope operated at 160 kV.FTIR spectra were measured on a Nicolet5700 FTIR spectrometer.Electrochemical measurements were performed on a CHI760C electrochemical workstation using a threeelectrode cell,platinum wire as the counter electrode and saturated calomel electrode as the reference electrode in 1 mol·L-1Na2SO4solution,the working electrode was prepared by mixing the Mn2O3samples with polytetrafluoroethylene(PTFE)and acetylene carbon black in a mass ratio of 80:15:5 and was blended to achieve a homogeneous mixture.The resulting slurry was then pressed onto a nickel foam grid(1×1 cm2)at 15 MPa.The typical mass load of each electrode material is about 5 mg.Before measurements,the working electrodes are dipped into aqueous 1 mol·L-1Na2SO4solutions overnight.All potentials are reported against the saturated calomel reference electrode.

    2 Results and discussion

    Fig.1 shows the XRD patterns of as-prepared samples.It can be seen from Fig.1a that no crystalline phase is formed in Mn-RT sample,indicating an amorphous structure.After a hydrothermal process at 120 ℃,the XRD pattern of MnCO3-120 in Fig.1b can be indexed to rhodochrosite MnCO3phase(PDF No.86-0172).When the synthesis temperature is up to 150 ℃,the diffraction peaks in Fig.1c of sample MnCO3-150 can also be well-indexed to the same MnCO3phase,and the peak at 34.4°ascribed to the(006)peak is strongly strengthened.Furthermore,the narrow and intensive diffraction peaks in Fig.1c indicate that the MnCO3-150 products are well crystallized.

    Fig.1 XRD patterns of the as-prepared products

    The SEM images of these products are shown in Fig.2.Mn-RT(Fig.2a)shows clew-like microstructures composed of nanoparticles and some crossed wire-like structures with several micrometers long and diameter scales of tens of nanometers.It can be seen from Fig.2b that sample MnCO3-120 displays spindle-like shape with length scale about 1.5~2 μm composed of MnCO3nanoparticles.However,MnCO3-150 showed larger micro-aggregate structure composed of MnCO3nanoparticles compared to those of MnCO3-120(in Fig.2c).It can be observed that the reaction temperature has a strong effect on the morphology of the MnCO3products.The formation of MnCO3micro-aggregates composed of MnCO3particles could be ascribed to the Ostwald ripening that large particles grow at the expense of smaller ones[28-29].This has been further confirmed by the results ofthe intermediate products synthesized hydrothermally at different reaction times.It can be observed from Fig.3a and d that both the products obtained after 2 h reaction at 120 and 150℃,respectively,display similar morphology to that of Mn-RT(in Fig.2a).With the reaction time extended to 4 h,however,the morphology changes dramatically(Fig.3b and e).When the reaction time is 8 h,spindle-like aggregates with the size less than 1 m can be observed for the products collected at 120℃while somewhat larger particles and aggregates are formed when the synthesis temperature is up to 150 ℃ (Fig.3c and f).

    Fig.2 SEM images of Mn-RT(a),MnCO3-120(b)and MnCO3-150(c)

    The XRD patterns of the products obtained by different heat treatments are shown in Fig.4.It can be seen from Fig.4a~c that the diffraction peaks in the XRD patterns of sample Mn2O3-RT,Mn2O3-120 and Mn2O3-150,respectively,can be well indexed to the same bixbyite Mn2O3phase(PDF No.41-1442).These results indicate that both amorphous Mn-RT sample and crystalline MnCO3products can be transited to Mn2O3phases after the heat treatment at 600 ℃ in air.Interestingly,it is Mn2O3phase,not MnCO3phase or MnO2phase,that can also be obtained for the Mn2O3-RT-L sample as evidenced by the XRD pattern in Fig.4d.This is clearly different from that of sample MnCO3-120 synthesized using sample Mn-RT as the raw material via a hydrothermal process at 120℃.Furthermore,the total weight loss for the formation of Mn2O3sample from MnCO3precursor under high temperature treatments is 31%,in good agreement with the theoretical value calculated from the following reaction:

    Fig.4 XRD patterns of the calcined samples

    Fig.3 SEM images of the intermediate products synthesized from the mixed systems at 120 ℃(a,b,c)and 150℃(d,e,f)for 2 h(a,d),4 h(b,e)and 8 h(c,f)

    Generally,Mn2O3phases are formed from Mncontaining compounds after high temperature treatments.Recently,it is reported that Mn2O3phases can be formed during the reaction of KMnO4with active mesoporous carbon materials[26]or specific alcohols[25]at room temperature.Our results show that Mn2O3phase,not MnCO3or MnO2phase,can be formed from Mn-RT samples after low temperature treatmentalthough impurities are also found in the sample according to the FTIR spectrum(Fig.5a).For example,the peaks at 2 922 and 2 850 cm-1ascribed to CH2symmetric and asymmetric vibrations,respectively,appear,indicating that the alkyl groups still exist in the Mn2O3-RT-L samples.Two peaks at 3 422 and 1 630 cm-1in Fig.5a can be observed,which are assigned to H2O absorbed by KBr.The FTIR spectra of the Mn2O3samples obtained after high temperature treatmentofthe precursors are obviously different from that of sample Mn-RT-L.From Fig.5b~d,it can be clearly seen that all the Mn2O3samples show similar absorption spectra only with some differences in absorption intensities of the characteristic peaks.For example,the peaks at 3 422 and 1630 cm-1can also be observed similar to those of sample Mn-ER-L.The peaks around 530,604,and 665 cm-1and the peaks between 1 000~1 200 cm-1assigned to νMn-Oof Mn2O3phase[30],indicating that pure Mn2O3phase can be formed after the high temperature process.

    Fig.5 FTIR spectra of Mn2O3-RT-L(a),Mn2O3-RT(b),Mn2O3-120(c)and Mn2O3-150(d)

    Compare to those results of the precursors shown in Fig.2,obvious change in the shape of products can be observed for the Mn2O3samples.Fig.6a shows the SEM image of sample Mn2O3-RT-L.The sample displays irregular shapes decreasing greatly in the size of the aggregates compared with those of Mn-RT samples.This may be caused by the collapse of Mn-RT samples under heat treatments.It is interesting to note that colloidal Mn2O3particles shown in Fig.6b display narrow size distribution with the size scales less than 150 nm.Spindle Mn2O3microstructures with the length scales of 1~2 μm composed of colloidal particles can be observed from sample Mn2O3-120(Fig.6c),in which the shape and the size of the aggregates are similar to those ofthe MnCO3-120 precursor.However,porous nanostructure aggregates can be obtained for sample Mn2O3-150(Fig.6d),in which the contour of Mn2O3aggregates is maintained compared with those of MnCO3-150 samples.It can also be observed clearly from Fig.6d that the sizes of Mn2O3-150 particles are smaller than those of Mn2O3-120 colloidal particles.

    The TEM images of Mn2O3samples are shown in Fig.7.The TEM image(Fig.7a)of sample Mn2O3-RT displays plate-like nanostructures with clear edges and somewhat irregular~hexagonal shapes.The sizes of the Mn2O3-RT colloid plates are of 50~120 nm in accord with those of SEM observations(Fig.6B).The selected area electron diffraction(SAED)pattern of a single Mn2O3plate in the inset in Fig.7a shows that Mn2O3colloidal plates are single crystalline.The TEM image of sample Mn2O3-120(Fig.7b)reveals that the porous spindle microstructures are composed of irregular colloidal Mn2O3particles with the sizes similar to those of Mn2O3-RT.The SAED patterns of a single particle,as depicted in the inset in Fig.7b,shows that Mn2O3particles are single crystalline.Interestingly,sample Mn2O3-150 shows similar morphology with those of Mn2O3-120 and is composed of Mn2O3nanoparticles with the size of 30~60 nm(Fig.7c).The SAED pattern in the inset in Fig.7c shows the single crystal nature of a single Mn2O3nanoparticle.

    Fig.6 SEM images of Mn2O3-RT-L(a),Mn2O3-RT(b),Mn2O3-120(c)and Mn2O3-150(d)

    Fig.7 TEM images of Mn2O3-RT(a),Mn2O3-120(b),and Mn2O3-150(c)

    Cyclic voltammograms(CV)for Mn2O3samples at different scan rates are shown in Fig.8.The CV curves of the samples are rectangular profiles at low scan rates,indicating the existence of an ideal capacitive behavior important for a system to be highly reversible.The specific capacitance of Mn2O3-150 in Fig.8Ca is 93 F·g-1at the scan rate of 2 mV·s-1,which is the highest in the present study.For sample Mn2O3-120 and Mn2O3-RT,the specific capacitances are found to be 72 and 67 F·g-1(Fig.8Ba and Aa),respectively.If the scan rate is changed to 5 mV·s-1,the calculated specific capacitances for sample Mn2O3-150,Mn2O3-120 and Mn2O3-RT are 58,50 and 51 F·g-1,respectively.The CV curves are not nearly rectangular at a scan rate of 10 mV·s-1,as shown in the c curves in Fig.8,indicating that the ohmic resistance of the samples is large at a high scan rate[31].The main difference in the specific capacitance for these Mn2O3samples may be attributed to the difference in the size and structure nature of the synthesized materials.As pseudocapacitance is related to the actual redox reactions occurring in the system,the reactivity of the samples may be strengthed by large surface area small particles with a facile diffusion of electrolyte ions.It should be pointed that the specific capacitance values of the Mn2O3samples are smaller than those of MnO2samples[10,20].This may be caused by the existence of the 3+oxidation state of Mn leading to the reduction in the specific capacitance.

    Fig.8 CV curves of sample Mn2O3-RT(A),Mn2O3-120(B)and(C)Mn2O3-150 in aqueous Na2SO4solutions at different scan rates of 2 mV·s-1(a)5 mV·s-1(b)and 10 mV·s-1(c)

    3 Conclusions

    Mn2O3plates and nanoparticle aggregates were synthesized through high temperature treatment of Mncontaining precursors obtained from the mixed systems of KMnO4and L-cysteine.Mn2O3phase could also be obtained afterthe heattreatmentofthe roomtemperature products in air at 120℃.It is found that Mn2O3colloid plates with sizes of 50~120 nm and Mn2O3colloidal/nanoparticles are single crystalline.The specific capacitance of Mn2O3samples is increased with the order of Mn2O3-RT,Mn2O3-120 and Mn2O3-150 at a low scan rate,where the morphology and size of the samples have strong effect on their capacitance.The formation mechanism of Mn2O3nanostructures and the relationship between Mn2O3nanostructures and their electrochemical properties are suggested.

    [1]K?tz R,Carlen M.Electrochim.Acta,2000,45:2483-2498

    [2]Nakayama M,Tanaka A,Sato Y,et al.Langmuir,2005,21:5907-5913

    [3]Burke A.J.Power Sources,2000,91:37-50

    [4]Winter M,Brodd R J.Chem.Rev.,2004,104:4245-4269

    [5]Pandolfo A G,Hollenkamp A F.J.Power Sources,2006,157:11-27

    [6]Zheng J P,Cygan P J,Jow T R.J.Electrochem.Soc.,1995,142:2699-2703

    [7]Hu C C,Chang K H,Lin M C,et al.Nano Lett.,2006,6:2690-2695

    [8]Jiao F,Bruce P G.Adv.Mater.,2007,19:6576-60

    [9]Yu C,Zhang L,Shi J,et al.Adv.Funct.Mater.,2008,18:1544-1554

    [10]Xu J J,Yang J.Electrochem.Commun.,2003,5:306-311

    [11]Pang S C,Anderson M A,Chapman T W.J.Electrochem.Soc.,2000,147:444-450

    [12]Toupin M,Brousse T,Belanger D.Chem.Mater.,2004,16:3184-3190

    [13]Du G H,Chen Q,Che R C,et al.Appl.Phys.Lett.,2001,79:3702-3704

    [14]Ma R,Zhang L,Sasaki T,et al.Adv.Mater.,2004,16:918-922

    [15]Cheng F Y,Shen J,Ji W Q,et al.ACS Appl.Mater.Interfaces,2009,1:460-466

    [16]Franger S,Bach S,Farcy J,et al.J.Power Sources,2002,109:262-275

    [17]Lin C K,Chuang K H,Lin C Y,et al.Surf.Coat.Technol.,2007,202:1272-1276

    [18]Chin S F,Pang S C,Anderson M A.J.Electrochem.Soc.,2002,149:A379-A384

    [19]Reddy R N,Reddy R G.J.Power Sources,2003,124:330-337

    [20]Nakayama M,Tagashira H.Langmuir,2006,22:3864-3869

    [21]Hu C C,Wang C C.J.Electrochem.Soc.,2003,150:A1079-A1084

    [22]Mann S.Angew.Chem.Int.Ed.,2000,39:3392-3406

    [23]Cushing B L,Kolesnichenko V L,O′Connor C J.Chem.Rev.,2004,104:3893-3946

    [24]Chandra N,Bhasin S,Sharma M,et al.Mater.Lett.,2007,61:3728-3732

    [25]Subramanian V,Zhu H W,Wei B Q.Chem.Phys.Lett.,2008,453:242-249

    [26]Zhang L L,Wei T X,Zhao X S,et al.Micropor.Mesopo.Mater.,2009,123:260-267

    [27]GUO Pei-Zhi(郭培志),LI Hong-Liang(李洪亮),YU Jian-Qiang(于建強(qiáng)),et al.Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2008,24(9):1387-1392

    [28]Ostwald W Z.Phys.Chem.,1897,22:289-330

    [29]Ostwald W Z.Phys.Chem.,1900,34:495-503

    [30]Gillot B,Guendouzi M El,Laarj M.Mater.Chem.Phys.,2001,70:54-60

    [31]Zheng J P.J.Electrochem.Soc.,2003,150:A484-A492

    Mn2O3Nanomaterials:Facile Synthesis and Electrochemical Properties

    ZHAO Dan1,2TAN Jin-Shan1JI Qian-Qian1,2ZHANG Jin-Tao3ZHAO Xiu-Song1,2,3GUO Pei-Zhi*,1,2
    (1Institute of Multifunctional Materials(IMM),Laboratory of New Fiber Materials and Modern Textile,The Growing Base for State Key Laboratory,Qingdao University,Qingdao,Shandong 266071)
    (2College of Chemistry,Chemical Engineering and Environment,Qingdao University,Qingdao,Shandong 266071)(3Department of Chemical and Biomolecular Engineering,National University of Singapore,4 Engineering Drive 4,Singapore 117576)

    The MnCO3with different structures was synthesized at room temperature or by hydrothermal method.The MnCO3phase obtained at room temperature could be transferred to Mn2O3plates by heat treatment at 600℃.In contrast,porous Mn2O3nanostructures can be obtained after the heat treatment of MnCO3precursors prepared by hydrothermal method.Interestingly,Mn2O3phase can be also formed by heat treatment of the MnCO3phase obtained at room temperature(Mn-RT)at 120℃.The products were characterized by means of XRD,SEM.The results clearly demonstrate a structure evolution from MnCO3precursors to Mn2O3structures on the completion of the reaction.The formation mechanism of the above materials was further investigated by TEM and FTIR.The capacitive properties of the Mn2O3materials were characterized by cyclic voltammetry.The results show that the morphologies and structures of Mn2O3samples play important roles on their capacitances.

    Mn2O3;MnCO3;hydrothermal synthesis;capacitance

    O614.7;O611.62

    A

    1001-4861(2010)05-0832-07

    2009-11-06。收修改稿日期:2010-01-27。

    國(guó)家自然科學(xué)基金(No.20803037),山東省博士基金(No.2007BS04022),山東省自然科學(xué)基金(No.ZR2009BM013)和泰山學(xué)者計(jì)劃資助。*

    。 E-mail:pzguo@qdu.edu.cn;會(huì)員登記號(hào):S060004572P。

    趙 丹,女,26歲,碩士研究生;研究方向:微納材料結(jié)構(gòu)與性能。

    猜你喜歡
    青島大學(xué)水熱熱處理
    青島大學(xué)
    民用飛機(jī)零件的熱處理制造符合性檢查
    Research on Measures to Improve the Performance of Basic Pension Insurance Funds in China
    Cr12MoV導(dǎo)桿熱處理開裂分析
    模具制造(2019年10期)2020-01-06 09:13:08
    Research on Prevention of Corruption from thePerspective of Power List
    青島大學(xué)再建始末
    商周刊(2018年25期)2019-01-08 03:31:10
    水熱還是空氣熱?
    J75鋼焊后熱處理工藝
    焊接(2016年2期)2016-02-27 13:01:20
    高精度免熱處理45鋼的開發(fā)
    山東冶金(2015年5期)2015-12-10 03:27:41
    簡(jiǎn)述ZSM-5分子篩水熱合成工藝
    成人一区二区视频在线观看| 一区二区三区高清视频在线| 老司机在亚洲福利影院| 亚洲精品在线美女| 2021天堂中文幕一二区在线观| 1024香蕉在线观看| 啪啪无遮挡十八禁网站| 欧美黄色淫秽网站| 少妇的逼水好多| 国产精品1区2区在线观看.| 曰老女人黄片| 亚洲国产精品sss在线观看| 国产一区二区激情短视频| 又大又爽又粗| 精品久久久久久久久久久久久| 熟妇人妻久久中文字幕3abv| 村上凉子中文字幕在线| 久久久水蜜桃国产精品网| 国产精品 国内视频| 免费在线观看亚洲国产| 波多野结衣巨乳人妻| 女同久久另类99精品国产91| 在线永久观看黄色视频| 久久亚洲真实| 99热这里只有精品一区 | 99视频精品全部免费 在线 | 欧美一级a爱片免费观看看| 婷婷精品国产亚洲av| 午夜福利高清视频| 一二三四社区在线视频社区8| 夜夜爽天天搞| 午夜成年电影在线免费观看| 亚洲色图av天堂| 美女大奶头视频| 视频区欧美日本亚洲| 香蕉国产在线看| 国产久久久一区二区三区| 成人永久免费在线观看视频| www.自偷自拍.com| 国产午夜精品久久久久久| 俺也久久电影网| 久久久久国产一级毛片高清牌| 午夜日韩欧美国产| 国内少妇人妻偷人精品xxx网站 | 色老头精品视频在线观看| 精品人妻1区二区| 19禁男女啪啪无遮挡网站| 黄片大片在线免费观看| www.熟女人妻精品国产| 亚洲专区国产一区二区| 每晚都被弄得嗷嗷叫到高潮| 精品人妻1区二区| 亚洲,欧美精品.| 国产高清有码在线观看视频| 性欧美人与动物交配| 亚洲av中文字字幕乱码综合| 九九在线视频观看精品| 在线观看一区二区三区| 91av网站免费观看| 久久草成人影院| 在线观看舔阴道视频| 日韩人妻高清精品专区| 中文字幕熟女人妻在线| 免费在线观看亚洲国产| 丁香六月欧美| 日韩精品青青久久久久久| 五月玫瑰六月丁香| 欧美色视频一区免费| 最近最新中文字幕大全电影3| 手机成人av网站| 亚洲国产精品sss在线观看| 最近视频中文字幕2019在线8| 麻豆成人午夜福利视频| 啦啦啦韩国在线观看视频| 精品一区二区三区视频在线观看免费| 亚洲精品美女久久久久99蜜臀| 又大又爽又粗| 国产精品久久电影中文字幕| 国产精品国产高清国产av| 日韩欧美精品v在线| 91av网站免费观看| 欧美黄色淫秽网站| 人人妻人人看人人澡| 国产精品综合久久久久久久免费| АⅤ资源中文在线天堂| 18禁黄网站禁片午夜丰满| 窝窝影院91人妻| 成年女人看的毛片在线观看| 国产伦精品一区二区三区视频9 | bbb黄色大片| 怎么达到女性高潮| 伊人久久大香线蕉亚洲五| 久久久水蜜桃国产精品网| 欧美色视频一区免费| 夜夜躁狠狠躁天天躁| 国产午夜福利久久久久久| 国产蜜桃级精品一区二区三区| а√天堂www在线а√下载| 久久精品国产99精品国产亚洲性色| 一本综合久久免费| 亚洲美女黄片视频| 极品教师在线免费播放| 精品久久蜜臀av无| 一个人看的www免费观看视频| 男人舔女人下体高潮全视频| 久久亚洲真实| 国产三级中文精品| 最近视频中文字幕2019在线8| 很黄的视频免费| 色综合婷婷激情| 日韩欧美国产一区二区入口| 精品国产乱码久久久久久男人| 精品熟女少妇八av免费久了| 国产成人精品久久二区二区免费| 91av网一区二区| 99国产精品一区二区蜜桃av| 校园春色视频在线观看| 岛国在线观看网站| 99热只有精品国产| 日本 欧美在线| 丰满人妻熟妇乱又伦精品不卡| 日本成人三级电影网站| 天堂动漫精品| 女警被强在线播放| 国产亚洲精品一区二区www| 国产三级中文精品| 日韩欧美免费精品| svipshipincom国产片| 少妇熟女aⅴ在线视频| 久久国产乱子伦精品免费另类| 国产精品女同一区二区软件 | 亚洲国产看品久久| 久久天躁狠狠躁夜夜2o2o| www.熟女人妻精品国产| 黄色 视频免费看| 亚洲国产欧洲综合997久久,| 国内精品久久久久久久电影| 又黄又爽又免费观看的视频| 18禁国产床啪视频网站| 久久午夜亚洲精品久久| 91九色精品人成在线观看| 搡老岳熟女国产| 欧美黑人巨大hd| 一本精品99久久精品77| 99国产极品粉嫩在线观看| 91av网站免费观看| 亚洲人成网站高清观看| 欧美日本亚洲视频在线播放| 桃红色精品国产亚洲av| 欧美日本视频| 国产欧美日韩一区二区三| 男人的好看免费观看在线视频| 精品国内亚洲2022精品成人| 午夜福利18| 国产精品久久久久久人妻精品电影| 蜜桃久久精品国产亚洲av| 国产精品99久久99久久久不卡| 欧美黄色片欧美黄色片| 两人在一起打扑克的视频| 亚洲最大成人中文| 亚洲熟妇熟女久久| 桃色一区二区三区在线观看| 亚洲国产高清在线一区二区三| a级毛片a级免费在线| 欧美成人免费av一区二区三区| 久久香蕉精品热| 波多野结衣高清作品| 日本撒尿小便嘘嘘汇集6| 婷婷亚洲欧美| 色综合站精品国产| 精品久久久久久久久久久久久| 国产爱豆传媒在线观看| 成人无遮挡网站| 免费一级毛片在线播放高清视频| 亚洲自拍偷在线| 欧美黑人巨大hd| 成人一区二区视频在线观看| 啦啦啦免费观看视频1| 男人的好看免费观看在线视频| 色综合婷婷激情| 久久精品夜夜夜夜夜久久蜜豆| tocl精华| 亚洲午夜精品一区,二区,三区| 香蕉av资源在线| 国产麻豆成人av免费视频| 亚洲av五月六月丁香网| 一个人免费在线观看的高清视频| xxx96com| 美女免费视频网站| 黄色片一级片一级黄色片| 欧美激情久久久久久爽电影| 国产亚洲欧美在线一区二区| 一本精品99久久精品77| 欧美日本亚洲视频在线播放| 亚洲国产色片| 国产视频一区二区在线看| 综合色av麻豆| 国产精品一区二区免费欧美| 日本 av在线| 午夜精品久久久久久毛片777| 欧美乱色亚洲激情| 亚洲精品国产精品久久久不卡| 午夜福利成人在线免费观看| 神马国产精品三级电影在线观看| 国产亚洲精品久久久com| 国产亚洲精品av在线| 日韩欧美一区二区三区在线观看| 精品无人区乱码1区二区| 精品福利观看| 日韩三级视频一区二区三区| 亚洲国产精品久久男人天堂| 亚洲欧美日韩无卡精品| 99在线视频只有这里精品首页| 搞女人的毛片| 亚洲av美国av| av女优亚洲男人天堂 | 视频区欧美日本亚洲| 两人在一起打扑克的视频| 一级黄色大片毛片| 91av网站免费观看| 国产激情欧美一区二区| 男人舔女人下体高潮全视频| 桃色一区二区三区在线观看| 一进一出抽搐gif免费好疼| 搡老妇女老女人老熟妇| 亚洲av片天天在线观看| 日本黄大片高清| 日韩三级视频一区二区三区| 亚洲国产精品久久男人天堂| 国产99白浆流出| 天堂√8在线中文| 亚洲人成伊人成综合网2020| 国产亚洲精品久久久久久毛片| 日韩成人在线观看一区二区三区| 久久精品91无色码中文字幕| 不卡一级毛片| 俄罗斯特黄特色一大片| 校园春色视频在线观看| 男人舔奶头视频| 性色avwww在线观看| 久久伊人香网站| 久久久久亚洲av毛片大全| 19禁男女啪啪无遮挡网站| 国产视频内射| 亚洲一区二区三区不卡视频| 亚洲中文av在线| 麻豆成人午夜福利视频| 99久久精品一区二区三区| 亚洲自拍偷在线| 国产成人精品无人区| 真实男女啪啪啪动态图| 我的老师免费观看完整版| 国产精品久久久久久人妻精品电影| 国产精品永久免费网站| 午夜福利在线在线| 最近视频中文字幕2019在线8| 精品一区二区三区四区五区乱码| 国产精品98久久久久久宅男小说| 91麻豆精品激情在线观看国产| 老司机午夜十八禁免费视频| 国产精品一区二区精品视频观看| 51午夜福利影视在线观看| 亚洲男人的天堂狠狠| 大型黄色视频在线免费观看| 亚洲七黄色美女视频| 波多野结衣巨乳人妻| 色在线成人网| 亚洲成av人片免费观看| 亚洲午夜理论影院| 午夜免费成人在线视频| 18美女黄网站色大片免费观看| 蜜桃久久精品国产亚洲av| 亚洲真实伦在线观看| 91在线精品国自产拍蜜月 | 国产高清videossex| 三级男女做爰猛烈吃奶摸视频| 久久久精品欧美日韩精品| 美女高潮的动态| 日本免费一区二区三区高清不卡| 久久久久久久精品吃奶| 免费一级毛片在线播放高清视频| 国产不卡一卡二| 午夜福利免费观看在线| 精品国内亚洲2022精品成人| 18禁黄网站禁片免费观看直播| 麻豆成人午夜福利视频| 少妇熟女aⅴ在线视频| 久久精品夜夜夜夜夜久久蜜豆| e午夜精品久久久久久久| 岛国在线观看网站| 亚洲av美国av| 国产aⅴ精品一区二区三区波| 国产一区二区三区视频了| 色综合亚洲欧美另类图片| 桃色一区二区三区在线观看| 变态另类成人亚洲欧美熟女| АⅤ资源中文在线天堂| 真实男女啪啪啪动态图| 色在线成人网| 成人无遮挡网站| 又黄又爽又免费观看的视频| 日本精品一区二区三区蜜桃| 日韩有码中文字幕| 国产极品精品免费视频能看的| 亚洲精品美女久久av网站| 很黄的视频免费| 熟妇人妻久久中文字幕3abv| 国产精品日韩av在线免费观看| 国产69精品久久久久777片 | 国产三级黄色录像| 脱女人内裤的视频| 亚洲av美国av| 欧美丝袜亚洲另类 | 曰老女人黄片| 免费看美女性在线毛片视频| 亚洲欧洲精品一区二区精品久久久| 曰老女人黄片| 久久精品综合一区二区三区| 久9热在线精品视频| 日本黄色视频三级网站网址| 亚洲狠狠婷婷综合久久图片| netflix在线观看网站| 亚洲国产看品久久| 精品一区二区三区四区五区乱码| 一区二区三区激情视频| 免费观看人在逋| 少妇的逼水好多| 久久精品国产亚洲av香蕉五月| 久久久国产成人精品二区| 日日夜夜操网爽| 欧美又色又爽又黄视频| 久9热在线精品视频| 搡老熟女国产l中国老女人| av国产免费在线观看| 国产精品亚洲av一区麻豆| 亚洲av五月六月丁香网| 成人特级av手机在线观看| 国内精品久久久久精免费| 99国产极品粉嫩在线观看| 国产精品 国内视频| 免费在线观看日本一区| 国产精品一及| 性欧美人与动物交配| 一级黄色大片毛片| 一边摸一边抽搐一进一小说| 久久精品国产综合久久久| 少妇丰满av| 美女高潮的动态| 婷婷精品国产亚洲av| 床上黄色一级片| 久久热在线av| 国产一区二区在线观看日韩 | 五月玫瑰六月丁香| 99久久综合精品五月天人人| 欧美激情久久久久久爽电影| 69av精品久久久久久| 亚洲欧美日韩高清在线视频| 国产精品香港三级国产av潘金莲| 欧美极品一区二区三区四区| 久久久久久人人人人人| 色播亚洲综合网| 亚洲午夜精品一区,二区,三区| 19禁男女啪啪无遮挡网站| 国产精品久久电影中文字幕| 老汉色∧v一级毛片| 国产精品女同一区二区软件 | 亚洲av成人一区二区三| 午夜影院日韩av| 成人性生交大片免费视频hd| 好看av亚洲va欧美ⅴa在| 精品久久久久久久毛片微露脸| 窝窝影院91人妻| 美女大奶头视频| 99久久综合精品五月天人人| av中文乱码字幕在线| 在线免费观看不下载黄p国产 | 18禁观看日本| 很黄的视频免费| av福利片在线观看| 日韩欧美一区二区三区在线观看| 中文在线观看免费www的网站| 男人舔女人下体高潮全视频| 国产精品亚洲av一区麻豆| 欧美av亚洲av综合av国产av| 亚洲成av人片免费观看| 精品电影一区二区在线| 免费搜索国产男女视频| 熟女电影av网| 91在线精品国自产拍蜜月 | 免费大片18禁| 九色国产91popny在线| 精品电影一区二区在线| 精品国产乱码久久久久久男人| 真人做人爱边吃奶动态| 国产一区在线观看成人免费| 嫩草影院入口| 99热这里只有是精品50| 亚洲乱码一区二区免费版| 国产亚洲欧美98| 亚洲精品在线美女| 最近最新免费中文字幕在线| 黄色日韩在线| 免费大片18禁| 少妇的逼水好多| 99国产综合亚洲精品| 男女那种视频在线观看| 中文字幕人成人乱码亚洲影| 在线播放国产精品三级| 国产野战对白在线观看| 国产精华一区二区三区| 18禁观看日本| 亚洲av日韩精品久久久久久密| 国内久久婷婷六月综合欲色啪| 亚洲美女黄片视频| 国产精品久久电影中文字幕| 男女午夜视频在线观看| 99在线视频只有这里精品首页| 日韩免费av在线播放| 午夜免费观看网址| 美女扒开内裤让男人捅视频| 白带黄色成豆腐渣| 嫩草影院入口| 亚洲无线观看免费| 国产精品自产拍在线观看55亚洲| 99精品在免费线老司机午夜| 国产精品久久久人人做人人爽| 男女那种视频在线观看| 久久精品国产亚洲av香蕉五月| 欧美黄色淫秽网站| 男女做爰动态图高潮gif福利片| 日本撒尿小便嘘嘘汇集6| av在线蜜桃| 欧美日韩福利视频一区二区| 全区人妻精品视频| 欧美黑人巨大hd| 夜夜看夜夜爽夜夜摸| 亚洲欧美一区二区三区黑人| 亚洲中文日韩欧美视频| 亚洲九九香蕉| 久久久久免费精品人妻一区二区| 欧美一区二区国产精品久久精品| 亚洲av片天天在线观看| 国产三级黄色录像| 99久久成人亚洲精品观看| 国产高清视频在线观看网站| 欧美极品一区二区三区四区| 久久久久亚洲av毛片大全| 亚洲第一欧美日韩一区二区三区| 日本免费一区二区三区高清不卡| 1024手机看黄色片| 国产精品影院久久| 亚洲人与动物交配视频| 97人妻精品一区二区三区麻豆| 十八禁人妻一区二区| 91在线观看av| 亚洲真实伦在线观看| 成熟少妇高潮喷水视频| 男人舔奶头视频| 中出人妻视频一区二区| 一区福利在线观看| 国内久久婷婷六月综合欲色啪| 国产高清视频在线观看网站| 久久人妻av系列| 十八禁网站免费在线| 亚洲第一电影网av| 国产三级黄色录像| 99热精品在线国产| 一夜夜www| 淫妇啪啪啪对白视频| or卡值多少钱| 99热6这里只有精品| 午夜视频精品福利| 偷拍熟女少妇极品色| 成人鲁丝片一二三区免费| 一级黄色大片毛片| 日韩高清综合在线| 无限看片的www在线观看| 视频区欧美日本亚洲| 欧美成人免费av一区二区三区| 欧美日韩黄片免| 母亲3免费完整高清在线观看| 国产精品久久电影中文字幕| 午夜福利在线观看免费完整高清在 | 日韩中文字幕欧美一区二区| 视频区欧美日本亚洲| 久久草成人影院| 精品不卡国产一区二区三区| 亚洲熟妇中文字幕五十中出| 99久久国产精品久久久| 国产伦精品一区二区三区四那| 亚洲激情在线av| 男人和女人高潮做爰伦理| 国产成人精品久久二区二区免费| 精华霜和精华液先用哪个| 两性夫妻黄色片| 国产亚洲精品一区二区www| 婷婷精品国产亚洲av在线| 九九热线精品视视频播放| 黑人欧美特级aaaaaa片| 午夜免费观看网址| 亚洲天堂国产精品一区在线| 色综合站精品国产| 天堂av国产一区二区熟女人妻| 免费电影在线观看免费观看| 91在线观看av| 少妇裸体淫交视频免费看高清| 日本成人三级电影网站| 丝袜人妻中文字幕| 亚洲 欧美一区二区三区| 18禁美女被吸乳视频| 香蕉久久夜色| 亚洲av成人av| 少妇熟女aⅴ在线视频| 一夜夜www| 动漫黄色视频在线观看| 亚洲黑人精品在线| 国产激情偷乱视频一区二区| 亚洲欧美一区二区三区黑人| www日本在线高清视频| 黄片大片在线免费观看| 国产精品影院久久| 久久久国产成人免费| 美女大奶头视频| 国产又黄又爽又无遮挡在线| 国产91精品成人一区二区三区| 国产1区2区3区精品| 久久久水蜜桃国产精品网| 欧美精品啪啪一区二区三区| 久久久久久久精品吃奶| 日韩欧美 国产精品| 午夜免费激情av| 女人高潮潮喷娇喘18禁视频| 99热只有精品国产| 一区二区三区国产精品乱码| 亚洲国产精品成人综合色| 一区二区三区高清视频在线| 美女扒开内裤让男人捅视频| 国产精品九九99| 在线十欧美十亚洲十日本专区| 男人和女人高潮做爰伦理| 两个人的视频大全免费| xxxwww97欧美| 国产伦精品一区二区三区视频9 | 欧美乱妇无乱码| 久久久久亚洲av毛片大全| 好男人在线观看高清免费视频| av国产免费在线观看| 久久久久国产一级毛片高清牌| 国产欧美日韩精品亚洲av| 91在线观看av| а√天堂www在线а√下载| 1000部很黄的大片| 国产美女午夜福利| 在线永久观看黄色视频| 99久久成人亚洲精品观看| 欧美性猛交╳xxx乱大交人| 在线a可以看的网站| 99久久无色码亚洲精品果冻| 午夜福利高清视频| 免费在线观看成人毛片| 日韩欧美三级三区| 脱女人内裤的视频| 夜夜爽天天搞| 日韩精品中文字幕看吧| 桃红色精品国产亚洲av| 欧美一区二区精品小视频在线| 中国美女看黄片| 日本与韩国留学比较| 首页视频小说图片口味搜索| 精品电影一区二区在线| 精品久久蜜臀av无| 婷婷精品国产亚洲av在线| 真实男女啪啪啪动态图| 亚洲熟妇熟女久久| 免费av不卡在线播放| 亚洲五月婷婷丁香| 啦啦啦免费观看视频1| 久久伊人香网站| 俄罗斯特黄特色一大片| 欧美绝顶高潮抽搐喷水| 国模一区二区三区四区视频 | 一个人免费在线观看电影 | 色精品久久人妻99蜜桃| 国产精品亚洲美女久久久| 99在线视频只有这里精品首页| 91字幕亚洲| 制服人妻中文乱码| 亚洲精品美女久久av网站| 日本一本二区三区精品| 久久久国产精品麻豆| 亚洲av成人一区二区三| 亚洲成av人片免费观看| 黄色 视频免费看| 国产精品 欧美亚洲| 美女高潮喷水抽搐中文字幕| 精品一区二区三区av网在线观看| a级毛片a级免费在线| 一个人看视频在线观看www免费 | 在线视频色国产色| 99热精品在线国产| 成在线人永久免费视频| 1000部很黄的大片| x7x7x7水蜜桃| www.999成人在线观看| 国产1区2区3区精品| 黄片大片在线免费观看| 老汉色∧v一级毛片| 精品日产1卡2卡| www.999成人在线观看| 亚洲精品一卡2卡三卡4卡5卡| 久久天躁狠狠躁夜夜2o2o| 熟女电影av网| 亚洲av电影不卡..在线观看| 国产91精品成人一区二区三区| 757午夜福利合集在线观看|