張耀燁,李冬生,周 智
(大連理工大學(xué) 土木工程學(xué)院,遼寧 大連 116024)
腐蝕對(duì)結(jié)構(gòu)性能的影響具有時(shí)間跨度長(zhǎng)、影響因素復(fù)雜、不確定性大等特點(diǎn)。檢測(cè)信息的引入使人們可以更為客觀地評(píng)價(jià)及預(yù)測(cè)結(jié)構(gòu)的狀態(tài),繼而做出合理的決策[1]。
超聲導(dǎo)波作為一種精準(zhǔn)、高效的無(wú)損檢測(cè)技術(shù)已被諸多學(xué)者運(yùn)用于土木工程構(gòu)件的腐蝕監(jiān)測(cè)中。文獻(xiàn)[2]采用具有不同能量密度分布特征的導(dǎo)波進(jìn)行鋼筋混凝土構(gòu)件剝離和坑蝕兩種損傷模式的定性識(shí)別;文獻(xiàn)[3]將分形理論運(yùn)用于腐蝕監(jiān)測(cè);文獻(xiàn)[4]則運(yùn)用缺陷回波的幅值信息對(duì)鋼絞線外圍鋼絲及中心鋼絲的缺陷深度進(jìn)行識(shí)別;文獻(xiàn)[5]論證了纜索中鋼絲間的接觸會(huì)導(dǎo)致模態(tài)轉(zhuǎn)換現(xiàn)象,并可將彎曲模態(tài)譜幅的變化作為評(píng)估損傷的指標(biāo)。然而,考慮到長(zhǎng)期的腐蝕監(jiān)測(cè)過(guò)程中,換能器與構(gòu)件界面的耦合性能將不可避免地發(fā)生改變,上述基于導(dǎo)波幅值信息測(cè)試結(jié)果尚缺乏可靠性,故研究人員嘗試運(yùn)用無(wú)基準(zhǔn)的檢測(cè)方法評(píng)估構(gòu)件的性能。文獻(xiàn)[6-7]中利用時(shí)間翻轉(zhuǎn)法重構(gòu)激勵(lì)信號(hào),通過(guò)一個(gè)用于刻畫原始激勵(lì)信號(hào)與重構(gòu)信號(hào)畸變程度的指標(biāo)來(lái)反映構(gòu)件損傷的程度;文獻(xiàn)[8]利用波達(dá)時(shí)間的改變量識(shí)別混凝土梁的剝離程度。近年來(lái),基于模型的損傷識(shí)別方法被運(yùn)用于導(dǎo)波監(jiān)測(cè)中[9-11],其突出的優(yōu)點(diǎn)是可以準(zhǔn)確地定量識(shí)別損傷。然而,腐蝕缺陷的形貌和位置具有隨機(jī)性,用于模擬高頻超聲導(dǎo)波的數(shù)值模型往往難以兼顧計(jì)算效率和對(duì)缺陷的適應(yīng)性,故并未見(jiàn)該方法在實(shí)際腐蝕工況下的運(yùn)用。
導(dǎo)波的頻散特性定量反映了群速度與頻率的關(guān)系,隨著頻散方程地成功求解,一些典型波導(dǎo)的物理指標(biāo)得以高效且準(zhǔn)確地定量識(shí)別。吳斌等[12]對(duì)應(yīng)雙層結(jié)構(gòu)波導(dǎo)的理論模型,研究了板(管道)表面附著水垢厚度對(duì)波速的影響;Amjad等[13]運(yùn)用導(dǎo)波的頻散關(guān)系對(duì)腐蝕后鋼筋的不同直徑量進(jìn)行識(shí)別;Pierre[14]運(yùn)用高階SH模態(tài)頻散曲線在頻率軸上等間隔分布且具有截止頻率的特點(diǎn),定量識(shí)別管道局部腐蝕后的最小壁厚。但考慮到高階扭轉(zhuǎn)模態(tài)的可激發(fā)性和衰減特性,該方法難以運(yùn)用于桿狀波導(dǎo)中以定量識(shí)別較小的局部腐蝕缺陷。
現(xiàn)階段的在線適時(shí)監(jiān)測(cè)手段對(duì)工程中復(fù)雜的腐蝕行為(點(diǎn)蝕、疲勞應(yīng)力腐蝕等)進(jìn)行無(wú)損定量識(shí)別是極其困難的。為了滿足對(duì)結(jié)構(gòu)性能現(xiàn)狀的評(píng)估及未來(lái)長(zhǎng)期退化趨勢(shì)預(yù)測(cè)的需要,人們多依賴由試驗(yàn)和統(tǒng)計(jì)資料獲取的回歸模型概括具體結(jié)構(gòu)因腐蝕而導(dǎo)致的性能退化問(wèn)題。通常情況下,對(duì)金屬腐蝕狀態(tài)評(píng)估的方法為:首先運(yùn)用簡(jiǎn)便易行的剩余厚度測(cè)量獲得均勻腐蝕量隨時(shí)間變化的模型,繼而建立復(fù)雜腐蝕行為或構(gòu)件力學(xué)性能與均勻腐蝕的定量統(tǒng)計(jì)關(guān)系[15-18]。該方法雖然可以反映構(gòu)件腐蝕作用下性能退化的共性規(guī)律,但很難基于有限的樣本量提出一種廣泛適用的模型。本文的觀點(diǎn)在于:可通過(guò)均勻腐蝕監(jiān)測(cè)數(shù)據(jù)與現(xiàn)有回歸預(yù)測(cè)模型相結(jié)合的方法以定量評(píng)定更為復(fù)雜的腐蝕行為。運(yùn)用這種策略不僅可通過(guò)引入監(jiān)測(cè)數(shù)據(jù)減少預(yù)測(cè)模型針對(duì)個(gè)性結(jié)構(gòu)腐蝕評(píng)定的主觀不確定性,又可充分運(yùn)用現(xiàn)有研究成果所揭示的共性規(guī)律較為準(zhǔn)確、全面地評(píng)價(jià)各類腐蝕行為對(duì)結(jié)構(gòu)性能退化的影響。這是符合現(xiàn)階段健康監(jiān)測(cè)水平和結(jié)構(gòu)可靠性管理需要的。
本文將運(yùn)用一階縱向超聲導(dǎo)波的頻散特性,對(duì)加速腐蝕試驗(yàn)條件下鋼絲的剩余直徑量進(jìn)行在線適時(shí)監(jiān)測(cè)。同時(shí),定量刻畫時(shí)頻分析中的不確定性對(duì)測(cè)量精度的影響,并發(fā)展一種高效評(píng)定均勻腐蝕的方法。
桿中導(dǎo)波的類型分別為縱向模態(tài)、彎曲模態(tài)以及扭轉(zhuǎn)模態(tài)。隨著波導(dǎo)頻厚積的增加,導(dǎo)波的多模態(tài)特性會(huì)突顯,導(dǎo)致接收信號(hào)難以解析。L(0,1)模態(tài)無(wú)截止頻率,衰減較小且具有良好的可激發(fā)性,通過(guò)設(shè)計(jì)對(duì)稱的縱向振動(dòng)激勵(lì)接收方式可有效減少?gòu)澢B(tài)的影響[19],故L(0,1)模態(tài)導(dǎo)波常被用于桿狀構(gòu)件的無(wú)損檢測(cè)。
桿件的均勻腐蝕表現(xiàn)為直徑D的減少,故運(yùn)用導(dǎo)波頻散關(guān)系的無(wú)基線測(cè)試方法需要導(dǎo)波群速度Vg對(duì)直徑改變具有較高的靈敏度,以便適時(shí)追蹤腐蝕進(jìn)程。在某一固定頻率f下,式(1)顯然成立
(1)
圖1 L(0,1)模態(tài)群速度及其變化率曲線Fig.1 Group velocity of L(0,1) and its rate of change
對(duì)構(gòu)件均勻腐蝕下剩余直徑量的評(píng)定可歸結(jié)為時(shí)頻分析問(wèn)題,其簡(jiǎn)化表達(dá)式為
(2)
式中:l為待測(cè)構(gòu)件長(zhǎng)度;f和t分別為接收信號(hào)的頻率和波達(dá)時(shí)間;F為fD與Vg基于Pochhammer方程的對(duì)應(yīng)法則;F-1為F的逆對(duì)應(yīng)。
海森堡不確定性原理的本質(zhì)是:較窄的時(shí)間波形產(chǎn)生較寬的頻譜,而較寬的時(shí)間波形產(chǎn)生較窄的頻譜,時(shí)間波形的寬度和其頻譜寬度不可能同時(shí)任意小。定義時(shí)間持續(xù)期σt和帶寬σω,則不確定性原理可由式(3)定義[20]
(3)
(4)
(5)
(6)
(7)
考慮到圖1中M點(diǎn)附近接收信號(hào)頻散較嚴(yán)重,故采用連續(xù)小波變換對(duì)接收信號(hào)進(jìn)行時(shí)頻分析。針對(duì)接收信號(hào)的時(shí)頻不確定度分析可轉(zhuǎn)化為與之具有最大相關(guān)性的小波基函數(shù)的時(shí)頻不確定度分析。由于復(fù)Morlet小波在導(dǎo)波信號(hào)分析中運(yùn)用廣泛[21],現(xiàn)就該小波時(shí)頻不確定度表達(dá)式的具體形式做如下推導(dǎo)。
復(fù)Morlet小波母函數(shù)可定義為
(8)
式中:Fb為帶寬參數(shù);Fc為歸一化(數(shù)字)中心頻率且‖φ(t)‖2=1,故小波母函數(shù)基于歸一化頻率下的時(shí)域不確定度為
(9)
小波母函數(shù)經(jīng)平移、縮放后的小波基函數(shù)可表示為
(10)
式中:s為尺度參數(shù);u為平移參數(shù),則小波基函數(shù)在歸一化頻率下的時(shí)域不確定度為
(11)
將歸一化中心頻率轉(zhuǎn)化為模擬中心頻率,則有尺度s1表示為
(12)
將式(9)、式(12)代入式(11)可得小波母函數(shù)在模擬頻率下的時(shí)域不確定度為
(13)
(14)
將式(13)、式(14)代入式(11)可得時(shí)域不確定度表達(dá)式
(15)
(16)
監(jiān)測(cè)對(duì)象為加速腐蝕試驗(yàn)條件下橋梁拉索用鍍鋅鋼絲,直徑為7 mm,總長(zhǎng)約為103 cm,腐蝕段長(zhǎng)度約為94 cm。電解質(zhì)采用3.5%氯化鈉溶液,鋼絲設(shè)定為加速腐蝕系統(tǒng)的陽(yáng)極,四片等間隔放置的不銹鋼板設(shè)定為陰極,由外接直流電源提供恒定電流。采集系統(tǒng)套件包含機(jī)箱(PXIe-1073),任意波形發(fā)生器(PXI-5441)及60MS/S、8通道數(shù)字信號(hào)采集板卡(PXIe-5105)。測(cè)量方式采用一端激勵(lì)、一端接收。傳感器采用相同的聲發(fā)射探頭(AE1045S)用于激勵(lì)和接收縱向模態(tài)導(dǎo)波信號(hào),其頻率響應(yīng)范圍為0.1~1.5 MHz。激勵(lì)信號(hào)采用射頻功率放大器(AG1020)放大,接收信號(hào)采用前置放大器(PXPA6)放大。采用夾具將探頭固定于待測(cè)鋼絲兩端,機(jī)油作為界面耦合劑以增加振動(dòng)能量的傳遞效率。試驗(yàn)裝置如圖2所示。
圖2 試驗(yàn)裝置Fig.2 Experimental setup
針對(duì)直徑7 mm的鍍鋅鋼絲,激勵(lì)信號(hào)采用中心頻率377 kHz的漢寧窗調(diào)制正弦信號(hào),設(shè)定小波分析參數(shù)Fb=5,F(xiàn)c=6,則歸一化接收信號(hào)及其小波時(shí)頻分析結(jié)果如圖3、圖4所示。假設(shè)接收信號(hào)相關(guān)性峰值點(diǎn)P的時(shí)間和頻率為滿足正態(tài)分布的隨機(jī)變量,則對(duì)于復(fù)Morlet小波而言,兩隨機(jī)變量是獨(dú)立的[22],其聯(lián)合概率密度如圖5所示。由于在對(duì)直徑進(jìn)行評(píng)估的隨機(jī)模擬的過(guò)程中,將涉及到對(duì)復(fù)雜的Pochhammer方程的多次求解,按式(17)在M點(diǎn)((fD)M,VgM)處將F線性展開(kāi)為FL,即
(17)
將式(17)代入式(2)可將其轉(zhuǎn)化為具體的顯式二元測(cè)量函數(shù)以提高隨機(jī)模擬的計(jì)算效率。如圖6所示,在頻厚積為2 320~2 880 kHz·mm內(nèi),F(xiàn)L在求解Vg時(shí)具有極高的精度,其相對(duì)誤差小于1%。
圖3 接收信號(hào)Fig.3 Received signal
圖4 復(fù)Morlet小波時(shí)頻分析結(jié)果Fig.4 Result of time and frequency analysis based on complex Morlet wavelet
圖5 時(shí)間-頻率聯(lián)合概率密度Fig.5 Joint probability density of time and frequency
圖6 頻散曲線局部線性化Fig.6 Local linearization of dispersion curve
在測(cè)量不確定性的評(píng)定中,蒙特卡洛法(Monte Carlo Method,MCM)是一種通過(guò)重復(fù)采樣實(shí)現(xiàn)分布傳播的數(shù)值方法。通過(guò)對(duì)測(cè)量模型Y=g(X1,X2,,Xn)中輸入量Xi的概率密度函數(shù)離散采樣,由測(cè)量模型傳播輸入量的分布, 計(jì)算獲得輸出量Y的概率密度函數(shù)的離散采樣值, 進(jìn)而由輸出量Y的離散分布數(shù)值直接獲取輸出量的最佳估計(jì)值y、標(biāo)準(zhǔn)不確定度uy和規(guī)定包含概率p下Y的最短包含區(qū)間端點(diǎn)ylow和yhigh。由于傳統(tǒng)的MCM所需的試驗(yàn)次數(shù)跟輸出量的分布形式、包含概率及規(guī)定的數(shù)值容差等因素有關(guān),為了消除主觀設(shè)定樣本量對(duì)試驗(yàn)結(jié)果的影響,本文采用自適應(yīng)MCM實(shí)現(xiàn)分布傳播的數(shù)值求解。自適應(yīng)MCM[23]是在執(zhí)行傳統(tǒng)MCM的基本過(guò)程中,程序自動(dòng)增加試驗(yàn)次數(shù),直至輸出量結(jié)果最終達(dá)到統(tǒng)計(jì)意義上的穩(wěn)定,其收斂準(zhǔn)則為輸出量的兩倍標(biāo)準(zhǔn)偏差均小于uy的數(shù)值容差δ,即
(2sy<δ)∩(2su(y)<δ)∩(2sylow<δ)∩ (2syhigh<δ)
(18)
GUM法是國(guó)際標(biāo)準(zhǔn)[24]中所規(guī)定的測(cè)量不確定度評(píng)定方法。GUM法將測(cè)量模型的輸出量近似為正態(tài)分布或縮放位移t分布,當(dāng)Xi相互獨(dú)立時(shí),y的合成不確定度可由式(19)獲得
(19)
2.2 學(xué)齡前兒童缺鐵性貧血影響因素的單因素分析 單因素分析結(jié)果顯示,年齡、出生體質(zhì)量、喂養(yǎng)方式、消化功能、輔食添加時(shí)間、妊娠期貧血情況、父母親的文化程度、家庭飲食習(xí)慣、鐵制劑服用情況、家庭收入為學(xué)齡前兒童缺鐵性貧血的影響因素(P<0.05)。見(jiàn)表1。
在規(guī)定包含概率p下,包含區(qū)間端點(diǎn)可表示為
Y=y±Up=y±kpuc(y)
(20)
即Y的值以概率p落在[y-Up,y+Up]區(qū)間內(nèi),Up和kp分別為包含概率p下的擴(kuò)展不確定度和包含因子,取p=95%,kp=1.96。
GUM法簡(jiǎn)單易行且對(duì)許多問(wèn)題具有適用性,然而當(dāng)測(cè)量模型的非線性程度過(guò)高或輸出量的分布明顯不對(duì)稱時(shí),GUM法對(duì)輸出量的評(píng)價(jià)結(jié)果可能會(huì)變得不可靠。自適應(yīng)MCM的適用范圍更廣泛,可以得到指定輸出精度的結(jié)果,可作為一種手段驗(yàn)證GUM法的適用性。依據(jù)式(17),運(yùn)用自適應(yīng)MCM及GUM法兩種方法,對(duì)結(jié)果包含區(qū)間各自端點(diǎn)的絕對(duì)偏差進(jìn)行比較
dlow=|y-Up-ylow|≤δdhigh=|y+Up-yhigh|≤δ
(21)
若結(jié)果滿足式(21),則可運(yùn)用GUM法代替自適應(yīng)MCM高效地進(jìn)行直徑評(píng)估。
自適應(yīng)MCM可自動(dòng)調(diào)整采樣次數(shù)而使得直徑評(píng)價(jià)結(jié)果達(dá)到設(shè)定精度范圍內(nèi)的穩(wěn)定。傳統(tǒng)MCM則采用了規(guī)范建議的試算次數(shù)。較自適應(yīng)MCM,傳統(tǒng)MCM法由于采樣次數(shù)過(guò)少,其輸出量在95%包含概率下的最短包含區(qū)間端點(diǎn)顯然不滿足設(shè)定精度要求。GUM法可通過(guò)自適應(yīng)MCM驗(yàn)證,即在設(shè)定的精度范圍內(nèi)可運(yùn)用GUM法評(píng)定剩余直徑量。
圖7 直徑的概率密度Fig.7 Probability density of diameter
表1 自適應(yīng)MCM驗(yàn)證GUM法Tab.1 GUM verified by self-adaptive MCM
外接電流恒定為0.35A,每隔12 h對(duì)鋼絲剩余直徑量進(jìn)行監(jiān)測(cè),直徑改變步長(zhǎng)由法拉第定律控制,約為0.05 mm。圖8例舉了在腐蝕監(jiān)測(cè)初期(0~48 h),維持激勵(lì)頻率為377 kHz不變的情況下接收信號(hào)的時(shí)頻分析結(jié)果。接收信號(hào)的相關(guān)性峰值點(diǎn)頻率會(huì)隨著腐蝕進(jìn)程而略有偏差,但波達(dá)時(shí)間仍明顯地呈現(xiàn)出單調(diào)減小趨勢(shì),證明導(dǎo)波群速度對(duì)鋼絲直徑的變化是極為敏感的。
圖8 0~48 h波達(dá)時(shí)間變化趨勢(shì)Fig.8 Time of flight within initial 48 hours
圖9為超聲導(dǎo)波對(duì)鋼絲剩余直徑的評(píng)定結(jié)果。首先,導(dǎo)波評(píng)估結(jié)果具有較高的精度,其與理論值的絕對(duì)誤差小于0.157 mm;其次,評(píng)估的剩余直徑量隨著腐蝕時(shí)間的增加單調(diào)遞減,進(jìn)一步說(shuō)明了導(dǎo)波評(píng)價(jià)手段針對(duì)直徑變化具有極高的分辨率;另外,絕對(duì)誤差在腐蝕后段具有逐漸增大的趨勢(shì),分析原因?yàn)椋孩俑g速率與電極距有關(guān),鋼絲由于表面腐蝕速率不同,在發(fā)生均勻腐蝕的同時(shí)局部腐蝕效應(yīng)也逐漸突顯,表現(xiàn)為鋼絲不同區(qū)段的直徑差異增大;②表面逐漸積累的腐蝕產(chǎn)物會(huì)影響導(dǎo)波在鋼絲中的傳播特性,導(dǎo)致波速與理論值產(chǎn)生偏差;③后期表面積累的腐蝕產(chǎn)物會(huì)較大程度地影響導(dǎo)波在鋼絲中的衰減特性,接收信號(hào)幅值衰減嚴(yán)重,信噪比明顯下降。最后,基于時(shí)頻分析對(duì)直徑評(píng)估的“測(cè)不準(zhǔn)”特性,GUM法的分析結(jié)果提供了可靠的區(qū)間估計(jì)。當(dāng)腐蝕時(shí)長(zhǎng)在250 h范圍內(nèi),評(píng)估結(jié)果的隨機(jī)性與分析結(jié)果吻合良好,但隨著腐蝕時(shí)長(zhǎng)的進(jìn)一步增加,由于外界影響因素的介入將導(dǎo)致評(píng)估結(jié)果的誤差增大,表現(xiàn)為置信區(qū)間外的異常值數(shù)量增多。
圖9 導(dǎo)波評(píng)估結(jié)果Fig.9 Evaluation of guided waves
(1) 本文發(fā)展了一種基于超聲導(dǎo)波針對(duì)剩余直徑量的無(wú)基準(zhǔn)評(píng)定方法。該方法在群速度隨頻厚積改變最為敏感的區(qū)段內(nèi)選擇激勵(lì)頻率,利用導(dǎo)波的頻散關(guān)系實(shí)現(xiàn)了對(duì)剩余直徑的高精度定量評(píng)定。
(2) 推導(dǎo)了將復(fù)Morlet小波運(yùn)用于時(shí)頻分析中時(shí),接收信號(hào)波達(dá)時(shí)間與頻率不確定性的定量表達(dá)式。比較驗(yàn)證了自適應(yīng)MCM與GUM法輸出結(jié)果的等效性,證明GUM法可用于鋼絲均勻腐蝕程度的快速評(píng)定。
(3) 點(diǎn)蝕、疲勞應(yīng)力腐蝕等與均勻腐蝕的定量統(tǒng)計(jì)關(guān)系常被作為評(píng)價(jià)復(fù)雜腐蝕行為對(duì)構(gòu)件性能影響的手段?;趯?dǎo)波所獲取的高精度均勻腐蝕監(jiān)測(cè)數(shù)據(jù)可進(jìn)一步結(jié)合既有的研究成果以用于各類腐蝕評(píng)定,從而有效降低構(gòu)件性能評(píng)價(jià)及預(yù)測(cè)過(guò)程中的主觀不確定性。