• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    低溫下溶膠凝膠法制備TiO2納米晶

    2010-11-10 01:01:02陳志君趙高凌張俊娟韓高榮
    無機化學學報 2010年5期
    關鍵詞:浙江大學溶膠過量

    陳志君 趙高凌*, 李 紅 張俊娟 宋 斌 韓高榮

    (1浙江大學硅材料國家重點實驗室,材料科學與工程系,杭州 310027)(2浙江大學理學院物理系,杭州 310027)

    低溫下溶膠凝膠法制備TiO2納米晶

    陳志君1趙高凌*,1李 紅1張俊娟1宋 斌2韓高榮1

    (1浙江大學硅材料國家重點實驗室,材料科學與工程系,杭州 310027)(2浙江大學理學院物理系,杭州 310027)

    從含過量水的溶膠出發(fā),在室溫下得到了TiO2納米晶。通過紅外光譜,透射電子顯微鏡法和X射線粉末衍射法對含有過量水的溶膠體系中TiO2納米晶的室溫形成機理進行了研究。與傳統(tǒng)的溶膠凝膠法相比,在改良的溶膠凝膠體系中,在縮聚反應之前由于水過量使得鈦的先驅體快速且充分的水解,從而生成[TiO6]基團,隨之形成TiO2納米晶。晶粒的尺寸為約3.5 nm,該法得到的TiO2納米晶比傳統(tǒng)溶膠凝膠法得到的TiO2納米晶和商用光催化劑德固賽P25具有更好的光催化活性。

    TiO2納米晶;改良的溶膠凝膠體系;機理;光催化活性

    0 Introduction

    Crystalline titania(TiO2),as one of the most important oxide semiconductor material with a wide energy band gap,has attracted much attention for its wide applications as key material in gas sensors,dielectric ceramics,and photocatalysts[1-4],and in the field of photocatalysis and photoelectrochemistry[5-9].So far,a variety of methods have been successfully applied for the synthesis of TiO2nanoparticles,for example,hydrothermal method[10],magnetron sputtering technique[11],chemical vapor deposition[12]and sol-gel method[13].Among them,sol-gel method has been employed most widely due to its inexpensive equipment required,highly pure product produced,product shape controlled[14].In the conventional sol-gel system,the molar ratio of water to titanium precursor is often smaller than 15[15-16].Such prepared gel particles are amorphous and further heat treatment is generally required to induce crystallization.However,heat treatment frequently leads to particle growth and agglomeration.

    In the last decades,many efforts have been devoted to the formation of nanocrystalline TiO2particles at lower temperature.The nanocrystalline TiO2can be derived from sols containing large amount of water.For example,spherical-shaped TiO2particles with a size of about 4 nm were obtained by Hu et al.[17]by refluxing the solution containing titanium-n-butoxide,ethanol and distilled water at 75℃for 24 h,and the molar ratio of water to titanium precursor was 151.Kanna et al.[18]reported that nanocrystalline TiO2materials with size of 4~20 nm were prepared by adding TiCl4to the excessive deionized water,followed by heat treatment at 80℃.Chen et al.[19]showed that pure anatase type TiO2nanocrystallines with size of 3~7 nm were prepared by adding Ti(OC4H9)4to excessive water400)with pH value of 1 adjusted by dilute HNO3.However,much of the work was focused on the preparation of nanocrystalline TiO2,the photocatalytic activity and doping modification.To the best of our knowledge there has been little report on the formation mechanism of the nanocrystalline TiO2at low temperature.We report here the preparation of nanocrystalline TiO2materials by the modified and conventional sol-gel method using starting solutions with large amount of water and small amount of water,respectively.The products were characterized by IR,TEM and XRD techniques.The photocatalytic property of the prepared samples were also studied.

    Fig.1 Procedures used to prepare the TiO2-L powder sample(a)and TiO2-S powder sample(b)

    1 Experimental

    1.1 Preparation of powder TiO2samples

    Powder TiO2samples were prepared by the modified sol-gel method and the conventional sol-gel method.The differences between the two synthesis procedures were the molar ratio of the starting materials,the dropping order of the solution preparation,and the heat-treatment of the prepared sol samples.For the modified sol-gel method,the starting solution was with large amount of water,hereafter called as TiO2-L system.The experimental procedure is shown in Fig.1(a).The molar ratio of the staring materials was.Firstly,solution A was prepared by mixing [Ti(OC4H9)4]with two-thirds of amount of ethanol as shown in the above molar ratio setting.Secondly,solution B was prepared by mixing the distilled water with nitric acid,and the rest onethird of the ethanol.Then solution A was added dropwise to solution B under vigorous stirring.After aging for a certain period of time,the transparent sol was obtained,hereafter called as TiO2-L sol sample.TiO2-L sol sample was dried under infrared lamp at about 50℃to obtain TiO2-L powder sample.For the conventional solgel method,the starting solution was with a small amount of water,hereafter called as TiO2-S system.Its experimental procedure is schematically described in Fig.1(b).The molar ratio of the starting materials wasFirstly,solution C was prepared by mixing[Ti(OC4H9)4]with half of the above fixed amount of ethanol.Secondly,solution D was prepared by mixing the distilled water with nitric acid,and the rest half of the ethanol.Then solution D was added dropwise to solution C under vigorous stirring.After aging,the transparent sol sample was obtained.The TiO2-S sol sample was dried under infrared lamp at about 50 ℃ for 1.5 h to obtain the TiO2-S gel powders,which were heated at 500℃for 15 min to obtain the TiO2-S powder sample.

    1.2 Characterization

    Infrared spectra were recorded by using the Avatar 360 infrared Spectrometric Analyzer.The IR samples were prepared by dropping the same volume of prepared sols on the surface of the KBr tablets,followed by drying under infrared lamp.The crystal behavior and morphologies of the sol samples were observed using a JEM 200CX transmission electron microscope.The crystal behavior of the powder samples was measured by a D/MAX-rA diffractormeter using nickel filtered Cu Kα radiation(λ=0.154 18 nm)with a scanning angle(2θ)of 15°~75°,and a voltage and current of 40 kV and 40 mA.The specific surface area was measured with a MicromeriticsASAP 2020 M+C instrument,using the adsorption of N2at the temperature of liquid nitrogen.

    1.3 Photocatalytic activity measurement

    The photocatalytic activity of the TiO2-S and TiO2-L powder samples was evaluated by degrading the methyl orange from its aqueous solution under UV light.Three strip tungsten lamps with intensity of 15 W·m-2were used as the light source,whose characteristic emission wavelength is 290 nm.The distance between the light source and the solution level was kept as 12 cm.An amount of 0.1 g of photocatalyst was added into a 10 mL aqueous solution of 10-4mol·L-1methyl orange with a maximum absorption at about 466 nm.Before irradiation,the solution was stirred for 30 min in the dark until adsorption-desorption balance was reached.After illumination,the solution was centrifuged and filtered,and the supernatant was used for the UV-Vis absorption test at the absorption peak(466 nm)before and after photodegradation.A0is the absorbance of the initial methyl orange solution at 466 nm and A is the absorbance of methyl orange solution at 466 nm when t is 3 h,6 h,9 h,12 h,respectively.The photocatalytic activity is characterized by apparent rate constant K,which could be calculated by the equation below[15]

    Theabsorptionspectra of the photodegraded methyl orange solution were recorded by a Hitachi U-4100 UVVis spectrophotometer.

    2 Results and discussion

    2.1 Formation mechanism of nanocrystalline TiO2 in sol with large amount of water

    Fig.2 Infrared transmission spectra of the preparedTiO2-S and TiO2-L sol samples

    Fig.2 shows the IR transmission spectra of the prepared TiO2-S and TiO2-L sol samples.Both TiO2-S and TiO2-L sol samples show bands around 1 636 and 3 200 to 3 600 cm-1,which correspond to the vibration of hydrogen bonded OH groups[20].The ethanol evaporated IR test samples prepared were dried,therefore it can be concluded that the OH groups are due to the Ti-OH from the hydrolysis of Ti(OC4H9)4.The much stronger bands of Ti-OH groups in TiO2-L means much more Ti-OH groups in the TiO2-L sol sample than that in the TiO2-S sol sample.The band at 600 cm-1in the two sol samples can be assigned to symmetric stretching vibration of the Ti-O-Ti bonds[21].Again,the band at 600 cm-1of the TiO2-L sol sample is stronger than that of the TiO2-S sample,which suggests that the TiO2-L sol sample has more Ti-O-Ti groups than TiO2-S sample.The small bands around 1 380,2 869 and 2 946 cm-1in the TiO2-S sol sample can be ascribed to the vibration of the C-H groups[22].The weaker band around 1 380 cm-1and the absent of bands around 2 869 and 2 946 cm-1in the TiO2-L sol sample suggest less organic residues or organic groups in TiO2-L sol sample than that in TiO2-S sol sample.The band at 1 110 cm-1only seen in TiO2-S sol sample can be assigned to the asymmetric vibration of the Ti-O-C due to unreacted alkoxide groups[23].Accordingly,it can be concluded that in TiO2-L sol sample the starting material Ti(OC4H9)4has already reacted completely,Ti groups exist in the form of inorganic substance containing Ti-O-Ti or Ti-OH groups.On the other hand,in TiO2-S sol sample,Ti groups exist in the form of not only inorganic substance containing Ti-O-Ti or Ti-OH,butalsoorganicsubstancecontainingTi-O-C.

    Fig.3 shows the TEM images of TiO2-L and TiO2-S sol samples.It can be seen that spherical particles with diameters of 3~7 nm are synthesized in TiO2-L sol sample.Fig.3(b)shows the electron diffraction patterns.The diffraction rings are indexed,and shown in Table 1,which are in good agreement with the crystal plane indexes of the anatase titania.Accordingly,it can be concluded that the anatase TiO2nanocrystalline has already existed in the TiO2-L sol sample before any further heat treatment.From Fig.3(c)and Fig.3(d),no diffraction ring is observed,indicating that the particles in the sol are amorphous.

    Fig.3 TEM images:(a)TEM image of TiO2-L sol sample;(b)Electron diffraction(ED)pattern of TiO2-L sol sample;(c)TEM image of TiO2-S sol sample,(d)Electron diffraction(ED)pattern of TiO2-S sol sample

    Table 1 Electron diffraction rings of the TiO2-L sol sample

    The water amount plays a key role in the formation of TiO2crystal.For the titanium alkoxide,the hydrolysis and condensation both occur by nucleophilic substitution mechanisms,involving nucleophilic addition followed by proton transfer from the attacking molecule to an alkoxide or hydroxo-ligand within the transition state and removal of the protonated species as either alcohol or water.

    The possible hydrolysis reactions of Ti(OC4H9)4can be described as follows.

    Also,the possible polycondensation reactions can be described as follows.

    Usually,the condensation occurs before the completion of hydrolysis.Therefore,the complex processes happen.Reactions among the titanium alkoxide Ti(OC4H9)4,hydroxo-ligands Ti(OC4H9)3OH,Ti(OC4H9)2(OH)2,Ti(OC4H9)(OH)3and intermediate products will take place as follows.

    For TiO2-S sol sample,the molar ratio of water to Ti(OC4H9)4is 1.As shown in Fig.1(b),the small amount of water is added dropwise into the ethanol solution of Ti(OC4H9)4,so the hydrolysis of the Ti(OC4H9)4is very slow,the polycondensation proceeds simultaneously with the hydrolysis,as shown in the above equations.Hence the Ti group in TiO2-S sol sample mostly exists as Ti-O-C(see Fig.2),which acts as structural impurities and inhibits the formation of regular structure.So Ti-OTi and Ti-O-H groups in the sol can not connect with each other freely,therefore,no crystalline TiO2is found in TiO2-S sol sample(see Fig.3).

    For TiO2-L powder sample,the molar ratio of water to Ti(OC4H9)4is 100.As shown in Fig.1(a),Ti(OC4H9)4is added dropwise into the large amount of water,so the water is always in excess.Hence every Ti(OC4H9)4molecule is surrounded by massive H2O molecules,which makes the titanium precursor hydrolyze quickly and completely as follows.

    Therefore the Ti groups in TiO2-L sol sample exist

    in the form of inorganic substance containing Ti-O-Ti or Ti-OH groups,and there is no Ti-O-C groups in the sol(see Fig.2),which is beneficial for the connection of the Ti-OH or Ti-O-Ti and formation of the unit-[TiO6]octahedron.With the rearrangement of the [TiO6]octahedron units after aging for a certain time,the TiO2nucleates and grows,resulting in the formation of nanocrystalline TiO2in TiO2-L sol sample.

    2.2 Properties of nanocrystalline TiO2powders derived from sol with large amount of water

    Fig.4 shows XRD patterns of TiO2powder samples.As shown in the figure,no peak is found in pattern a,which is TiO2-S sol derived powder dried under infrared lamp.While typical anatase type TiO2peaks are found in pattern c,i.e.the pattern for TiO2-L sol derived powder dried under infrared lamp.The size of the formed anatase TiO2crystals is calculated using the Scherrer equation from the half-width of the(101)anatase reflection.

    Fig.4 XRD patterns for TiO2powder samples:(a)TiO2-S gel powders prepared by drying the TiO2-S sol sample under infrared lamp at about 50℃;(b)TiO2-S powder sample prepared by calcining the TiO2-S gel powders at 500℃,(c)TiO2-L powder sample prepared by drying the TiO2-L sol sample under infrared lamp at about 50℃

    The grain size of TiO2-L powder is 3.5 nm,fairly in agreement with the TEM result(see Fig.3(a)).This indicates that crystal growth does not occur during infrared lamp drying,confirming that nanocrystalline TiO2particles are formed in TiO2-L sol before any heat-treatment.

    b in Fig.4 is the XRD pattern for TiO2-S sol derived powder heated at 500℃.It can be found that not only strong and sharp peaks of anatase TiO2appear,but also small peak at 2θ=27.5°corresponding to rutile type TiO2(110)appears.The grain size of anatase and rutile in TiO2-S powder heated at 500℃is 16.8 and 12.3 nm,respectively,both are much larger than that in TiO2-L powder.

    Fig.5 shows ln(A0/A)-t plots of TiO2-L powder,TiO2-S powder heated at 500℃and the commercial Degussa P25 crystallineTiO2.The degradation of methyl orange aqueous system containing TiO2powders follows the pseudo-first order kinetics.The result shows that the photocatalytic activities are in the order:P25<TiO2-S powder<TiO2-L powder.In addition,the SBETvalues of the P25,TiO2-S and TiO2-L sample are 55,74,120 m2·g-1,resepectively.Comparing with that of P25,the higher photocatalytic activity of TiO2-S powder can be ascribed to its higher specific surface area.So the TiO2-S powder shows better photocatalytic activity than P25.On the other hand,the particle size of TiO2-L powder is about 3.5 nm,which is smaller than that of TiO2-S powder.So TiO2-L powder owns higher specific surface area than TiO2-S powder.Moreover,the size of TiO2-L nanocrystalline(3.5 nm)approaches the Bohr radius of anatase type TiO2[24-25],which causes quantum-size effect.The quantum-size effect results in split of the energy level of TiO2,which causes an increase in its photocatalytic oxidation-reduction potential and thus enhances the photocatalytic activity.Accordingly,the TiO2-L powders show better photocatalytic activity than TiO2-S powders although the crystal intensity of the TiO2-L powder is much weaker than that of TiO2-S powd er.

    Fig.5 Photocatalytic degradation of methyl orange on P-25(Fig.5a)and prepared TiO2-S powder sample(Fig.5b)and prepared TiO2-L powder sample(Fig.5c)

    3 Conclusions

    The formation mechanism of nanocrystalline TiO2derived from sol with large amount of water was studied.It is found that the nanocrystalline TiO2has already existed in the sol.The large amount of water makes the titanium precursor hydrolyze quickly and completely before polycondensation.[TiO6]units are formed during polycondensation,thus favoring the formation of nanocrystalline TiO2.The grain size derived from the sol with large amount of water is 3.5 nm.The fine nanocrystalline sample shows better photocatalytic activity than powders derived from the conventional solgel method and commercial photocatalyst Degussa P25.

    Acknowledgment:This work is supported by National Natual Science Foundation of China,under grant No.50672086,and Zhejiang Province Fund of Science and Technology,under grant No.Y200909120.

    [1]Castro A,Nunes M,Carvalho A,et al.Solid State Sci.,2008,10:60-606

    [2]Kim E,Hahn S.Mater.Lett.,2001,49:244-249

    [3]Tang Z,Zhang J,Cheng Z,et al.Mater.Chem.Phys.,2002,77:314-317

    [4]WANG Zhen-Xing(王振興),DING Shi-Wen(丁士文),ZHANG Mei-Hong(張美紅).Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2005,21(3):437-440

    [5]Zhao Y,Li C,Liu X,et al.Mater.Lett.,2007,61:79-83

    [6]Ren W,Ai Z,Jia F,et al.Appl.Catal.B,2007,69:138-144

    [7]Reddy K,Reddy C,Manorama S.J.Solid State Chem.,2001,158:180-186

    [8]HUANG Dong-Sheng(黃東升),CHEN Chao-Feng(陳朝鳳),LI Yu-Hua(李玉花),et al.Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2007,23(4):738-742

    [9]Zhu J,Yang J,Bian Z,et al.Appl.Catal.B,2007,76:82-91

    [10]YAO Chao(姚 超),YANG Guang(楊 光),LIN Xi-Ping(林西平),etal.ChineseJ.Inorg.Chem.(WujiHuaxueXuebao),2004,12(12):1821-1826

    [11]Satoshi T,Susumu S,Hidefumi O,et al.Thin Solid Films,2001,392:338-344

    [12]Ding Z,Hu X,Lu G,et al.Langmuir,2000,16:6216-6222

    [13]Zhao G,Utsumi S,Kozuka H,et al.J.Mater.Sci.,1998,33:3655-3659

    [14]ChengB,YuJ,ZhangX.J.Mater.Sci.Lett.,2003,22:967-970

    [15]Bavykin D,Friedrich J,Walsh F.Adv.Mater.,2006,18:2807-2824

    [16]Li H,Zhao G,Song B.J.Mater.Lett.,2008,62:3395-3397

    [17]Hu Y,Yuan C.J.Cryst.Growth,2005,274:563-568

    [18]Kanna M,Wongnawa S.Mater.Chem.Phys.,2008,110:166-175

    [19]Chen Z,Zhao G,Li H,et al.J.Am.Ceram.Soc.,2009,92:1024-1029

    [20]Huang M,Kuo S,Wu,F,et al.Polymer,2002,43:2479-2487

    [21]Thoms H,Epple M,Frfba M,et al.J.Mater.Chem.,1998,8,1447-1451

    [22]Bezrodna T,Gavrilko T,Puchkovska G,et al.J.Mol.Struct.,2002,614:315-324

    [23]Boccuzzi F,Chiorino,A.J.Phys.Chem.B,2000,104,5414-5416

    [24]Joo J,Kwon S,Yu T,et al.J.Phys.Chem.B,2005,109:15297-1530

    [25]Toyoda T,Tsuboya I.Rev.Sci.Instrum.,2003,74:782-784

    Preparation of Nanocrystalline TiO2by Sol-Gel-Method at Room Temperature

    CHEN Zhi-Jun1ZHAO Gao-Ling*,1LI Hong ZHANG Jun-Juan1SONG Bin2HAN Gao-Rong1
    (1State Key Laboratory of Silicon Materials,and Department of Materials Science and Engineering,Zhejiang University,Hangzhou 310027)(2Department of Physics,Zhejiang University,Hangzhou 310027)

    Nanocrystalline titania(TiO2)particles were obtained at room temperature by a modified sol-gel method starting from a solution with large amount of water.The nanocrystalline TiO2particles prepared with large amount of water at room temperature were characterized by IR,TEM and XRD.Comparing with conventional sol-gel method,the present system offers quick and complete hydrolysis of titanium precursor before polycondensation,thus resulting in[TiO6]units,and the formation of nanocrystalline TiO2particles with an average grain size of 3.5 nm.Moreover,the as-prepared nanocrystalline TiO2powders exhibit a better photocatalytic activity than both of the powders prepared by conventional sol-gel method and the commercial photocatalyst Degussa P25.

    nanocrystalline TiO2;modified sol-gel method;mechanism;photocatalytic activity

    O614.41+1

    A

    1001-4861(2010)05-0860-07

    2009-10-16。收修改稿日期:2010-03-10。

    國家自然科學基金(No.50672086),浙江省科研廳項目(No.Y200909120)資助。*

    。 E-mail:glzhao@zju.edu.cn

    陳志君,男,25歲,在讀碩士;研究方向:光催化劑納米材料的制備。

    猜你喜歡
    浙江大學溶膠過量
    過量食水果會加速衰老
    中老年保健(2021年7期)2021-08-22 07:43:44
    溶膠-凝膠法制備高性能ZrO2納濾膜
    陶瓷學報(2020年3期)2020-10-27 02:08:12
    浙江大學農業(yè)試驗站簡介
    浙江大學作物科學研究所簡介
    B3M4 Sandstorms in Asia Teaching Plan
    請勿過量飲酒
    吃糖過量也會“醉”?
    遵義(2018年15期)2018-08-28 12:20:14
    歡迎訂閱《浙江大學學報(農業(yè)與生命科學版)》
    La jeunesse chinoise d'aujourd'hui
    法語學習(2016年5期)2016-12-18 15:16:23
    溶膠-凝膠微波加熱合成PbZr0.52Ti0.48O3前驅體
    應用化工(2014年11期)2014-08-16 15:59:13
    简卡轻食公司| 亚洲图色成人| 人妻制服诱惑在线中文字幕| 午夜福利网站1000一区二区三区| 纵有疾风起免费观看全集完整版| 免费av不卡在线播放| 国产伦理片在线播放av一区| 日韩精品免费视频一区二区三区 | 亚洲激情五月婷婷啪啪| 边亲边吃奶的免费视频| 亚洲精品亚洲一区二区| 国产亚洲5aaaaa淫片| 国产精品成人在线| 美女主播在线视频| 菩萨蛮人人尽说江南好唐韦庄| 免费播放大片免费观看视频在线观看| av免费在线看不卡| 国国产精品蜜臀av免费| 一级黄片播放器| 日韩精品免费视频一区二区三区 | 乱码一卡2卡4卡精品| 女人久久www免费人成看片| 国产 一区精品| 国产精品三级大全| 国产精品久久久久久精品电影小说| 一个人免费看片子| 在线看a的网站| 最近最新中文字幕免费大全7| 精品少妇内射三级| av线在线观看网站| 中文字幕人妻丝袜制服| 十分钟在线观看高清视频www | 99国产精品免费福利视频| 亚洲精品久久久久久婷婷小说| 国产精品免费大片| 欧美日韩av久久| 免费少妇av软件| 在线天堂最新版资源| 国产一区二区在线观看av| 久久 成人 亚洲| 女的被弄到高潮叫床怎么办| 亚洲经典国产精华液单| 精品国产一区二区久久| 亚洲va在线va天堂va国产| 亚洲av在线观看美女高潮| 黄色一级大片看看| av免费观看日本| 国产精品一区二区在线不卡| 2021少妇久久久久久久久久久| 麻豆乱淫一区二区| 热re99久久精品国产66热6| 国产精品一二三区在线看| 极品教师在线视频| tube8黄色片| 精品视频人人做人人爽| 亚洲性久久影院| 大香蕉久久网| 高清黄色对白视频在线免费看 | 秋霞在线观看毛片| 亚洲精品国产av蜜桃| 欧美97在线视频| 国产精品久久久久久久电影| 高清av免费在线| 丝袜脚勾引网站| 成年女人在线观看亚洲视频| 两个人的视频大全免费| 中国国产av一级| 99热全是精品| 国产在线免费精品| 一级毛片 在线播放| 最后的刺客免费高清国语| 亚洲精品一区蜜桃| 精品国产露脸久久av麻豆| 桃花免费在线播放| 丝袜脚勾引网站| a级一级毛片免费在线观看| 久久久久久久久久久久大奶| 偷拍熟女少妇极品色| 青春草国产在线视频| 日韩在线高清观看一区二区三区| av免费观看日本| 啦啦啦视频在线资源免费观看| 三上悠亚av全集在线观看 | 老司机影院成人| 久久国产精品男人的天堂亚洲 | 国产男女超爽视频在线观看| 少妇的逼好多水| 黄色视频在线播放观看不卡| 精品少妇黑人巨大在线播放| 国产一区二区在线观看av| 亚洲va在线va天堂va国产| 亚洲国产毛片av蜜桃av| 亚洲av中文av极速乱| 久久影院123| 国产亚洲一区二区精品| 内射极品少妇av片p| 国产熟女午夜一区二区三区 | 三上悠亚av全集在线观看 | 水蜜桃什么品种好| 国产精品99久久久久久久久| 美女国产视频在线观看| 国产精品熟女久久久久浪| 美女中出高潮动态图| 纵有疾风起免费观看全集完整版| 亚洲,一卡二卡三卡| 一级黄片播放器| 国产毛片在线视频| 精品国产一区二区久久| 成年人午夜在线观看视频| 精品一品国产午夜福利视频| 国产极品天堂在线| 91精品伊人久久大香线蕉| 高清在线视频一区二区三区| 22中文网久久字幕| av国产精品久久久久影院| 蜜桃久久精品国产亚洲av| av福利片在线观看| 久久人人爽人人爽人人片va| 国产一级毛片在线| 欧美日韩一区二区视频在线观看视频在线| 欧美国产精品一级二级三级 | 日韩制服骚丝袜av| 熟女人妻精品中文字幕| 久久久精品免费免费高清| 大陆偷拍与自拍| 亚洲第一区二区三区不卡| 亚洲精品aⅴ在线观看| 日韩伦理黄色片| 丰满乱子伦码专区| 国产免费视频播放在线视频| 久久久久网色| 欧美成人午夜免费资源| 久久久a久久爽久久v久久| 午夜福利,免费看| 老司机影院毛片| 国产精品偷伦视频观看了| 国产精品人妻久久久影院| 国精品久久久久久国模美| 亚洲精品日本国产第一区| 亚洲国产成人一精品久久久| 大话2 男鬼变身卡| 综合色丁香网| 97在线人人人人妻| 成人毛片60女人毛片免费| 激情五月婷婷亚洲| 纯流量卡能插随身wifi吗| 最近中文字幕2019免费版| 久久久国产一区二区| 人妻系列 视频| 国产在线视频一区二区| 国产亚洲欧美精品永久| 99热这里只有是精品在线观看| 精品人妻熟女毛片av久久网站| 又大又黄又爽视频免费| 欧美日韩av久久| 久久精品国产亚洲av涩爱| 搡女人真爽免费视频火全软件| 热99国产精品久久久久久7| 人人妻人人看人人澡| 亚洲精品日韩av片在线观看| 99久国产av精品国产电影| 另类亚洲欧美激情| 久久久久精品久久久久真实原创| 色婷婷久久久亚洲欧美| 熟女av电影| 亚洲美女视频黄频| 国产黄片视频在线免费观看| 免费在线观看成人毛片| 日韩视频在线欧美| 久久鲁丝午夜福利片| 在线观看av片永久免费下载| 久久久久久伊人网av| 中文字幕av电影在线播放| 建设人人有责人人尽责人人享有的| 国产日韩欧美在线精品| 亚洲av二区三区四区| 欧美亚洲 丝袜 人妻 在线| 亚洲av福利一区| 99久久综合免费| 91精品国产九色| av福利片在线观看| 成人影院久久| 精品亚洲成a人片在线观看| 国产女主播在线喷水免费视频网站| 高清av免费在线| 午夜福利影视在线免费观看| 亚洲国产欧美日韩在线播放 | 女人精品久久久久毛片| 国产高清有码在线观看视频| 亚洲欧美日韩另类电影网站| 午夜影院在线不卡| 波野结衣二区三区在线| 亚洲美女黄色视频免费看| 国产亚洲午夜精品一区二区久久| 国语对白做爰xxxⅹ性视频网站| 国产精品蜜桃在线观看| 中文资源天堂在线| 永久免费av网站大全| 免费av中文字幕在线| 中文字幕亚洲精品专区| 亚洲一区二区三区欧美精品| 卡戴珊不雅视频在线播放| 夜夜爽夜夜爽视频| 婷婷色综合大香蕉| 狂野欧美白嫩少妇大欣赏| 久久久久国产网址| 精品一区在线观看国产| 观看免费一级毛片| 久久精品国产自在天天线| 男人和女人高潮做爰伦理| 精品少妇黑人巨大在线播放| 欧美国产精品一级二级三级 | 少妇的逼好多水| 亚洲av不卡在线观看| 制服丝袜香蕉在线| 一区二区三区免费毛片| 日本黄色日本黄色录像| 日韩一区二区三区影片| 免费av不卡在线播放| 伦理电影免费视频| 一级爰片在线观看| 久久精品国产自在天天线| 丝袜脚勾引网站| 国产精品.久久久| 精品久久国产蜜桃| 丁香六月天网| av免费观看日本| 中文乱码字字幕精品一区二区三区| 欧美人与善性xxx| 中国三级夫妇交换| 免费黄网站久久成人精品| 亚洲av欧美aⅴ国产| 久久 成人 亚洲| 国产av一区二区精品久久| 最黄视频免费看| 亚洲欧美一区二区三区国产| 成年美女黄网站色视频大全免费 | 欧美成人精品欧美一级黄| 高清黄色对白视频在线免费看 | 男女免费视频国产| 王馨瑶露胸无遮挡在线观看| 人人妻人人看人人澡| 我的女老师完整版在线观看| 欧美另类一区| 午夜影院在线不卡| 亚洲av.av天堂| 麻豆乱淫一区二区| 亚洲第一区二区三区不卡| 日本爱情动作片www.在线观看| 青春草视频在线免费观看| 最黄视频免费看| 狂野欧美激情性bbbbbb| 肉色欧美久久久久久久蜜桃| 国产免费视频播放在线视频| 在线精品无人区一区二区三| 狂野欧美激情性xxxx在线观看| 亚洲精品一区蜜桃| 国产极品粉嫩免费观看在线 | 久久久久久久大尺度免费视频| 人妻夜夜爽99麻豆av| av卡一久久| 免费看不卡的av| 美女国产视频在线观看| 久久久久久久大尺度免费视频| 久久久亚洲精品成人影院| 久久午夜福利片| 亚洲国产精品999| 亚洲精品乱久久久久久| 久久精品国产a三级三级三级| 久久99蜜桃精品久久| 中文乱码字字幕精品一区二区三区| 久久久久久久久久久免费av| 久久人人爽av亚洲精品天堂| 少妇被粗大的猛进出69影院 | 欧美三级亚洲精品| 91久久精品国产一区二区成人| 成人午夜精彩视频在线观看| 777米奇影视久久| 特大巨黑吊av在线直播| 黑丝袜美女国产一区| 女人精品久久久久毛片| 日日撸夜夜添| 99热全是精品| 久久久久久久久久久免费av| 亚洲内射少妇av| 午夜老司机福利剧场| 精品一区二区三卡| 久久99精品国语久久久| 狂野欧美激情性xxxx在线观看| 水蜜桃什么品种好| 欧美成人午夜免费资源| 精品人妻偷拍中文字幕| 少妇人妻久久综合中文| 成人漫画全彩无遮挡| 国产一级毛片在线| 亚洲中文av在线| 免费播放大片免费观看视频在线观看| 亚洲va在线va天堂va国产| 日本欧美视频一区| 日韩av在线免费看完整版不卡| 久久久久久久精品精品| 九九爱精品视频在线观看| 波野结衣二区三区在线| av又黄又爽大尺度在线免费看| 国产老妇伦熟女老妇高清| a级一级毛片免费在线观看| av播播在线观看一区| 国精品久久久久久国模美| 黑人巨大精品欧美一区二区蜜桃 | 精品人妻熟女av久视频| 国产精品不卡视频一区二区| 精品国产乱码久久久久久小说| 亚洲四区av| 国产白丝娇喘喷水9色精品| 国产精品女同一区二区软件| 午夜福利,免费看| 成人特级av手机在线观看| 国产色婷婷99| 各种免费的搞黄视频| 亚洲精品乱码久久久v下载方式| 国产真实伦视频高清在线观看| 一级黄片播放器| 伊人亚洲综合成人网| 国产精品熟女久久久久浪| 最近中文字幕2019免费版| 国产成人a∨麻豆精品| 日韩,欧美,国产一区二区三区| 久久ye,这里只有精品| 欧美97在线视频| 成人国产av品久久久| 久久精品熟女亚洲av麻豆精品| 亚洲av男天堂| 十八禁高潮呻吟视频 | 日韩电影二区| 免费不卡的大黄色大毛片视频在线观看| 99热这里只有精品一区| 亚洲熟女精品中文字幕| 国产精品蜜桃在线观看| 日韩精品有码人妻一区| 国产爽快片一区二区三区| 欧美精品一区二区免费开放| 国产一级毛片在线| 精品久久久久久久久亚洲| 妹子高潮喷水视频| 亚洲熟女精品中文字幕| 中文字幕制服av| 亚洲熟女精品中文字幕| 中文字幕亚洲精品专区| 人人妻人人澡人人看| 国产欧美日韩一区二区三区在线 | av国产精品久久久久影院| 欧美+日韩+精品| 丰满迷人的少妇在线观看| 人人妻人人看人人澡| 欧美另类一区| 亚洲精品一二三| 亚洲精品国产成人久久av| 成人午夜精彩视频在线观看| 日韩强制内射视频| 欧美老熟妇乱子伦牲交| 少妇裸体淫交视频免费看高清| 国产伦理片在线播放av一区| 精品少妇久久久久久888优播| 伦精品一区二区三区| 美女xxoo啪啪120秒动态图| 久久亚洲国产成人精品v| 91久久精品国产一区二区三区| 两个人免费观看高清视频 | 少妇高潮的动态图| 六月丁香七月| 大陆偷拍与自拍| 最后的刺客免费高清国语| 99精国产麻豆久久婷婷| 春色校园在线视频观看| 国产成人精品久久久久久| 夜夜骑夜夜射夜夜干| 日本免费在线观看一区| 99久国产av精品国产电影| 国产成人精品久久久久久| 老司机影院成人| 边亲边吃奶的免费视频| 少妇 在线观看| 这个男人来自地球电影免费观看 | 国产精品人妻久久久久久| 成人影院久久| 国产精品99久久久久久久久| 久久精品久久精品一区二区三区| 国产精品一区二区三区四区免费观看| 亚洲高清免费不卡视频| 久久人妻熟女aⅴ| 国产亚洲精品久久久com| 国产成人精品久久久久久| 老司机影院成人| av福利片在线观看| 观看美女的网站| 亚洲精品国产色婷婷电影| 99热全是精品| 少妇高潮的动态图| 国产国拍精品亚洲av在线观看| 丝瓜视频免费看黄片| 在线观看免费日韩欧美大片 | 亚洲第一av免费看| 午夜av观看不卡| 五月天丁香电影| 成人亚洲精品一区在线观看| 日韩中文字幕视频在线看片| 久久人人爽人人片av| 久久久国产欧美日韩av| 久久久亚洲精品成人影院| 亚洲av电影在线观看一区二区三区| 国产爽快片一区二区三区| 欧美日韩综合久久久久久| 综合色丁香网| 日韩电影二区| 深夜a级毛片| 亚洲综合精品二区| a级片在线免费高清观看视频| 国产一区二区在线观看av| 丝袜在线中文字幕| 色网站视频免费| 一区二区三区乱码不卡18| 国产黄片美女视频| av国产精品久久久久影院| 精品人妻熟女毛片av久久网站| 一区二区av电影网| 晚上一个人看的免费电影| 九九在线视频观看精品| videossex国产| 人人妻人人看人人澡| 日韩中文字幕视频在线看片| 国产精品久久久久久久久免| 黄片无遮挡物在线观看| 在线观看www视频免费| 亚洲精品,欧美精品| 女性被躁到高潮视频| 国产精品.久久久| 欧美性感艳星| 91精品一卡2卡3卡4卡| 爱豆传媒免费全集在线观看| 国产精品一二三区在线看| 汤姆久久久久久久影院中文字幕| 欧美少妇被猛烈插入视频| 春色校园在线视频观看| 肉色欧美久久久久久久蜜桃| 午夜福利视频精品| 亚洲性久久影院| 精品一区在线观看国产| 午夜免费观看性视频| 国产成人免费观看mmmm| 新久久久久国产一级毛片| 国产成人免费观看mmmm| 一级av片app| 国产精品无大码| 在线观看www视频免费| 欧美日韩在线观看h| 狂野欧美白嫩少妇大欣赏| 欧美xxⅹ黑人| 亚洲四区av| 人人妻人人澡人人爽人人夜夜| 啦啦啦视频在线资源免费观看| 黄色欧美视频在线观看| 一边亲一边摸免费视频| 免费黄频网站在线观看国产| 人人妻人人澡人人看| 久久久久久久大尺度免费视频| 亚洲精品乱码久久久久久按摩| 黄色视频在线播放观看不卡| 亚洲国产精品一区二区三区在线| 国内精品宾馆在线| 制服丝袜香蕉在线| 美女内射精品一级片tv| 欧美变态另类bdsm刘玥| 中国三级夫妇交换| 国产色婷婷99| 国产黄频视频在线观看| 三级国产精品片| 蜜臀久久99精品久久宅男| 老司机亚洲免费影院| 欧美日韩一区二区视频在线观看视频在线| 一本久久精品| 天堂中文最新版在线下载| 精品国产国语对白av| 看免费成人av毛片| 色视频在线一区二区三区| 国产成人freesex在线| 男女国产视频网站| 少妇被粗大的猛进出69影院 | 国精品久久久久久国模美| 国产精品一区二区三区四区免费观看| 免费观看性生交大片5| 大香蕉久久网| 久久午夜福利片| 成人亚洲欧美一区二区av| 日韩免费高清中文字幕av| 欧美xxⅹ黑人| 一区二区三区乱码不卡18| av有码第一页| 国产成人免费无遮挡视频| 久久久久久久久久久免费av| 成人无遮挡网站| 欧美日韩一区二区视频在线观看视频在线| av在线播放精品| 精品少妇黑人巨大在线播放| 午夜免费鲁丝| 精品酒店卫生间| 国产免费一区二区三区四区乱码| 99久久人妻综合| 精品久久久久久电影网| 观看免费一级毛片| 一级片'在线观看视频| 中文字幕久久专区| 黑人高潮一二区| 丝袜喷水一区| 少妇的逼好多水| a级一级毛片免费在线观看| 亚州av有码| 少妇精品久久久久久久| 丰满人妻一区二区三区视频av| 在线观看人妻少妇| 五月玫瑰六月丁香| 成年女人在线观看亚洲视频| 多毛熟女@视频| 国产精品国产av在线观看| 亚洲精品色激情综合| 国产深夜福利视频在线观看| 99久久精品热视频| 久久久久久久大尺度免费视频| 国产一区二区在线观看av| 中文在线观看免费www的网站| 久久久久久久久大av| 女的被弄到高潮叫床怎么办| 亚洲欧洲国产日韩| 纯流量卡能插随身wifi吗| 亚洲欧美成人综合另类久久久| 18禁动态无遮挡网站| 日韩欧美 国产精品| 人妻人人澡人人爽人人| 免费看光身美女| 国模一区二区三区四区视频| 人妻夜夜爽99麻豆av| 成年人午夜在线观看视频| 我的老师免费观看完整版| 日本欧美国产在线视频| 纵有疾风起免费观看全集完整版| 国产精品嫩草影院av在线观看| 中文天堂在线官网| 青春草国产在线视频| 日韩精品有码人妻一区| 国产色爽女视频免费观看| 久久久久久伊人网av| 国产深夜福利视频在线观看| 99热国产这里只有精品6| 中文字幕亚洲精品专区| 久久精品久久久久久噜噜老黄| 自线自在国产av| av免费在线看不卡| 日本欧美视频一区| 亚洲欧洲日产国产| 日日摸夜夜添夜夜添av毛片| 久久久久人妻精品一区果冻| 久久久久久久久久成人| 中文字幕av电影在线播放| 欧美最新免费一区二区三区| 亚洲精品国产av成人精品| 高清黄色对白视频在线免费看 | 久久久久久久久久成人| 久久6这里有精品| .国产精品久久| 国内精品宾馆在线| 精品人妻偷拍中文字幕| 成年人午夜在线观看视频| 亚洲国产精品一区二区三区在线| 成人无遮挡网站| 欧美人与善性xxx| 国产成人a∨麻豆精品| av福利片在线观看| 亚洲,一卡二卡三卡| 亚洲精华国产精华液的使用体验| 青青草视频在线视频观看| av有码第一页| 日韩免费高清中文字幕av| 我的老师免费观看完整版| 99热全是精品| 国产一区二区在线观看日韩| 精品人妻一区二区三区麻豆| 久久人人爽人人爽人人片va| 熟女av电影| 91精品国产国语对白视频| 高清午夜精品一区二区三区| 国产淫片久久久久久久久| 国产精品无大码| 涩涩av久久男人的天堂| 97在线视频观看| 久久久久国产网址| 99久久精品国产国产毛片| 91午夜精品亚洲一区二区三区| 国产精品国产三级国产专区5o| av播播在线观看一区| 精品99又大又爽又粗少妇毛片| 日本vs欧美在线观看视频 | 爱豆传媒免费全集在线观看| 99久久精品一区二区三区| 少妇裸体淫交视频免费看高清| 成人亚洲精品一区在线观看| 在线 av 中文字幕| 汤姆久久久久久久影院中文字幕| 欧美日韩亚洲高清精品| 国产成人91sexporn| 亚洲三级黄色毛片| 亚洲国产精品一区三区| 三级经典国产精品| 成年人午夜在线观看视频| 日本av免费视频播放| 十八禁高潮呻吟视频 | 在线观看免费视频网站a站|