• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Current understanding on the roles of gut microbiota in fish disease and immunity

    2019-01-26 07:00:42Jin-BoXiong,LiNie,JiongChen
    Zoological Research 2019年2期

    Intensive aquaculture has increased the severity and frequency of fish diseases. Given the functional importance of gut microbiota in various facets of host physiology,modulation of this microbiota is a feasible strategy to mitigate emerging diseases in aquaculture. To achieve this,a fundamental understanding of the interplay among fish health,microbiota,and invading pathogens is required.This commentary focuses on current knowledge regarding the associations between fish diseases,dysbiosis of gut microbiota,and immune responses.Furthermore,updated research on fish disease from an ecological perspective is discussed,including colonization resistance imposed by commensals and strategies used by pathogens to overcome resistance.We also propose several directions for future research,such as exploration of the causal links between fish diseases and specific taxa,and identification of universal gut microbial biomarkers for rapid disease diagnosis.

    Fish aquaculture is the fastest growing animal food sector to support the growing human population,with a year-on-year growth rate of 10.4%(FAO,2013).However, fish production is threatened by numerous diseases(Lafferty et al.,2015).This is particularly pertinent to aquacultural systems that impose various stressors on aquatic animals(Lafferty et al.,2015;Li et al.,2017a).Traditionally,antibiotics have been widely applied to prevent and treat diseases in aquacultures.However,antibiotic abuse has been highlighted in the transfer of resistance genes among pathogens,and has raised concerns regarding environmental pollution and consumer safety(Brandt et al.,2015).In recent years,the introduction of probiotics has been considered a sustainable strategy to improve fish health and protect them from emerging diseases(de Bruijn et al.,2017).Despite the extensive list of candidate probiotics investigated in previous studies(Dawood et al.,2016;Liu et al.,2018;Ramesh et al.,2017),successful application has been limited,as reported in a survey of farmers(Xiong et al.,2016).The lack of consistency in probiotic performance may be due to unsuccessful colonization as a result of sudden changes in habitats,e.g.,from aerobic culture conditions to the anaerobic intestines(Giatsis et al.,2016).In addition,the fish gut is a main pathogen transmission route and a portal of entry(de Bruijn et al.,2017;Li et al.,2017a;Ring? et al.,2007;Zhang et al.,2015).Therefore,understanding the factors that dictate the invasion of pathogens and establishment of probiotics in the intestine will provide an initial step towards predicting and treating fish diseases.

    Gut microbiota can affect fish physiology,development,life span,immunity,and barriers against pathogens(Burns et al.,2016;Nie et al.,2017;Smith et al.,2017;Yan et al.,2016).Therefore,the gut microbiota plays an indispensable role in fish fitness.Several recent reviews have centered on the diversity and functions of bacterial communities in healthy fish(de Bruijn et al.,2017),as well as on the external factors that affect fish gut microbiota(Wang et al.,2017)and interactions between gut microbiota and innate immunity in fish(Gómez&Balcázar,2008;Nie et al.,2017).However,most previous studies have focused on factors that govern healthy gut microbiota,such as diet,rearing conditions,and fish genotype(Schmidt et al.,2015;Sullam et al.,2012;Yan et al.,2016).In contrast,few studies have reported on the interplay among gut microbiota, fish immunity,and disease(Nie et al.,2017).In this commentary,we summarize current knowledge on the associations between if sh immunity,gut microbiota,and invading intestinal pathogens.We also highlight recent progress in uncovering the ecological processes of fish diseases.

    According to the diversity resistance hypothesis,a more diverse microbial community harbors greater probability of having a species with an antagonistic trait toward an invader or pathogen(Fargione&Tilman,2005). Consistent with this assertion,higher alpha diversity(mean species diversity at the habitat level)is frequently detected in healthy fish compared with diseased fish,such as largemouth bronze gudgeon(Coreius guichenoti)(Li et al.,2016),crucian carp(Carassius auratus)(Li et al.,2017a),and ayu(Plecoglossus altivelis)(Nie et al.,2017).One possible explanation for this pattern is that the invading pathogens out-compete the gut commensals,thereby reducing diversity.Similarly,gnotobiotic zebra fish(Danio rerio Hamilton,1822)have been shown to be more sensitive to pathogenic infections(Oyarbide et al.,2015).In addition,antibiotic administration generally reduces diversity of the gut microbiota,which,in turn,facilitates colonization by external pathogens(He et al.,2017).Indeed,gut microbial diversity has been used as a biomarker of fish health and metabolic capacity(Clarke et al.,2014),with low diversity and stability of the microbiota closely associated with fish disease(He et al.,2017;Li et al.,2017a;Nie et al.,2017).A preponderance of evidence has demonstrated that more diverse gut communities exert greater protective effects on the host(De Schryver&Vadstein,2014;Johnson et al.,2008;Zhu et al.,2016).In this regard,gut microbial diversity in fish should be maximized to reduce pathogenic invasions in aquaculture systems.

    Fish are in continual contact with a complex and dynamic planktonic microbiota. Therefore,it is expected that gut microbiota in fish will be largely affected by microbes in the environment.This has been demonstrated by the high similarity between water and gut microbiotas of Atlantic cod larvae(Gadus morhua)(Bakke et al.,2013),rainbow trout(Oncorhynchus mykiss)(Wong et al.,2013),and tilapia larvae(Giatsis et al.,2015). Based on the co-evolution theory,however,to improve host fitness,mutualistic relationships between fish and gut microbiota should be tightly regulated to ensure suitable bacterial colonization(McFall-Ngai et al.,2013).As a result,gut bacterial communities between recently caught and domesticated fish share similar community structures(Roeselers et al.,2011).Intriguingly,reciprocal gut microbiota transplants between zebra fish and mice have shown that the relative abundance of lineages changes to resemble normal gut microbiota of the recipient host(Rawls et al.,2006).Similarly,previous meta-analysis has revealed that host phylogeny determines the composition of fish gut bacteria,even at the bacterial phylum level(Sullam et al.,2012).For example,the gut microbiota of largemouth bronze gudgeon is dominated by phyla Proteobacteria,Actinobacteria,and Tenericutes(Li et al.,2016),whereas Gammaproteobacteria,Alphaproteobacteria,Firmicutes,and Bacteroides are predominant in the gut of ayu(Nie et al.,2017).This pattern also holds true for different fish species(herbivorous Ctenopharyngodon idellus,carnivorous Siniperca chuatsi,and Silurus meridionalis)reared in the same pond(Yan et al.,2016).Indeed,it has been suggested that gut microbiotas of fish are distinct from those in rearing water and/or sediment(Li et al.,2017a;Schmidt et al.,2015;Zhang et al.,2018).However,this does not mean that the gut microbiota is temporally stable during the entire lifetime of the fish;rather,gut bacterial communities vary significantly during the developmental stages in healthy fish(Li et al.,2017b;Stephens et al.,2016;Yan et al.,2016;Zhang et al.,2018). This high temporal pattern is largely contributed to by maturation of the host(Burns et al.,2016;Zhang et al.,2018)as selection of gut microbiota is reinforced with time.Intriguingly,several species of fish exhibit core gut microbiota,including zebra fish(Roeselers et al.,2011),rainbow trout(Wong et al.,2013),channel cat fish(Ictalurus punctatus),largemouth bass(Micropterus salmoides),and bluegill(Lepomis macrochirus)(Larsen et al.,2014),though location-dependent variations in gut microbiota also exist.These core lineages may be used as baselines for future probiotic trials.

    It is worth emphasizing,however,that the tight link between fish and their gut microbiota can be disrupted by diverse variables,with host disease being the primary factor(Li et al.,2017a;Nie et al.,2017).Gut bacteria reside on mucosal surfaces,which provide the first line of defense against pathogens.Specifically,commensal bacteria compete for or modify the ecological niche and available nutrients to inhibit the colonization and proliferation of incoming pathogens in the intestine(Kamada et al.,2013). For example,well-known probiotic Bifidobacterium prevents pathogenic Escherichia coliinvasion via acidification of the intestinal environment(interspecies barrier effect)(Fukuda et al.,2012).In addition,gut commensals can produce bacteriocins and proteinaceous toxins that specifically inhibit members of the same or similar bacterial species(intraspecies barrier effect). Therefore,susceptibility to pathogenic infection seems to rely,at least in part,on the structure of the host’s gut microbial community(Galindo-Villegas et al.,2012;He et al.,2017). Indeed,dysbiosis in the gut microbiota is frequently associated with fish disease(He et al.,2017;Nie et al.,2017).However,it is currently unclear whether changes in the microbial community are a cause or consequence of these diseases.

    Responses of a community to disturbance(e.g.,disease)are not solely the sum of the traits of individual species but are also dependent on interspecies interactions(Faust&Raes,2012;Zhu et al.,2016). Our recent work showed that pathogenic infections have a significant impact on the gut microbiota,with diseased ayu exhibiting less complex and diverse interspecies interactions(Nie et al.,2017).Indeed,interspecies interaction analysis has been applied to identify candidate pathogens and/or probiotics in gut diseases(Buffie et al.,2015;Dai et al.,2018).Furthermore,it is apparent that populations,not clones,are the causalagents of some aquaculture diseases(Hou et al.,2018;Lemire et al.,2015).This idea overturned the traditional view that only a pathogen and/or virulence gene result in disease(Falkow,1988),and led to the ‘ecological Koch’s postulates’,which aims to untangle the interplay between host health,microbiota,invading pathogens,and diseases(Vonaesch et al.,2018). However,current understanding on the ecological processes that govern the gut microbiota in fish is still in its infancy,and no consensus has yet emerged.For example,it has been reported that the relative importance of determinism increases as zebra fish mature(Burns et al.,2016),whereas other studies have shown the opposite trend(Li et al.,2017b;Yan et al.,2016).Understanding the factors that govern the gut microbiota provides an initial step to establishing and maintaining a healthy fish microbiome(de Bruijn et al.,2017;De Schryver&Vadstein,2014).In this regard,exploring the underlying mechanisms of fish diseases will provide an integrated approach to systems biology and ecology.

    Going a further step,gut signatures can also be associated with fish diseases.For example,taxa Affiliated with genera Vibrio,Aeromonas,and Shewanella are overrepresented in the gut microbiota of “red-operculum”disease in crucian carp,whereasCetobacterium speciesare indicatorsof healthy fish(Li et al.,2017a). Similarly,Aeromonas is a biomarker for largemouth bronze gudgeon suffering from furunculosis(Li et al.,2016). This phenomenon suggests that certain gut microbial signatures are indicative of host health status irrespective of disease pathogeny,as has been demonstrated in human gut diseases(Mancabelli et al.,2017). Recent mechanistic studies suggest that the inflammatory host response produces reactive oxygen species,which facilitate a competitive advantage to facultative anaerobic lineages,such as Aeromonas(Winter&B?umler,2014).To date,however,surprisingly few studies have examined the association between disease severity and degree of dysbiosis in the gut microbiota during disease progression in fish.As a result,it is unclear whether the transition from healthy to diseased gut microbiota is gradient-like or a discrete process(Knights et al.,2014).If the transition is gradual,gut microbial signatures could serve as independent variables for predicting the incidence of fish disease,similar to that observed in shrimp diseases(Xiong et al.,2017;Xiong et al.,2018).

    In addition to direct inhibition,the fish gut microbiota also plays critical roles in epithelial renewal and maturation,which,in turn,regulate immune responses(Gómez&Balcázar,2008;Wangetal.,2017). Undernormalconditions,goblet cells secrete mucus,which functions as a barrier to inhibit migration of microorganisms out of the intestinal lumen(Ring? et al.,2007). A mature gut mucosa is also essential for distinguishing pathogens from commensals through pattern recognition receptors(PRRs,such as toll-like receptors,RIG-I-like receptors,NOD-like receptors and AIM2-like receptors),which detect bacterial antigens and activate signaling cascades to regulate immune responses(cytokines)(Pérez et al.,2010). For example,the toll-like receptor family,a representative member of PRRs,recognizes conserved structures in pathogens,which can recruit and regulate the immune and inflammatory cells that initiate and mediate systemic immune responses(Fasano&Sheadonohue,2005). Additionally,commensals can protect the host by depriving invading pathogens of nutrients,secreting a range of antimicrobial substances and occupying the niche(de Bruijn et al.,2017;Gómez&Balcázar,2008;Pérez et al.,2010).However,if this balance is disrupted,such as during pathogenic infections,the innate and adaptive immune systems are activated to prevent disease exacerbation. Conversely,there is a correlation between colonization of probiotics and innate immune responses,such as phagocytic and alternative complement pathway activities,which protect fish against pathogens(Balcázar et al.,2007;Kim&Austin,2006).

    Studies on gnotobiotic zebra fish demonstrate that the gut microbiota enhances the stability of β-catenin via activation of Wnt signaling,thereby promoting intestinal cell proliferation over normal ontogenesis(Cheesman et al.,2011;Rawls et al.,2006).Compared with germ-free zebra fish,conventionally raised zebra fish exhibita greaterabundance ofgenes associated with epithelial proliferation and innate immune response(Rawls et al.,2004).However,germ-free zebra fish with a commensal microbiota can robustly activate NF-κB and its target genes in intestinal and extra-intestinal tissues(Kanther et al.,2011).Similarly,colonization of commensals in larvae stimulates neutrophils and activates pro-inflammatory genesthrough the TLR/MyD88signaling pathwayand phagocytes,which can enhance disease resistance in zebra fish(Galindo-Villegas et al.,2012).Specifically,the gut microbiota induces intestinal macrophages by upregulating pro-IL-1β.The mature form of IL-1β (activated by pathogen infection)recruits neutrophils,thereby priming macrophages to eradicate pathogens(Kamada et al.,2013). Significant association between the gut microbiota and transcription level of secreted immunoglobulin M(sIgM,a proxy for adaptive immune development)has been reported during healthy zebra fish development(Stephens et al.,2016).Compared with functional B-and T-cell receptor immune-de fi cient zebra fish,wild-type zebra fish exhibit an individualized gut microbiota and increased determinism of gut microbiota assembly(Stagaman et al.,2017).Our recent work also showed pro-inflammatory cytokines IL-1β and TNF-α to be activated in response to pathogenic infections in ayu(Nie et al.,2017). On the other hand,administration of probiotics to sea bass(Dicentrarchus labrax L.)results in the downregulation of IL-1β and transforming growth factor-β (Picchietti et al.,2008).Collectively,these results indicate a normal gut microbiota contributes indispensable roles in regulating the fish immune system,and vice versa.

    As described above,the host and gut microbiota have co-evolved multiple strategies to not only prevent colonization by external pathogens,but also suppress resident pathogens.However,pathogens have developed various strategies to overcome these barriers,including entry into the host,occupation of a unique niche,circumvention of commensals and host defense barriers,and acquisition of nutrients from fish hosts(Ring? et al.,2007).Specifically,pathogens express sortases and adhesins for anchoring to host intestinal cells.After attachment to the intestinal tract,pathogens produce toxins and hemolysins to aggressively damage the intestinal lining and induce inflammatory responses(Mazmanian et al.,2001;Ring? et al.,2007).There is evidence that the inflamed environment induces production of reactive oxygen and/or nitrogen species by the host,resulting in a bloom of facultative anaerobic bacteria(e.g.,Proteobacteria)and reduction in obligate anaerobic bacteria(Winter&B?umler,2014).This shift in community composition compromises colonization resistance imposed by gut microbiota,thereby facilitating the overgrowth of potentially harmful indigenous bacterial species(Galindo-Villegas et al.,2012;He et al.,2017).To escape from host immune clearance,some enteric pathogens harbor a modified form of siderophore(chelating iron under iron-limiting conditions)that is not inhibited by host cell-secreted lipocalin 2,which can further promote the growth of pathogens(Fischbach et al.,2006). Additionally,pathogenic capsules promote virulence by reducing host immune responses(Singh et al.,2011).Gram-negative pathogens commonly encode the type 6 secretion system(T6SS),which enables pathogens to attack the resident microbiota and to confer them with a competitive advantage(Russell et al.,2014;Vonaesch et al.,2018).In addition,to counteract nutritional competition by commensals,some pathogens can use alternative or pathogen-specific nutrients,which expand the nutrient niche for their colonization(Fabich et al.,2008).Alternatively,invaders can also occupy a distinct niche during replication to reduce competition with commensals.For example,pathogenic Citrobacter rodentium expresses intimin,which enables its localization to the intestinal epithelial surface,where commensals do not normally occur(Kamada et al.,2012). Intriguingly,pathogens can sense cues(e.g.,bile acids,temperature,and nutrient availability)from their host to regulate virulence genes at the appropriate location(Fraser&Brown,2017;Vonaesch et al.,2018).This regulatory mechanism can therefore maximize the chance of successful invasion.

    Once a pathogen escapes colonization resistance imposed by gut commensals and host immunity,it can replicate and further express diverse virulence factors to attack fish and cause disease. There is increasing evidence that pathogenic infections cause profound disturbances to the fish gut microbiota and immune responses(He et al.,2017;Nie et al.,2017;Ring? et al.,2007).Notably,variations in the gut microbiota of ayu are significantly associated with TNF-α and IL-1β expression levels(Nie et al.,2017).Similarly,antibiotic administration can also cause imbalance in the gut microbiota of zebra fish,resulting in a compromised immune response,which further increases susceptibility to infections(He et al.,2017).Molecular experiments further suggest that decreased water quality can promote pathogen virulence(Penttinen et al.,2016).Therefore,disease onset in fish can be attributed to a variety of disturbances,such as environmental stress and antibiotic administration,which disrupt the gut microbiota in stressed fish and enhance the virulence of pathogens.

    In summary,the introduction of pathogens into hosts is antagonized by environmental pressure, fish filtering,and colonization resistance of gut commensals(Mallon et al.,2015).In healthy fish,the gut microbiota directly antagonizes the colonization or overgrowth of pathogens(Nie et al.,2017). These effects include competition for resources,niche exclusion,and suppression of virulence factors. In addition,pathogens are suppressed by immune clearance.In diseased fish,balances in the protective commensal microbial community and host immunity are disturbed by external factors.For example,antibiotic usage can decrease species diversity and alter gut microbial community structure in fish(He et al.,2017).Pathogenic infections have been shown to significantly disrupt interspecies interactions in the fish gut microbiota(Nie et al.,2017). These alterations may open up ecological niches for pathogenic invasions.Furthermore,environmental stresses may impose additional pressure on fish,leading to compromised immunity.Lastly,the expression of virulence genes in pathogens can also be induced by poor water quality(Penttinen et al.,2016;Zhou et al.,2012).These detrimental effects cumulatively attenuate resistance to colonization by pathogens and allow overgrowth of harmful colonies that may lead to disease.

    Given the functional importance of the gut microbiota in improving host fitness,introduction or augmentation of beneficial microbes may be a promising approach for protecting fish from emerging diseases(de Bruijn et al.,2017).However,various studies have identified long lists of implicated microbes that may contribute to the gut microbiota dysbiosis-disease relationship,and these associations may reflect biomarkers of disease.Therefore,future work is required to explore the causal links between fish disease and specific taxa,which may enable us to optimize gut microbiota composition to mitigate fish disease. Pathogenic infections involve several phases:introduction,establishment,spread,and impact,which are governed by the environment,host,and gut microbiota(Mallon et al.,2015).To understand the mechanisms underlying fish disease,one should focus on the infection process from an ecological prospective(De Schryver&Vadstein,2014;Xiong et al.,2016)instead of isolating potential pathogens from diseased fish.Next generation sequencing has allowed the identification of universal gut microbial biomarkers(common features of affected individuals)in various fish diseases from different regions. Therefore,we recommend that relevant information should be deposited into a public database,which could enable convenient cross-disease comparisons. This would facilitate rapid diagnosis as well as promote prediction of the course and prognosis of disease.

    COMPETING INTERESTS

    The authors declare that they have no competing interests.

    AUTHORS’CONTRIBUTIONS

    J.C.and J.B.X.designed the study.J.B.X.wrote the manuscript with help from

    J.C.and L.N..All authors read and approved the final version of the manuscript.

    Jin-Bo Xiong1,Li Nie1,2,Jiong Chen1,2,*1Laboratory of Biochemistry and Molecular Biology,School of Marine Sciences,Ningbo University,Ningbo Zhejiang 315211,China

    2Key Laboratory of Applied Marine Biotechnology of Ministry of Education,Ningbo University,Ningbo Zhejiang 315211,China

    *Corresponding author,E-mail:jchen1975@163.com

    欧美日韩精品网址| 夜夜夜夜夜久久久久| 一本综合久久免费| 日韩高清综合在线| 9191精品国产免费久久| 午夜精品在线福利| 少妇被粗大的猛进出69影院| 精品久久久久久久人妻蜜臀av| 日韩av在线大香蕉| 法律面前人人平等表现在哪些方面| 国产一区在线观看成人免费| 日本 欧美在线| 亚洲国产精品合色在线| 亚洲av第一区精品v没综合| 久久婷婷成人综合色麻豆| 国产v大片淫在线免费观看| 香蕉av资源在线| 国产精品一区二区免费欧美| 欧美zozozo另类| 九色成人免费人妻av| 国产成人精品久久二区二区免费| 成年人黄色毛片网站| 两个人免费观看高清视频| 可以在线观看的亚洲视频| 男女做爰动态图高潮gif福利片| 成熟少妇高潮喷水视频| 琪琪午夜伦伦电影理论片6080| 99热这里只有是精品50| 日韩有码中文字幕| 又紧又爽又黄一区二区| 嫁个100分男人电影在线观看| 国产欧美日韩一区二区三| 无限看片的www在线观看| 18禁黄网站禁片午夜丰满| 国产三级黄色录像| 国产一级毛片七仙女欲春2| 国内精品久久久久精免费| 欧美午夜高清在线| 免费看十八禁软件| 九色国产91popny在线| 午夜福利在线观看吧| 18禁国产床啪视频网站| 亚洲精品在线美女| 亚洲中文日韩欧美视频| 老司机午夜十八禁免费视频| 国产成人一区二区三区免费视频网站| www.www免费av| 88av欧美| 午夜福利高清视频| 一本综合久久免费| 亚洲欧洲精品一区二区精品久久久| 午夜福利视频1000在线观看| 波多野结衣高清作品| 国产高清视频在线播放一区| 中文字幕av在线有码专区| 精品无人区乱码1区二区| 夜夜爽天天搞| 露出奶头的视频| 国产精品,欧美在线| 757午夜福利合集在线观看| 婷婷丁香在线五月| 久久精品91无色码中文字幕| 国产三级黄色录像| 99热这里只有是精品50| 午夜a级毛片| 久久午夜综合久久蜜桃| 给我免费播放毛片高清在线观看| 国产三级在线视频| 成人永久免费在线观看视频| 香蕉丝袜av| 午夜免费成人在线视频| 中文资源天堂在线| 两人在一起打扑克的视频| 亚洲av第一区精品v没综合| 男人舔女人的私密视频| 可以免费在线观看a视频的电影网站| 国产伦人伦偷精品视频| 午夜a级毛片| 又黄又粗又硬又大视频| 老司机午夜福利在线观看视频| 成人午夜高清在线视频| 久久久精品欧美日韩精品| 亚洲av成人不卡在线观看播放网| 国产成人aa在线观看| 中文字幕人妻丝袜一区二区| 成人特级黄色片久久久久久久| 国产又黄又爽又无遮挡在线| 国产精品一区二区精品视频观看| 岛国视频午夜一区免费看| 好男人电影高清在线观看| 又黄又粗又硬又大视频| 亚洲成人久久爱视频| 丝袜美腿诱惑在线| 97人妻精品一区二区三区麻豆| 国产黄片美女视频| e午夜精品久久久久久久| 大型av网站在线播放| 色在线成人网| 窝窝影院91人妻| 黄色视频不卡| 中文字幕最新亚洲高清| 亚洲国产欧美一区二区综合| 久久久久亚洲av毛片大全| 日韩精品中文字幕看吧| 亚洲成人久久爱视频| 国产av不卡久久| 免费在线观看影片大全网站| 两个人看的免费小视频| 99久久精品国产亚洲精品| 国产亚洲欧美在线一区二区| 三级男女做爰猛烈吃奶摸视频| 成人欧美大片| 日韩欧美免费精品| 99国产极品粉嫩在线观看| 亚洲最大成人中文| 精品第一国产精品| 一进一出抽搐动态| 国产免费av片在线观看野外av| 精品久久久久久成人av| 性色av乱码一区二区三区2| 久久精品综合一区二区三区| 日韩精品中文字幕看吧| 高潮久久久久久久久久久不卡| 午夜福利视频1000在线观看| 中文字幕人成人乱码亚洲影| 国内少妇人妻偷人精品xxx网站 | 99精品在免费线老司机午夜| 久久天躁狠狠躁夜夜2o2o| 日韩欧美三级三区| 别揉我奶头~嗯~啊~动态视频| 日本a在线网址| av天堂在线播放| 精品久久久久久久久久免费视频| 亚洲国产欧美一区二区综合| 国产主播在线观看一区二区| 可以在线观看毛片的网站| 别揉我奶头~嗯~啊~动态视频| 淫秽高清视频在线观看| 欧美在线黄色| 亚洲一区中文字幕在线| 色尼玛亚洲综合影院| e午夜精品久久久久久久| 国产精品综合久久久久久久免费| 亚洲av中文字字幕乱码综合| 香蕉国产在线看| 国产高清视频在线观看网站| 欧美一区二区精品小视频在线| 国产免费男女视频| 日韩三级视频一区二区三区| 悠悠久久av| 欧美成人午夜精品| 欧美成人一区二区免费高清观看 | 97人妻精品一区二区三区麻豆| 在线十欧美十亚洲十日本专区| 后天国语完整版免费观看| 九九热线精品视视频播放| 一级a爱片免费观看的视频| 三级国产精品欧美在线观看 | 听说在线观看完整版免费高清| 婷婷精品国产亚洲av| 窝窝影院91人妻| 成人三级做爰电影| a级毛片a级免费在线| 少妇人妻一区二区三区视频| 黄色成人免费大全| 成人亚洲精品av一区二区| 香蕉丝袜av| 深夜精品福利| 美女高潮喷水抽搐中文字幕| 老熟妇仑乱视频hdxx| 国产单亲对白刺激| 亚洲精品中文字幕一二三四区| 伊人久久大香线蕉亚洲五| 国产精品乱码一区二三区的特点| 制服人妻中文乱码| 国产精品日韩av在线免费观看| 美女扒开内裤让男人捅视频| 欧美3d第一页| 免费在线观看成人毛片| 两个人视频免费观看高清| 亚洲无线在线观看| 伊人久久大香线蕉亚洲五| 天天一区二区日本电影三级| 免费在线观看成人毛片| 日日干狠狠操夜夜爽| 最好的美女福利视频网| 91大片在线观看| 亚洲成a人片在线一区二区| 日本一区二区免费在线视频| 欧美黑人巨大hd| 大型av网站在线播放| 1024视频免费在线观看| 两性夫妻黄色片| 久9热在线精品视频| 18禁黄网站禁片午夜丰满| 成年免费大片在线观看| 国产成人欧美在线观看| 法律面前人人平等表现在哪些方面| 国产片内射在线| 精品久久久久久久久久免费视频| 成人一区二区视频在线观看| 9191精品国产免费久久| 亚洲欧美日韩东京热| 欧美精品亚洲一区二区| 黑人操中国人逼视频| 亚洲五月婷婷丁香| 91国产中文字幕| 给我免费播放毛片高清在线观看| 国产亚洲欧美98| 久久中文字幕一级| 成人三级黄色视频| 欧美精品亚洲一区二区| 无限看片的www在线观看| 在线观看免费日韩欧美大片| 91成年电影在线观看| 久久中文看片网| 久久欧美精品欧美久久欧美| 国产精品1区2区在线观看.| 一级毛片高清免费大全| 日韩欧美在线二视频| 午夜福利视频1000在线观看| 精品久久久久久久末码| 亚洲国产欧美一区二区综合| 国产高清有码在线观看视频 | 中文亚洲av片在线观看爽| 日本成人三级电影网站| 日韩欧美国产在线观看| 国产精品永久免费网站| 久久久久久久久免费视频了| 亚洲欧美日韩高清在线视频| 久久精品91无色码中文字幕| 90打野战视频偷拍视频| 亚洲av成人av| 十八禁网站免费在线| 国产精品av视频在线免费观看| 在线永久观看黄色视频| 五月伊人婷婷丁香| 精品久久久久久,| 国产伦在线观看视频一区| 黄色视频,在线免费观看| 成人国产综合亚洲| 成熟少妇高潮喷水视频| 少妇的丰满在线观看| 久久性视频一级片| 亚洲片人在线观看| 久久久国产欧美日韩av| 亚洲中文字幕一区二区三区有码在线看 | 天堂影院成人在线观看| 国产精品美女特级片免费视频播放器 | 哪里可以看免费的av片| 亚洲真实伦在线观看| 99国产精品99久久久久| 免费观看精品视频网站| 欧美大码av| 丰满人妻熟妇乱又伦精品不卡| 亚洲国产欧美人成| 久久久久久久久久黄片| 美女黄网站色视频| 一级黄色大片毛片| 国产免费男女视频| 人人妻人人看人人澡| 久久精品国产综合久久久| 中出人妻视频一区二区| 午夜老司机福利片| 欧美一区二区国产精品久久精品 | 欧美日韩中文字幕国产精品一区二区三区| 欧美黑人精品巨大| 悠悠久久av| 老熟妇仑乱视频hdxx| 国产精品99久久99久久久不卡| 亚洲最大成人中文| 50天的宝宝边吃奶边哭怎么回事| 成人一区二区视频在线观看| 国产熟女xx| 国产黄片美女视频| 91在线观看av| 国产在线精品亚洲第一网站| 久久久国产成人精品二区| 国产精品 欧美亚洲| 国产久久久一区二区三区| 在线观看日韩欧美| 亚洲色图 男人天堂 中文字幕| 操出白浆在线播放| 老司机午夜十八禁免费视频| 免费在线观看亚洲国产| 老司机午夜福利在线观看视频| 啦啦啦观看免费观看视频高清| 成人永久免费在线观看视频| 久久婷婷成人综合色麻豆| 男女那种视频在线观看| 亚洲成人久久爱视频| 91大片在线观看| 精品不卡国产一区二区三区| www.自偷自拍.com| 一二三四社区在线视频社区8| 久久精品91无色码中文字幕| www.精华液| 久久久久国产精品人妻aⅴ院| 亚洲一区中文字幕在线| 国内少妇人妻偷人精品xxx网站 | 免费观看精品视频网站| 欧美不卡视频在线免费观看 | 1024手机看黄色片| 国产aⅴ精品一区二区三区波| netflix在线观看网站| 在线观看免费视频日本深夜| 人人妻人人澡欧美一区二区| 免费高清视频大片| 中国美女看黄片| 一本精品99久久精品77| 日本成人三级电影网站| 精华霜和精华液先用哪个| 在线观看美女被高潮喷水网站 | 国产一区在线观看成人免费| 国产欧美日韩精品亚洲av| 后天国语完整版免费观看| 熟女少妇亚洲综合色aaa.| 香蕉久久夜色| 老熟妇仑乱视频hdxx| 宅男免费午夜| a级毛片在线看网站| 一卡2卡三卡四卡精品乱码亚洲| 特级一级黄色大片| 国产野战对白在线观看| 最近视频中文字幕2019在线8| 无人区码免费观看不卡| 日日摸夜夜添夜夜添小说| 又紧又爽又黄一区二区| av国产免费在线观看| 日本免费a在线| 午夜精品久久久久久毛片777| 一本精品99久久精品77| 欧美不卡视频在线免费观看 | 给我免费播放毛片高清在线观看| 国产精品永久免费网站| 曰老女人黄片| 午夜福利高清视频| 男女做爰动态图高潮gif福利片| 大型av网站在线播放| 特大巨黑吊av在线直播| 婷婷亚洲欧美| 久久亚洲精品不卡| 舔av片在线| 久9热在线精品视频| 怎么达到女性高潮| 欧美成人午夜精品| 国产又色又爽无遮挡免费看| 最近最新中文字幕大全免费视频| 老司机午夜十八禁免费视频| 麻豆久久精品国产亚洲av| 91麻豆精品激情在线观看国产| 一个人免费在线观看的高清视频| av超薄肉色丝袜交足视频| 亚洲avbb在线观看| www日本在线高清视频| 国产真人三级小视频在线观看| 少妇裸体淫交视频免费看高清 | 国产精品永久免费网站| 黑人巨大精品欧美一区二区mp4| 久久亚洲精品不卡| 老鸭窝网址在线观看| 午夜成年电影在线免费观看| 手机成人av网站| 99re在线观看精品视频| 亚洲一码二码三码区别大吗| 成年女人毛片免费观看观看9| 国产精品野战在线观看| 日韩免费av在线播放| 女生性感内裤真人,穿戴方法视频| 最近在线观看免费完整版| 亚洲欧美日韩高清在线视频| 此物有八面人人有两片| 亚洲av成人av| 香蕉国产在线看| 夜夜躁狠狠躁天天躁| 男人舔奶头视频| 黄色视频不卡| 一卡2卡三卡四卡精品乱码亚洲| 91在线观看av| 午夜影院日韩av| 51午夜福利影视在线观看| 狂野欧美激情性xxxx| 亚洲va日本ⅴa欧美va伊人久久| 亚洲欧美日韩无卡精品| 色播亚洲综合网| 欧美国产日韩亚洲一区| 成人特级黄色片久久久久久久| 亚洲18禁久久av| 欧美乱妇无乱码| 99国产精品99久久久久| 村上凉子中文字幕在线| 国产高清有码在线观看视频 | 亚洲av片天天在线观看| 午夜福利欧美成人| 午夜精品在线福利| 成熟少妇高潮喷水视频| 精品午夜福利视频在线观看一区| 亚洲国产精品合色在线| 欧美黑人欧美精品刺激| 国产日本99.免费观看| 老司机深夜福利视频在线观看| 国产不卡一卡二| 国产成人精品无人区| 亚洲第一电影网av| 日本黄色视频三级网站网址| 麻豆国产97在线/欧美 | 一卡2卡三卡四卡精品乱码亚洲| 亚洲精品一卡2卡三卡4卡5卡| 国产精品一区二区三区四区久久| 两人在一起打扑克的视频| 亚洲欧美日韩东京热| 国产真人三级小视频在线观看| 国模一区二区三区四区视频 | 国产人伦9x9x在线观看| 亚洲一区二区三区色噜噜| 亚洲无线在线观看| 欧美丝袜亚洲另类 | 视频区欧美日本亚洲| 亚洲欧美激情综合另类| 在线观看66精品国产| 亚洲18禁久久av| 首页视频小说图片口味搜索| 老司机在亚洲福利影院| or卡值多少钱| 久久草成人影院| 在线a可以看的网站| 99精品欧美一区二区三区四区| 1024视频免费在线观看| 看免费av毛片| 国产三级在线视频| 久久精品国产亚洲av高清一级| 国产精品永久免费网站| 999久久久精品免费观看国产| 欧美一区二区国产精品久久精品 | 欧美极品一区二区三区四区| 国产精品国产高清国产av| 男女做爰动态图高潮gif福利片| 99久久无色码亚洲精品果冻| 制服人妻中文乱码| 国产精品综合久久久久久久免费| 国内毛片毛片毛片毛片毛片| 国产精品 欧美亚洲| 悠悠久久av| 搡老妇女老女人老熟妇| 国产av一区在线观看免费| 国产高清视频在线播放一区| 在线观看美女被高潮喷水网站 | 人人妻人人看人人澡| 国产熟女xx| 男女做爰动态图高潮gif福利片| tocl精华| 国产伦在线观看视频一区| 欧美日韩福利视频一区二区| 亚洲无线在线观看| 色av中文字幕| 神马国产精品三级电影在线观看 | 久久久精品大字幕| 国产成人系列免费观看| 好男人在线观看高清免费视频| 亚洲精品av麻豆狂野| 99re在线观看精品视频| 禁无遮挡网站| 亚洲成av人片在线播放无| 久久天堂一区二区三区四区| aaaaa片日本免费| 国产精品久久久久久久电影 | 亚洲中文日韩欧美视频| 久久这里只有精品中国| 国产成人av教育| 熟女电影av网| 欧美日韩乱码在线| 男女那种视频在线观看| 成人三级黄色视频| 在线观看日韩欧美| 国产精品免费视频内射| 99国产综合亚洲精品| 久久热在线av| 亚洲成人精品中文字幕电影| 天堂影院成人在线观看| 成人av一区二区三区在线看| 亚洲精华国产精华精| 国产亚洲精品综合一区在线观看 | 国产成人一区二区三区免费视频网站| 国语自产精品视频在线第100页| 嫩草影院精品99| 欧美一级a爱片免费观看看 | 搡老妇女老女人老熟妇| 日本一本二区三区精品| 久久国产精品影院| 在线永久观看黄色视频| 国产日本99.免费观看| 中文亚洲av片在线观看爽| 国产高清视频在线观看网站| 两人在一起打扑克的视频| 成人特级黄色片久久久久久久| 国产精品av久久久久免费| 久久伊人香网站| 亚洲中文字幕日韩| 我要搜黄色片| 国产99久久九九免费精品| 免费看a级黄色片| 一本久久中文字幕| 在线观看舔阴道视频| 五月玫瑰六月丁香| 欧美一级毛片孕妇| 久久精品人妻少妇| 桃红色精品国产亚洲av| 天天一区二区日本电影三级| 黄色视频不卡| 亚洲欧洲精品一区二区精品久久久| 波多野结衣高清无吗| 1024手机看黄色片| 亚洲成人免费电影在线观看| 18禁裸乳无遮挡免费网站照片| 日韩国内少妇激情av| 精品免费久久久久久久清纯| 9191精品国产免费久久| 美女黄网站色视频| 成人18禁在线播放| 亚洲全国av大片| 99在线视频只有这里精品首页| 成人国产综合亚洲| 51午夜福利影视在线观看| 免费一级毛片在线播放高清视频| 婷婷六月久久综合丁香| 国产精品亚洲av一区麻豆| 亚洲 国产 在线| 亚洲色图 男人天堂 中文字幕| 不卡av一区二区三区| 久久久久久大精品| 亚洲欧美日韩高清在线视频| 国产精品久久久人人做人人爽| 欧美一级毛片孕妇| 国产三级在线视频| 非洲黑人性xxxx精品又粗又长| 久久婷婷成人综合色麻豆| 嫁个100分男人电影在线观看| 国产黄片美女视频| 岛国在线免费视频观看| 99久久99久久久精品蜜桃| 床上黄色一级片| 亚洲人成网站高清观看| 亚洲精品久久成人aⅴ小说| 欧美一级毛片孕妇| 日韩欧美精品v在线| 97超级碰碰碰精品色视频在线观看| 老司机靠b影院| 黄片大片在线免费观看| 国产黄片美女视频| 欧美成人性av电影在线观看| 久久精品国产综合久久久| 黄色视频不卡| 午夜精品一区二区三区免费看| 黄色丝袜av网址大全| 少妇人妻一区二区三区视频| 99热6这里只有精品| 妹子高潮喷水视频| 国模一区二区三区四区视频 | 啦啦啦韩国在线观看视频| 黄片小视频在线播放| 高清在线国产一区| 日本 av在线| 亚洲欧美精品综合久久99| 亚洲美女黄片视频| 97超级碰碰碰精品色视频在线观看| 午夜福利高清视频| 一级作爱视频免费观看| 亚洲一区二区三区色噜噜| 嫁个100分男人电影在线观看| 国语自产精品视频在线第100页| 两个人视频免费观看高清| 搞女人的毛片| 我要搜黄色片| 国产精品久久久久久精品电影| 精品无人区乱码1区二区| 国产精品久久久久久亚洲av鲁大| 一进一出抽搐动态| 男人舔奶头视频| 久久久久性生活片| 国产亚洲精品第一综合不卡| 欧美丝袜亚洲另类 | 一进一出抽搐动态| 999久久久国产精品视频| 免费在线观看黄色视频的| 国产一级毛片七仙女欲春2| 午夜精品在线福利| 成人av一区二区三区在线看| 久9热在线精品视频| 少妇粗大呻吟视频| 亚洲一卡2卡3卡4卡5卡精品中文| 国产99白浆流出| 国产av又大| 国产99白浆流出| 好男人在线观看高清免费视频| 久久婷婷成人综合色麻豆| 99在线视频只有这里精品首页| 两个人的视频大全免费| 麻豆国产av国片精品| 我的老师免费观看完整版| 国产欧美日韩一区二区精品| 日本黄大片高清| 国产真实乱freesex| 日本免费一区二区三区高清不卡| 国产成人aa在线观看| 此物有八面人人有两片| 很黄的视频免费| 波多野结衣高清无吗| 国产视频内射| 美女大奶头视频| 欧美日韩亚洲国产一区二区在线观看| 国产不卡一卡二| 色尼玛亚洲综合影院| 宅男免费午夜| 怎么达到女性高潮| 女生性感内裤真人,穿戴方法视频|