• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dim Moving Small Target Detection by Local and Global Variance Filtering on Temporal Profiles in Infrared Sequences

    2019-02-13 08:23:32ChenHaoLiuDelian
    航空兵器 2019年6期

    Chen Hao,Liu Delian

    (1.School of Electronic Engineering, Xidian University, Xi’an 710071, China;2.School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, China)

    Abstract: In this paper, the temporal different characteristics between the target and background pixels are used to detect dim moving targets in the slow-evolving complex background.A local and global variance filter on temporal profiles is presented that addresses the temporal characteristics of the target and background pixels to eliminate the large variation of background temporal profiles.Firstly, the temporal behaviors of different types of image pixels of practical infrared scenes are analyzed.Then, the new local and global variance filter is proposed.The baseline of the fluctuation level of background temporal profiles is obtained by using the local and global variance filter.The height of the target pulse signal is extracted by subtracting the baseline from the original temporal profiles.Finally, a new target detection criterion is designed.The proposed method is applied to detect dim and small targets in practical infrared sequence images.The experimental results show that the proposed algorithm has good detection performance for dim moving small targets in the complex background.

    Key words: small target detection; infrared image sequences; complex background; temporal profile; variance filtering

    0 Introduction

    The detection of infrared dim targets in the complex background is of great importance for infrared monitoring and warning system, and it is an essential way to improve the system’s detection range and detection probability[1-3].If a target is far away from the detecting systems, the image formed on the imaging plane may only occupy one or a few pixels, and the distribution information and structural information of the target are disappeared[2-6].Under this situation, the detection of these targets is difficult.Nowadays, to detect enemy targets as far as possible is still a challenging task.Therefore, the detection of dim moving small targets in complex background is a classical and hotspot issue for researchers around the world.

    In the past two decades, researchers have done a lot of studies and proposed many small moving target detection algorithms.These algorithms are mainly divided into two categories, one is the detection-beforetrack(DBT)algorithms.The DBT algorithms detect the targets in one single frame and then track the targets according to their temporal information[7-8].Therefore, these algorithms require that the targets can be detected at least in one single frame, such as correlation algorithm[9], wavelet algorithm[10]and morphological algorithm[11].The other is the track-before-detect(TBD)algorithms, in which the targets are smaller than those detected by the DBT algorithms in the infrared images.The targets usually occupy only a few pixels or even one single pixel and can hardly be detected in one single frame.These algorithms mainly perform tracking the intensity variation characteristics of all pixel points[12]and then detect targets according to the temporal differences of the target and background pixels, such as continuous wavelet method[13], temporal contrast method[14], vector cross multiplication[15]and so on.Obviously, when the target is far away from the imaging system, the situation encountered is mostly the latter case[16].Practically, the detection of the dim small target based on temporal characteristics can be easily achieved as the background is relatively simple[17-18], and noise is not very severe[19].However, when the background is complex and has slowly evolving cloud, a large number of background pixels will have the same temporal characteristics as that of the targets, making false alarms increase significantly.Based on the analysis of the temporal profile characteristics of the target and complex background, a dim moving small target detection method based on temporal filtering is proposed.By designing a local and globe variance to estimate the fluctuation level of a temporal profile, the target impact is comprehensively considered.Then a new filter is designed to effectively extract the height of the target pulse.Finally, a new target detection metric is obtained.The experimental results show that the proposed algorithm has good detection performance.

    1 Temporal characteristics of infrared scenes

    When a scene is captured by a starring imaging system, the pixels of the imaging system will produce temporal profiles over a short period of time.The temporal profiles indicate the variation of the pixel values in the period of time.As a moving target passes through a detector unit, a pulse signal will generate on the temporal profile of the detector unit, and the intensity of the pulse signal is related to the difference of brightness between the target and the surrounding background, and the width of the pulse signal is related to the speed of the target.Although the temporal profile of the target has a significant pulse signal relative to the background temporal profile, the evolving cloud changes greatly, which will produce large fluctuations at the cloud edge temporal profiles.The evolving cloud temporal profiles have strong interferences for target detection.Fig.1 is four typical types of temporal profiles of an infrared scene.

    Fig.1 Temporal profiles of an infrared scene

    As shown in Fig.1(a), P1 is a temporal profile of a target, P2 is a temporal profile of the cloud edge, P3 is a temporal profile of the clear sky background, and P4 is a temporal profile of the inner cloud.It can be seen that the temporal profile of clear sky background and the temporal profile of the inner cloud basically fluctuate up and down along a certain constant[P3 and P4 in Fig.1(b)].While the temporal profile of cloud edge changes slowly and irregularly[P2 in Fig.1(b)].For the target temporal profile, there is a sharp pulse signal produced by the moving target[P1 in Fig.1(b)].Therefore, a dim moving target can be detected by detecting the temporal profiles that contain a pulse signal.

    As shown in Fig.1, different types of temporal profiles have different fluctuation characteristics.The temporal profile of clear sky background and inner cloud can be denoted by

    xc(n)=C+wc(n)

    (1)

    WhereCis a constant,ndenotes the time index of the infrared image sequence, and

    (2)

    xe(n)=xe(n-1)+we(n)

    (3)

    where

    (4)

    xt(n)=u(n)+t(n,p)+wt(n)

    (5)

    u(n)is determined by the location of the target.If the target is at a clean sky or inner cloud position,u(n)=C.If the target is at the edge of the cloud,u(n)=xe(n-1).t(n,p)is the target pulse,pis the vector determined by the target itself.Therefore, any pixel in the scene can be described by the above three models.

    To validate the distribution of temporal noise, we select a region of clear sky to do statistical analysis.Temporal noise is obtained by removing mean value from each temporal profile.

    Fig.2(a)is an infrared scene with evolving clutter.Fig.2(b)is the distribution of temporal noise.The black solid line is the fitting of the temporal noise distribution with a Gaussian model.The result shows temporal noise distribution in infrared image sequences can be modelled by a Gaussian distribution.

    Fig.2 Temporal noise in an infrared image sequence

    2 Local and global variance filter

    In a whole infrared scene, the temporal profiles of cloud edge change irregularly, which is similar to that of the target temporal profiles.It is difficult to find a suitable function to fit cloud edge temporal profiles, which is also the main difficulty to detect the target temporal profiles.If we can find a suitable baseline of each temporal profile, the irregular shape of cloud temporal profiles can be eliminated.

    In order to obtain the baseline of the temporal profiles, in this paper, we propose a new local and global filter to obtain the baseline of the temporal profile.Since the target temporal profile has a significant pulse signal, the new filter should have the ability to eliminate the impact of the pulse signal and also can estimate the level as close as possible to the fluctuation of cloud edge.To this end, the newly designed filter uses the excellent statistics parameters of the local and global variance to obtain the baseline of each temporal profile.The response of the new filter is calculated by using three sliding windows along the temporal profiles, a left sliding window, a middle sliding window and a right sliding window, shown in Fig.3.

    Fig.3 Sliding window of the new proposed filter

    Suppose the size of the left sliding window, the middle sliding window and the right sliding window arewl,wcandwrrespectively.xmlandxmrdenote the minimum value of the left sliding window and the right sliding window respectively.The two minimum values are introduced to estimate the baseline of the temporal profile.The width of the middle sliding window is designed to extract the pulse signal.

    The local variance at a time of a temporal profile can be calculated by sliding a window along the time axis:

    (6)

    (7)

    The global variance of a temporal profile is

    (8)

    Wherewgis the size of the window that is used for global variance estimation.The global variance denotes the fluctuation level of the whole temporal profile.Whereas, the local variance denotes the sharp change of the temporal profile.If a pulse signal presents on a temporal profile at a time domain, the local variance of that time will become large.To consider both the local and global variance of a temporal profile, a new coefficient is designed as

    (9)

    To cut off the large local variance, another new parameter is designed as

    (10)

    Whereαtis a threshold that used to suppress large local variance.Therefore, the background fluctuation level can be estimated by

    xer=β(n)xev(n)+[1-β(n)]x(n)

    (11)

    (12)

    xml(n)andxmr(n)are the minimum value of the left sliding window and the right sliding window located on the two sides of a potential pulse signal.

    (13)

    (14)

    Wherewlandwrare the width of the left sliding window and the right sliding window respectively,nlandnris the start and the end time index of the left sliding window and the right sliding window respectively.

    To indicate the performance of the new proposed filter, the baseline of two temporal profiles of a target and the edge cloud is calculated.Fig.4(a)shows the baseline filtering result of the cloud edge temporal profile.Fig.4(c)shows the baseline filtering result of the target temporal profile, where the solid line is the temporal profile and the dashed line is the filtering result.It can be seen that the new local and global filter can well fit the background fluctuation and can eliminate the influence of the target pulse signal.

    By using the temporal profile filtering method to obtain the baseline, the target pulse signal on the temporal profile can be obtained:

    xp(n)=x(n)-xer(n)

    (15)

    Then the intensity of the target pulse signal is

    (16)

    Wherenis the time index of a temporal profile.The max(·)function calculates the maximum value of thexp(n).If a target exists in the temporal profile, the maximum value will correspond to the pulse signal.The target pulse signal extraction result is shown in Fig.4.

    As shown in Fig.4, the large deviation of the cloud edge temporal profile has been removed, while the pulse-like signal of the target is well preserved.It can be seen that the new filter can greatly eliminate the irregular fluctuation of background temporal profiles and persist the pulse signal well, which will improve the target detection performance.

    Fig.4 Target pulse signal extraction results

    To detect target pixel, only considering the height of the pulse signal is not very appropriate.The fluctuation level should also be considered.To estimate the fluctuation level, the temporal profiles are segmented to three pieces.The minimum variance of the three pieces is used as the variance of a temporal profile[20].Therefore, the detection criterion is

    (17)

    3 Spatial information correlation

    For a moving target in the scene, the targets have their own motion characteristics.A target may appear on several pixels adjacent to each other in the space, and may not appear in a single pixel in a scene[21-22].Therefore, the motion characteristics of the target itself can be used to further improve the detection perfor-mance of the proposed algorithm.Fig.5 shows the temporal profiles of a target pixel and its eight neighbor pixels.

    In Fig.5, three pixels in the middle row contain the target pulse signal, and three pulse signals have obvious sequential characteristics in the time domain, so the sequential characteristic can be used to further eliminate the interference of the background signal.

    Fig.5 Target temporal profiles of eight adjacent pixels

    For the temporal profiles of targets, they have large local variance.Thus, the local and global variance can be used to extract potential targets.The maximum ratio between local variance and global variance is

    (18)

    (19)

    lp=1 denotes that the pixel is a potential target pixel.Then considering the spatial correlation of the temporal profile:

    (20)

    (21)

    qcandqnebare the time index of potential targets of the central pixel and its neighbor pixels.Therefore, the time interval of adjacent pixels is

    lit=qneb-qc

    (22)

    Iflit

    4 Results and discussion

    To evaluate the performance of the proposed approach, we apply the new approach to two infrared image sequences that are captured by Rome Laboratory[22], named as “npa”, and “j2a”.Both the “npa” and “j2a” scenes contain two targets located in the heavy clutters.All the targets are emphasized by red boxes.To compare the performance of our proposed approach, the CWT[23], CLSP[24], TCF[25]and FF[26]approaches are selected as reference approaches.The detection results are shown in Fig.6.

    Fig.6 Detection results

    As shown in Fig.6, the CWT approach can highly enhance the response of target, but the heavy clutters and noisy background also have high responses.The CLSP approach has good performance in background suppression, yet some target pixels are also suppressed.The interferences of TCF approach are much higher in the three evaluated scenes.The FF approach has a high response on heavy clutters, whereas the target pixels are missed.However, evolving clutters have high responses, which can lead to high false alarms.The results of the new proposed approach have a high contrast of target and background in the evaluated scenes.All the targets are enhanced and the response of background becomes much weaker.

    To further evaluate the performance of the proposed approach, we calculate the receiver operating characteristic(ROC)curves of the evaluated approaches.The results are shown in Fig.7.

    Fig.7 ROC curves

    As shown in Fig.7, the ROC curves of the new proposed approach are at the top of the evaluated approaches.The results indicate that the new proposed approach has much better performance than the evaluated approaches.

    The proposed approach differentiates the target, background, and noise in the temporal domain perspective and performs target detection using temporal profiles.The key focus of the approach is the elimination of the moving cloud background temporal profiles.The local variance and the global variance are used to obtain the baseline of the temporal profile.The noise model uses a white Gaussian noise model, which is a model obtained by statistical data fitting in Ref.[16, 27]and has good performance in high-performance infrared imaging systems.In practical applications, the noise of the infrared imaging system may not subject to the Gaussian distribution.The detection performance of the proposed approach will decrease.Due to the improvement of the performance of infrared imaging equipment in recent years, the influence of noise is not the main interference factor relative to the background.Therefore, the proposed approach focuses on the cloud background removing and has good application prospect.

    5 Conclusions

    In this paper, a dim target detection algorithm based on temporal profile filtering is proposed, which makes the use of the temporal characteristics of the target and background.It can detect almost single-pixel dim targets in low-contrast, slowly moving backgrounds.A temporal profile filtering method is designed to obtain the detection baseline and the intensity of the pulse signal produced by targets.The spatial information of a moving target is also introduced to further eliminate the interferences of evolving background.The new proposed algorithm is applied to the detection of actual infrared image sequences and has achieved good results.In addition, the new proposed algorithm has the characteristics of a parallel operation, which is more conducive to the hardware implementation of the signal processor and has a strong practical value.

    国产成人免费无遮挡视频| 精品一品国产午夜福利视频| 日韩欧美免费精品| 欧美乱妇无乱码| 国产激情久久老熟女| 又黄又粗又硬又大视频| 黑人巨大精品欧美一区二区蜜桃| 日本一区二区免费在线视频| 国产伦人伦偷精品视频| 在线天堂中文资源库| 99热只有精品国产| 亚洲成人国产一区在线观看| 男女做爰动态图高潮gif福利片 | 欧美精品亚洲一区二区| 国产精品一区二区精品视频观看| 亚洲色图av天堂| netflix在线观看网站| 欧美 亚洲 国产 日韩一| 亚洲午夜精品一区,二区,三区| 一级a爱视频在线免费观看| 久久精品亚洲精品国产色婷小说| 韩国精品一区二区三区| 91成年电影在线观看| 国产av又大| 91大片在线观看| 午夜激情av网站| 免费少妇av软件| 亚洲av电影在线进入| 别揉我奶头~嗯~啊~动态视频| 国产激情久久老熟女| 欧美中文日本在线观看视频| 久久久久久免费高清国产稀缺| 国产精品99久久99久久久不卡| 在线国产一区二区在线| 国产亚洲欧美精品永久| 午夜老司机福利片| 青草久久国产| 久久久久九九精品影院| 久久久久国内视频| 制服诱惑二区| 久久这里只有精品19| 十分钟在线观看高清视频www| 校园春色视频在线观看| 高清在线国产一区| 夜夜躁狠狠躁天天躁| 热re99久久国产66热| 欧美性长视频在线观看| 国产精品99久久99久久久不卡| 欧美一区二区精品小视频在线| 88av欧美| 亚洲五月婷婷丁香| 丁香六月欧美| 午夜影院日韩av| 亚洲性夜色夜夜综合| 欧美日韩一级在线毛片| av电影中文网址| 91成人精品电影| 极品教师在线免费播放| 美女扒开内裤让男人捅视频| 黄色成人免费大全| 免费高清视频大片| 亚洲人成伊人成综合网2020| 看片在线看免费视频| 自线自在国产av| 午夜福利免费观看在线| 久久精品国产99精品国产亚洲性色 | 90打野战视频偷拍视频| 国产精品亚洲av一区麻豆| 午夜91福利影院| 女人高潮潮喷娇喘18禁视频| 亚洲国产精品一区二区三区在线| 欧美大码av| 午夜两性在线视频| 女生性感内裤真人,穿戴方法视频| 在线观看日韩欧美| 亚洲精品av麻豆狂野| 老司机靠b影院| av欧美777| 美女午夜性视频免费| 无遮挡黄片免费观看| 亚洲少妇的诱惑av| 一区二区日韩欧美中文字幕| 宅男免费午夜| 国产精品久久久久久人妻精品电影| 中文字幕人妻熟女乱码| 成年女人毛片免费观看观看9| 亚洲精品国产色婷婷电影| 成人精品一区二区免费| 国产精品国产高清国产av| 老汉色∧v一级毛片| 欧美日本亚洲视频在线播放| 美女大奶头视频| 久久久水蜜桃国产精品网| 亚洲av第一区精品v没综合| 精品国产一区二区久久| 黄色怎么调成土黄色| 午夜视频精品福利| 美女高潮到喷水免费观看| 极品人妻少妇av视频| 韩国av一区二区三区四区| 亚洲国产精品999在线| 久久精品国产亚洲av高清一级| 久久久国产一区二区| 曰老女人黄片| 久久中文看片网| 99在线视频只有这里精品首页| 真人做人爱边吃奶动态| 日本欧美视频一区| 久久九九热精品免费| 午夜免费鲁丝| 天天影视国产精品| 国产色视频综合| 看片在线看免费视频| 最好的美女福利视频网| 亚洲人成电影观看| netflix在线观看网站| 搡老岳熟女国产| 一级片免费观看大全| 国产人伦9x9x在线观看| 日本免费一区二区三区高清不卡 | bbb黄色大片| netflix在线观看网站| 国产高清视频在线播放一区| 久久人人97超碰香蕉20202| 超色免费av| 色精品久久人妻99蜜桃| 国产精品成人在线| 亚洲成a人片在线一区二区| 成人18禁在线播放| 久久 成人 亚洲| 老熟妇乱子伦视频在线观看| ponron亚洲| 在线永久观看黄色视频| 亚洲成人免费av在线播放| 日韩欧美一区二区三区在线观看| 天天添夜夜摸| 国产av又大| 国内久久婷婷六月综合欲色啪| 超碰成人久久| 亚洲男人天堂网一区| 国产极品粉嫩免费观看在线| 水蜜桃什么品种好| 啦啦啦 在线观看视频| 最新在线观看一区二区三区| 亚洲欧美激情在线| 国产午夜精品久久久久久| 色婷婷av一区二区三区视频| 女同久久另类99精品国产91| 天堂√8在线中文| 嫩草影院精品99| 激情视频va一区二区三区| 亚洲精品一区av在线观看| 男人舔女人的私密视频| 久久久久亚洲av毛片大全| www.999成人在线观看| 免费搜索国产男女视频| 精品久久久久久电影网| 两个人看的免费小视频| 麻豆一二三区av精品| 精品久久久久久,| 久久精品91无色码中文字幕| 黄色a级毛片大全视频| 99久久人妻综合| 精品福利永久在线观看| 脱女人内裤的视频| 99re在线观看精品视频| 三级毛片av免费| 免费日韩欧美在线观看| www.999成人在线观看| 国产区一区二久久| 亚洲av五月六月丁香网| 国产一区二区三区综合在线观看| 亚洲一区高清亚洲精品| 亚洲欧美日韩另类电影网站| 色综合站精品国产| 成人18禁高潮啪啪吃奶动态图| ponron亚洲| 日日干狠狠操夜夜爽| 久久热在线av| 美女大奶头视频| 午夜免费激情av| 久久久久久久久中文| 久久国产精品男人的天堂亚洲| 91国产中文字幕| 好看av亚洲va欧美ⅴa在| 久久天堂一区二区三区四区| 十分钟在线观看高清视频www| 变态另类成人亚洲欧美熟女 | 黄色视频,在线免费观看| 国产精品永久免费网站| 国产男靠女视频免费网站| 久久亚洲真实| 精品久久久精品久久久| 天堂动漫精品| 午夜久久久在线观看| 女人被躁到高潮嗷嗷叫费观| 欧美成人性av电影在线观看| 免费观看精品视频网站| 久久亚洲精品不卡| 午夜精品在线福利| 黄色成人免费大全| videosex国产| 精品久久久久久久久久免费视频 | 久99久视频精品免费| 欧美精品啪啪一区二区三区| 一个人免费在线观看的高清视频| 黄片播放在线免费| 国产精品久久久av美女十八| 亚洲一区二区三区欧美精品| 在线十欧美十亚洲十日本专区| 亚洲精品美女久久久久99蜜臀| www国产在线视频色| 亚洲精品国产区一区二| 久久精品91无色码中文字幕| 欧美国产精品va在线观看不卡| 人人妻人人爽人人添夜夜欢视频| 首页视频小说图片口味搜索| 自线自在国产av| 麻豆av在线久日| 91九色精品人成在线观看| a级片在线免费高清观看视频| 操美女的视频在线观看| 悠悠久久av| 在线看a的网站| 日日爽夜夜爽网站| 久久中文看片网| 亚洲成国产人片在线观看| 国产一区二区三区视频了| 欧美成人性av电影在线观看| 精品国产国语对白av| 亚洲,欧美精品.| 老司机午夜福利在线观看视频| 欧美日韩亚洲高清精品| 电影成人av| 国产亚洲精品综合一区在线观看 | 久久久久久久久中文| 国产高清激情床上av| 欧美人与性动交α欧美精品济南到| 激情在线观看视频在线高清| 欧美日韩乱码在线| 丝袜美足系列| 久久精品影院6| 午夜成年电影在线免费观看| 欧美av亚洲av综合av国产av| 日本vs欧美在线观看视频| 亚洲成人免费电影在线观看| a级毛片在线看网站| 欧美乱码精品一区二区三区| 天堂动漫精品| 最新美女视频免费是黄的| 国产成人系列免费观看| 精品久久久久久电影网| 18禁观看日本| 如日韩欧美国产精品一区二区三区| 欧美激情久久久久久爽电影 | 精品熟女少妇八av免费久了| 夜夜看夜夜爽夜夜摸 | 国产1区2区3区精品| 一进一出好大好爽视频| 熟女少妇亚洲综合色aaa.| 91字幕亚洲| 黄片大片在线免费观看| 变态另类成人亚洲欧美熟女 | 成人三级做爰电影| 久热爱精品视频在线9| 亚洲熟女毛片儿| 久久国产精品人妻蜜桃| 欧美乱色亚洲激情| 韩国精品一区二区三区| 亚洲精品国产精品久久久不卡| 精品无人区乱码1区二区| 99国产精品一区二区三区| 国产主播在线观看一区二区| 一区二区三区精品91| 国产1区2区3区精品| 91成人精品电影| 日韩av在线大香蕉| 国产精品一区二区在线不卡| 亚洲一区二区三区不卡视频| 亚洲国产看品久久| 日韩高清综合在线| 国产99久久九九免费精品| 国产男靠女视频免费网站| 满18在线观看网站| 亚洲avbb在线观看| 亚洲精品在线观看二区| 国产欧美日韩一区二区精品| 黄网站色视频无遮挡免费观看| 99国产精品一区二区蜜桃av| www日本在线高清视频| 久久久精品欧美日韩精品| 一级毛片女人18水好多| 人人妻人人爽人人添夜夜欢视频| 国产日韩一区二区三区精品不卡| 他把我摸到了高潮在线观看| 法律面前人人平等表现在哪些方面| 男人舔女人的私密视频| 中文字幕另类日韩欧美亚洲嫩草| 久久久久久人人人人人| av视频免费观看在线观看| 一个人观看的视频www高清免费观看 | 午夜a级毛片| 69精品国产乱码久久久| 超碰97精品在线观看| 国产精品 国内视频| 超碰成人久久| 国内毛片毛片毛片毛片毛片| 好看av亚洲va欧美ⅴa在| 美女高潮到喷水免费观看| 淫妇啪啪啪对白视频| 黄色女人牲交| 在线播放国产精品三级| 午夜福利一区二区在线看| 少妇的丰满在线观看| 久久久久亚洲av毛片大全| 波多野结衣一区麻豆| 亚洲五月色婷婷综合| 亚洲一码二码三码区别大吗| 色老头精品视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 久久精品亚洲精品国产色婷小说| 香蕉丝袜av| 99国产精品99久久久久| 午夜福利免费观看在线| 男男h啪啪无遮挡| 国产欧美日韩精品亚洲av| 91大片在线观看| 在线永久观看黄色视频| av天堂久久9| 国产av一区二区精品久久| 老司机福利观看| 村上凉子中文字幕在线| 十分钟在线观看高清视频www| 波多野结衣高清无吗| 一级作爱视频免费观看| 999久久久国产精品视频| 麻豆国产av国片精品| 动漫黄色视频在线观看| 午夜精品在线福利| 亚洲成人久久性| 大香蕉久久成人网| 久久精品91蜜桃| 黄片大片在线免费观看| 亚洲精品国产区一区二| 中文字幕人妻熟女乱码| 亚洲 国产 在线| 久9热在线精品视频| 国产一区二区三区视频了| 十八禁人妻一区二区| 国产精品1区2区在线观看.| 亚洲一码二码三码区别大吗| 97人妻天天添夜夜摸| 最近最新中文字幕大全免费视频| 亚洲午夜精品一区,二区,三区| 日日干狠狠操夜夜爽| 超碰成人久久| 一夜夜www| 99国产精品一区二区三区| 欧美日韩乱码在线| 日韩精品中文字幕看吧| 久久亚洲真实| 女同久久另类99精品国产91| 青草久久国产| 一进一出抽搐gif免费好疼 | 国产精品香港三级国产av潘金莲| 夫妻午夜视频| 亚洲,欧美精品.| 欧美久久黑人一区二区| 日韩欧美三级三区| 免费观看精品视频网站| 色综合站精品国产| 欧美乱码精品一区二区三区| 18禁美女被吸乳视频| 在线十欧美十亚洲十日本专区| 狠狠狠狠99中文字幕| 亚洲va日本ⅴa欧美va伊人久久| 51午夜福利影视在线观看| 老司机亚洲免费影院| 18禁美女被吸乳视频| 色婷婷久久久亚洲欧美| 色精品久久人妻99蜜桃| 亚洲欧美激情在线| 国产熟女午夜一区二区三区| 韩国精品一区二区三区| 国产精品亚洲av一区麻豆| 国产精品久久久av美女十八| 高清av免费在线| 精品人妻在线不人妻| 天堂影院成人在线观看| 亚洲精品美女久久久久99蜜臀| 脱女人内裤的视频| 亚洲狠狠婷婷综合久久图片| 久久精品亚洲熟妇少妇任你| 一个人观看的视频www高清免费观看 | 夜夜躁狠狠躁天天躁| 午夜福利,免费看| 我的亚洲天堂| 91成年电影在线观看| 精品卡一卡二卡四卡免费| 大陆偷拍与自拍| 国产精品野战在线观看 | 曰老女人黄片| 午夜免费激情av| 国产一区二区三区视频了| 国产熟女午夜一区二区三区| 欧美+亚洲+日韩+国产| 99久久精品国产亚洲精品| 亚洲欧美日韩无卡精品| 多毛熟女@视频| 日韩欧美一区二区三区在线观看| 久久热在线av| 亚洲av日韩精品久久久久久密| 久久国产亚洲av麻豆专区| 精品久久久久久久毛片微露脸| 99久久99久久久精品蜜桃| 少妇裸体淫交视频免费看高清 | 国产精品九九99| 91精品国产国语对白视频| 亚洲性夜色夜夜综合| 两性午夜刺激爽爽歪歪视频在线观看 | 日日爽夜夜爽网站| 天天添夜夜摸| 亚洲午夜精品一区,二区,三区| av网站免费在线观看视频| 一边摸一边做爽爽视频免费| 波多野结衣一区麻豆| 伊人久久大香线蕉亚洲五| e午夜精品久久久久久久| 久久久国产欧美日韩av| 亚洲男人的天堂狠狠| 国产高清激情床上av| 国产日韩一区二区三区精品不卡| 欧美日本中文国产一区发布| av电影中文网址| 在线看a的网站| 好看av亚洲va欧美ⅴa在| 国产精品二区激情视频| 国产一区二区激情短视频| 精品国产乱码久久久久久男人| 制服人妻中文乱码| 日本五十路高清| 91国产中文字幕| 老司机在亚洲福利影院| 国产精品日韩av在线免费观看 | 成人亚洲精品av一区二区 | 日本vs欧美在线观看视频| ponron亚洲| 十八禁人妻一区二区| 老熟妇乱子伦视频在线观看| 首页视频小说图片口味搜索| 国产成人欧美| 成年人黄色毛片网站| 侵犯人妻中文字幕一二三四区| 久久久精品欧美日韩精品| 丰满迷人的少妇在线观看| 一a级毛片在线观看| 两人在一起打扑克的视频| 麻豆久久精品国产亚洲av | 亚洲av五月六月丁香网| 免费观看人在逋| 色播在线永久视频| 亚洲久久久国产精品| 在线播放国产精品三级| 一级a爱片免费观看的视频| 久久久久久亚洲精品国产蜜桃av| 黄色 视频免费看| 欧美成狂野欧美在线观看| 精品乱码久久久久久99久播| 麻豆av在线久日| 老司机亚洲免费影院| 国产精品二区激情视频| 人妻久久中文字幕网| 亚洲国产精品sss在线观看 | 男男h啪啪无遮挡| 99国产精品免费福利视频| 夫妻午夜视频| 国产一区在线观看成人免费| 成人黄色视频免费在线看| 一级黄色大片毛片| 交换朋友夫妻互换小说| 中文字幕高清在线视频| 久久香蕉国产精品| 我的亚洲天堂| 亚洲av成人av| 50天的宝宝边吃奶边哭怎么回事| 国产av一区二区精品久久| 高潮久久久久久久久久久不卡| 国产av精品麻豆| 午夜激情av网站| 成人手机av| 波多野结衣高清无吗| 精品日产1卡2卡| 欧美黑人欧美精品刺激| 久久精品国产综合久久久| a级毛片在线看网站| 欧美日韩亚洲高清精品| 国产成人欧美在线观看| 亚洲第一青青草原| 精品卡一卡二卡四卡免费| 一个人观看的视频www高清免费观看 | 高清欧美精品videossex| 麻豆av在线久日| 国产精品综合久久久久久久免费 | 久久人人爽av亚洲精品天堂| 久久久国产精品麻豆| 老司机亚洲免费影院| 久久午夜亚洲精品久久| 最好的美女福利视频网| 久久午夜综合久久蜜桃| 99精国产麻豆久久婷婷| 一级黄色大片毛片| 亚洲人成伊人成综合网2020| 一区二区日韩欧美中文字幕| 真人做人爱边吃奶动态| av超薄肉色丝袜交足视频| 不卡一级毛片| 精品欧美一区二区三区在线| 深夜精品福利| 免费在线观看视频国产中文字幕亚洲| 嫁个100分男人电影在线观看| 国产欧美日韩一区二区三区在线| 成人亚洲精品av一区二区 | 国产伦一二天堂av在线观看| 这个男人来自地球电影免费观看| 婷婷精品国产亚洲av在线| 国产片内射在线| 欧美日韩中文字幕国产精品一区二区三区 | 黄色毛片三级朝国网站| 久久99一区二区三区| 不卡一级毛片| 中文字幕色久视频| 免费高清视频大片| a级毛片黄视频| 麻豆国产av国片精品| 久久国产精品男人的天堂亚洲| 国产日韩一区二区三区精品不卡| 日韩欧美免费精品| 亚洲精品在线美女| 国产精品亚洲av一区麻豆| 岛国视频午夜一区免费看| 搡老熟女国产l中国老女人| 99riav亚洲国产免费| 新久久久久国产一级毛片| 国产高清videossex| 一个人免费在线观看的高清视频| 亚洲精品一卡2卡三卡4卡5卡| 精品国产一区二区久久| 一进一出好大好爽视频| 99久久99久久久精品蜜桃| 18禁裸乳无遮挡免费网站照片 | 午夜福利影视在线免费观看| 午夜免费激情av| 国产三级在线视频| 精品第一国产精品| 天堂中文最新版在线下载| 亚洲精品在线美女| 老司机福利观看| 五月开心婷婷网| 9热在线视频观看99| 视频区图区小说| 男女做爰动态图高潮gif福利片 | 九色亚洲精品在线播放| 99热国产这里只有精品6| 日韩精品免费视频一区二区三区| 一级毛片高清免费大全| 久久精品91无色码中文字幕| 女人高潮潮喷娇喘18禁视频| 精品久久久久久久久久免费视频 | 看黄色毛片网站| 久久天躁狠狠躁夜夜2o2o| 午夜免费成人在线视频| 国产在线精品亚洲第一网站| 久久人妻熟女aⅴ| 免费在线观看影片大全网站| 精品欧美一区二区三区在线| 久久香蕉国产精品| 黑人巨大精品欧美一区二区mp4| 日本vs欧美在线观看视频| 欧美黑人欧美精品刺激| 色老头精品视频在线观看| 操出白浆在线播放| 另类亚洲欧美激情| 国产亚洲精品综合一区在线观看 | 国产三级在线视频| 人人澡人人妻人| 欧美在线一区亚洲| 999久久久国产精品视频| 久久久久精品国产欧美久久久| 国产有黄有色有爽视频| 亚洲一区二区三区色噜噜 | 亚洲成人精品中文字幕电影 | 国产蜜桃级精品一区二区三区| 99久久99久久久精品蜜桃| 欧美精品一区二区免费开放| 国产xxxxx性猛交| 在线国产一区二区在线| 十八禁人妻一区二区| 久久国产精品男人的天堂亚洲| 美女福利国产在线| a在线观看视频网站| 丁香欧美五月| 成人精品一区二区免费| 国产成人影院久久av| 天天影视国产精品| 国产成人精品久久二区二区免费| 国产成人影院久久av| 美女午夜性视频免费| 99久久99久久久精品蜜桃| 成人手机av| 国产高清激情床上av| 国产成+人综合+亚洲专区| 久久香蕉激情| 欧美午夜高清在线| 757午夜福利合集在线观看| 欧美日韩一级在线毛片|