高自成,龐國(guó)友,李立君,趙凱杰,王曉晨,吉成才
?
手動(dòng)背負(fù)夾爪式簡(jiǎn)易梨采摘器研制
高自成,龐國(guó)友,李立君※,趙凱杰,王曉晨,吉成才
(中南林業(yè)科技大學(xué)機(jī)電工程學(xué)院,長(zhǎng)沙 410004)
針對(duì)梨采摘效率低且勞動(dòng)強(qiáng)度大的問(wèn)題,該文通過(guò)分析梨果實(shí)特征,并搭建剪切力測(cè)量平臺(tái),對(duì)不同品種和成熟度的梨進(jìn)行果柄剪切試驗(yàn),測(cè)得剪斷果柄的最大剪切力為5.4 N;設(shè)計(jì)了一款操作簡(jiǎn)單且不傷果實(shí)的手動(dòng)背負(fù)式梨采摘器,該手動(dòng)背負(fù)式采摘器由操作執(zhí)行機(jī)構(gòu)通過(guò)拉索拉動(dòng)采摘頭,使夾爪和刀片先后動(dòng)作,完成采摘;采摘完后,松開(kāi)操作手柄,在復(fù)位彈簧的作用下,刀具和夾爪順序動(dòng)作,果實(shí)通過(guò)收集布袋落入果籃中;基于Recurdyn對(duì)采摘器關(guān)鍵部件進(jìn)行仿真,得出剪切力平均為13.5 N,大于剪斷果柄所需的剪切力;基于ANSYS軟件對(duì)主要的受力桿件組進(jìn)行強(qiáng)度分析,驗(yàn)證了所設(shè)計(jì)的采摘器強(qiáng)度滿足要求;開(kāi)展實(shí)地試驗(yàn)驗(yàn)證設(shè)計(jì)的合理性。試驗(yàn)表明:該手持式采摘器操作簡(jiǎn)單、舒適,采用采摘器采摘,采摘效率比人工采摘效率提高了57.1%,可以實(shí)現(xiàn)不同高度梨的采摘,提高了果農(nóng)的采摘效率和采摘過(guò)程安全性。
水果;采摘;手動(dòng)式;背負(fù)式;梨
梨,通常品種是一種落葉喬木或灌木,極少數(shù)品種為常綠,屬于被子植物門(mén)雙子葉植物綱薔薇科蘋(píng)果亞科。中國(guó)梨種植面積大,果園梨樹(shù)高度一般在1.5~4 m[1]。目前,梨主要依靠人工采摘,果農(nóng)在采摘過(guò)程中需要爬上樹(shù)或者借助梯子登高,采摘過(guò)程不僅艱辛、工作強(qiáng)度大,而且具有一定的危險(xiǎn)性[2]。所以設(shè)計(jì)背負(fù)式梨采摘器,使得在地面上即可以輕松采摘到梨樹(shù)頂附近的梨,避免爬樹(shù)或登高帶來(lái)的麻煩和不安全因素。具有重要的現(xiàn)實(shí)意義。
據(jù)查閱資料,為了提高果蔬采摘效率,國(guó)外對(duì)果蔬采摘機(jī)器人進(jìn)行了大量的研究[3],但是這些采摘機(jī)械多為大中型車(chē)載機(jī)械,成本高,操作復(fù)雜,后續(xù)的維修保養(yǎng)程序多。而國(guó)內(nèi)對(duì)采摘機(jī)械的研究起步晚,目前仍處于起步階段。蔡健榮等對(duì)柑橘采摘機(jī)器人的自動(dòng)化采摘進(jìn)行研究[4-5]。宋健等研究了一款開(kāi)放式的茄子采摘機(jī)器人[6]。李國(guó)利等設(shè)計(jì)了一款多末端蘋(píng)果采摘機(jī)器人[7],呂繼東等對(duì)蘋(píng)果在采摘過(guò)程的快速定位方法進(jìn)行了深入研究[8],錢(qián)少明等分別對(duì)黃瓜采摘的執(zhí)行器和采摘過(guò)程的振動(dòng)特效進(jìn)行了研究[9-10],楊小慶等基于單片機(jī)設(shè)計(jì)了一款仿人多指番茄采摘器[11];王糧局等研制了一款草莓采摘器,并在基于視覺(jué)伺服的基礎(chǔ)上研究了草莓的定位方法[12-13],高自成等針對(duì)油茶果的特性設(shè)計(jì)了油茶果采摘機(jī)[14-17]。葉敏等對(duì)荔枝采摘也進(jìn)行一定的研究[18-20]。雖然取得了比較大的進(jìn)步,但是仍然存在采摘效率不高、果實(shí)定位不準(zhǔn)、果實(shí)損傷率高、制造成本較高等問(wèn)題,從而導(dǎo)致不能很好地市場(chǎng)化。研究人員為解決這些問(wèn)題,也研究了一些結(jié)構(gòu)比較簡(jiǎn)單,價(jià)格較低的果蔬采摘器,有的采摘器已經(jīng)投入到市場(chǎng),但是由于仍然存在果實(shí)定位不準(zhǔn)、采摘方式導(dǎo)致?lián)p壞率高等技術(shù)瓶頸,應(yīng)用反應(yīng)效果不佳。
為了給果農(nóng)提供一種結(jié)構(gòu)簡(jiǎn)單、價(jià)格低廉、質(zhì)量輕、不傷水果且適合梨的采摘器,本文通過(guò)分析梨的特性,參考前人對(duì)柑橘和荔枝果柄剪切力學(xué)特性研究[21-22]成果的基礎(chǔ)上,分析現(xiàn)有的便攜式采摘器[23-28],設(shè)計(jì)了一款背負(fù)式梨采摘器,并且制作樣機(jī)進(jìn)行試驗(yàn)驗(yàn)證。
對(duì)梨質(zhì)量、形狀特征以及剪切果柄切斷力的分析是確定梨采摘方法的試驗(yàn)基礎(chǔ)。梨的外形呈球形或者橢球形,大部分的梨都是橢球形,小部分的梨外形呈球狀。
為研究梨果柄的剪切力,本文搭建一個(gè)測(cè)量平臺(tái),如圖1所示,利用杠桿原理測(cè)量剪切力,測(cè)量時(shí)圖中1和2處的力臂長(zhǎng)度一致。以市場(chǎng)上常見(jiàn)的3種梨:雪花梨、鴨梨、蘋(píng)果梨為研究對(duì)象,根據(jù)果實(shí)直徑大小、對(duì)應(yīng)生長(zhǎng)期將果實(shí)成熟度劃分為A、B、C三個(gè)等級(jí),取每種梨的各個(gè)等級(jí)成熟度的果實(shí)各60顆進(jìn)行測(cè)量,取平均值。
1. 固定刀片 2. 動(dòng)刀片
利用彈簧測(cè)力器測(cè)量1,根據(jù)圖1有2=1,試驗(yàn)測(cè)量結(jié)果如表1所示。
表1 梨的平均直徑、質(zhì)量和果柄剪切力
注:A、B、C表示果實(shí)成熟度的三個(gè)等級(jí)。
Note: A, B, C represent three maturity levels of fruit.
從表1中可以看出,3個(gè)品種梨的果柄剪切力各不同,各品種梨果柄剪切力隨著果實(shí)成熟度等級(jí)的提高先增大后減小,最大剪切力為5.4 N,是蘋(píng)果梨在B級(jí)成熟度時(shí)所需的剪切力。
梨采摘器主要采用抱剪采摘方式,由采摘頭部件、伸縮部件、可調(diào)式背帶、驅(qū)動(dòng)操作部件等組成。其中采摘頭部件包括夾持機(jī)構(gòu)組件、刀片剪切組件和彈簧組件等;伸縮部件包括上調(diào)節(jié)桿、下手握桿和伸縮調(diào)節(jié)螺母,為減輕重量,上調(diào)節(jié)桿和下手握桿均采用空心鋁管;可調(diào)式背帶包括背帶、背帶夾持塊和背帶卡柄;驅(qū)動(dòng)操作部件包括操作手柄、操作手柄連桿和張緊盒子等。成熟梨的直徑范圍在70~100 mm,所以設(shè)計(jì)采摘器采摘的果實(shí)直徑范圍為70~100 mm,按照這個(gè)范圍設(shè)計(jì)夾爪和果柄剪切機(jī)構(gòu),保證采摘過(guò)程不發(fā)生誤觸。采摘器基本結(jié)構(gòu)如圖2所示。
1. 夾持機(jī)構(gòu)組件 2. 剪切刀片組件 3. 彈簧組件 4. 上調(diào)節(jié)桿 5. 伸縮調(diào)節(jié)螺母 6. 下手握桿 7. 背帶夾持塊 8. 背帶卡柄 9. 背帶 10. 操作手柄 11. 操作手柄連桿 12. 張緊盒子
該梨采摘器的背帶長(zhǎng)度和位置均可調(diào),其調(diào)節(jié)方式為將背帶卡柄拉起,根據(jù)個(gè)人的使用情況將背帶夾持塊移動(dòng)到合適位置后將背帶卡柄壓下。驅(qū)動(dòng)操作裝置通過(guò)拉索穿過(guò)空心鋁管與采摘頭相連,采摘頭部件上的其他組件通過(guò)圓柱銷(xiāo)連接。在采摘梨的過(guò)程中,操作者先將采摘頭置于梨附近,將梨放入采摘頭的托盤(pán)中,然后拉動(dòng)操作手柄,將果實(shí)夾住并切斷果柄,采摘完成后,松開(kāi)操作手柄,夾爪和刀片在復(fù)位彈簧的作用下自動(dòng)回位,果實(shí)通過(guò)“Z”型收集布袋滑落至果籃中,完成采摘過(guò)程。
2.2.1 驅(qū)動(dòng)操作部件設(shè)計(jì)
為了使采摘器具有自動(dòng)復(fù)位功能,設(shè)計(jì)過(guò)程中運(yùn)用了張緊發(fā)條的特性,在松開(kāi)操作手柄后,在張緊發(fā)條作用下繩輪轉(zhuǎn)動(dòng)。同時(shí)考慮到采摘器伸縮功能,設(shè)計(jì)拉索繩輪蓋板有多個(gè)連接孔,以便在伸縮后找到合適的驅(qū)動(dòng)點(diǎn)。繩輪直徑58 mm,操作手柄連桿長(zhǎng)度為95 mm。操作手柄長(zhǎng)度為165 mm,連接孔到繩輪中心距離為14 mm。驅(qū)動(dòng)操作部件結(jié)構(gòu)示意圖如圖3所示。
1. 操作手柄 2. 操作手柄連桿 3. 拉索 4. 張緊盒子 5. 拉索繩輪蓋板 6. 張緊發(fā)條 7. 繩輪 8. 法蘭
2.2.2 采摘頭部件設(shè)計(jì)
采摘頭部件是采摘器中最為重要的部分,其機(jī)械結(jié)構(gòu)的設(shè)計(jì)直接影響采摘質(zhì)量。采摘頭部件結(jié)構(gòu)如圖4所示。根據(jù)果樹(shù)修剪機(jī)械產(chǎn)品,用于剪斷果樹(shù)樹(shù)枝的常規(guī)方式是往復(fù)剪切刀片剪切,利用其中的杠桿原理和刀片剪切[27]有利于切斷樹(shù)枝的特征,設(shè)計(jì)本文采摘器切割裝置為抱剪式剪切刀片組,其包括內(nèi)刀片組件和外刀片組件。為了保證夾持水果過(guò)程的穩(wěn)定性,夾持機(jī)構(gòu)采用三夾爪夾持。刀具拉桿環(huán)與刀片組靠尼龍繩連接,設(shè)計(jì)尼龍繩長(zhǎng)度留有余量,開(kāi)合拉桿與刀具拉桿環(huán)用圓柱銷(xiāo)固連,夾爪拉桿連接盤(pán)和夾爪通過(guò)夾爪拉桿鉸接。當(dāng)拉動(dòng)操作手柄,開(kāi)合拉桿和刀具拉桿環(huán)同時(shí)動(dòng)作,夾爪拉桿連接盤(pán)在壓縮彈簧的作用下也開(kāi)始動(dòng)作,通過(guò)夾爪拉桿帶動(dòng)夾爪做夾持動(dòng)作;當(dāng)尼龍繩繃直后刀片組開(kāi)始做環(huán)抱剪切動(dòng)作,從而實(shí)現(xiàn)在采摘過(guò)程中,夾爪先動(dòng)作,刀片組再動(dòng)作的功能;采摘完后,松開(kāi)操作手柄,刀片組在刀片復(fù)位彈簧的作用下復(fù)位,夾爪在夾爪復(fù)位彈簧的作用下復(fù)位。刀片長(zhǎng)度65 mm,采摘頭支架最大圓環(huán)直徑為138 mm,內(nèi)刀片安裝半圓半徑為69 mm,外刀片安裝半圓半徑73.5 mm。
1. 梨模型 2. 夾爪 3. 內(nèi)刀片組 4. 采摘頭支架 5. 夾爪拉桿 6. 夾爪拉桿連接盤(pán) 7. 開(kāi)合拉桿 8. 刀具拉桿環(huán) 9. 刀具拉伸彈簧 10. 尼龍繩 11. 刀具復(fù)位彈簧 12. 外刀片組
2.2.3 收集布袋設(shè)計(jì)
為了提高采摘效率,設(shè)計(jì)“Z”型布袋收集果實(shí),“Z”型可以有效減緩梨滾落的速度,使得梨可以無(wú)損地滾落到果籃;從表1可知,梨的平均直徑最大值為88.4 mm,為使夾爪松開(kāi)后,梨能夠順利的從布袋口滾落,設(shè)計(jì)布袋口徑200 mm?!癦”型傾角角度太小,下降太慢,增加手持的附加力,影響效率;角度太大,不能起到緩沖作用,試驗(yàn)證明采用145°~155°的“Z”型傾角下降能夠兼顧到效率和采摘質(zhì)量,故設(shè)計(jì)“Z”型傾角為150°。采用紗布材質(zhì),質(zhì)量輕。布袋用鋼絲固定在上調(diào)節(jié)桿上端,布袋實(shí)物如圖5所示。
圖5 收集布袋
為了驗(yàn)證所設(shè)計(jì)采摘頭部件的可行性,對(duì)采摘頭部件進(jìn)行運(yùn)動(dòng)學(xué)仿真。將在三維制圖軟件Inventor中建立好的采摘頭部件模型導(dǎo)入到仿真軟件Recurdyn中進(jìn)行仿真[29-30]。采摘頭采摘果實(shí)直徑范圍70~100 mm,所以建立梨模型直徑取為中間值85 mm;夾爪與梨之間的接觸力太大容易夾壞果實(shí),因梨有托盤(pán)托起,夾爪與梨之間不需要太大的接觸力。將10 g砝碼放在梨表面,其壓力對(duì)梨表面無(wú)影響,故設(shè)置夾爪與梨模型之間的接觸力為0.1 N;添加好各項(xiàng)約束條件后,設(shè)置仿真時(shí)間為5 s,步長(zhǎng)為200步。仿真結(jié)果如圖6所示。
圖6 采摘器動(dòng)力學(xué)仿真結(jié)果
從圖6a中可以看出,果柄剪切力最大13.5 N,大于剪切果柄所需要的力。從圖6b、6c可以看出,因?yàn)橛|發(fā)刀片組動(dòng)作的尼龍繩留有余量,所以在尼龍繩繃緊前,刀片組沒(méi)有動(dòng)作;0.5 s后尼龍繩繃緊,刀片組開(kāi)始動(dòng)作,達(dá)到了夾爪先動(dòng)作、刀片組再動(dòng)作的要求,避免刀片組先動(dòng)作誤觸到夾爪。由圖6c、6e可知,在1 s時(shí)刻夾爪、梨之間的接觸力為0.1 N,夾爪夾住果實(shí),夾爪速度變?yōu)?,夾爪不動(dòng);這個(gè)時(shí)刻刀片組速度在加載力的作用下迅速達(dá)到最大值;切果柄時(shí),由于果柄阻力,刀片組速度變??;剪斷果柄后,松開(kāi)操作手柄,刀片組在復(fù)位彈簧的作用下做復(fù)位運(yùn)動(dòng)。該時(shí)刻,夾爪也在復(fù)位彈簧的作用下做復(fù)位動(dòng)作。從圖6b中可以看到,內(nèi)外刀片組剪切過(guò)程在1.4 s左右剪切速度同時(shí)達(dá)到最大值,在1.9 s左右速度同時(shí)降為0;在復(fù)位彈簧的作用下,內(nèi)外刀片組在復(fù)位過(guò)程中速度在2.3 s左右同時(shí)達(dá)到最大值,且在2.8 s左右回復(fù)到位,內(nèi)外刀片組的協(xié)同性良好,說(shuō)明所設(shè)計(jì)剪切機(jī)構(gòu)能達(dá)到剪切要求。從圖6c、6d可以看出夾爪和夾爪連接盤(pán)之間的速度按照一定的規(guī)律變化,說(shuō)明設(shè)計(jì)的夾持機(jī)構(gòu)能正常工作,不存在卡死現(xiàn)象。
采摘器長(zhǎng)徑比比較大,受力過(guò)大容易發(fā)生彎曲變形。本文通過(guò)ANSYS軟件對(duì)采摘器的桿件組進(jìn)行強(qiáng)度分析。選取桿件組最長(zhǎng)時(shí)的情景,利用ANSYS Workbench 15.0軟件建立采摘器桿件組的線性靜力學(xué)有限元分析模型。
根據(jù)線性靜力學(xué)有限元建模與分析流程依次進(jìn)行操作。
1)材料設(shè)置:桿件組所用材料為鋁6061,密度2 750 kg/m3,彈性模量68.9 GPa,泊松比0.3,許用應(yīng)力110 MPa。
2)結(jié)構(gòu)模型建立:進(jìn)入“Geometry”環(huán)境,將由Inventor軟件生成的桿件組三維模型導(dǎo)入到Workbench中。
3)網(wǎng)格劃分:進(jìn)入“Model”有限元建模環(huán)境,進(jìn)行網(wǎng)格劃分。物理參數(shù)選擇結(jié)構(gòu)選項(xiàng);高級(jí)尺寸功能關(guān)閉;相關(guān)性中心選擇中等選項(xiàng);網(wǎng)格尺寸為2 mm;光滑度為中等;選擇快速過(guò)渡;標(biāo)準(zhǔn)結(jié)構(gòu)為形狀檢查選項(xiàng)。
取極限情況,將桿件組的下手握桿末端固定,在上調(diào)節(jié)桿前端施加載荷,采摘頭重量為1.2 kg,收集布袋質(zhì)量為0.4 kg,故施加載荷16 N,求解結(jié)果如圖7所示。
圖7 采摘器桿件組應(yīng)變應(yīng)力云圖
根據(jù)桿件之間配合情況,桿件組允許的最大變形量為0.1 mm。由圖7a可知,采摘器桿件組最大變形位置位于采摘頭安裝處,最大變形量為0.072 571 mm,小于0.1 mm,采摘器的剛度足夠。從圖7b可以看到,其最大應(yīng)力位置在2個(gè)桿件的連接處,桿件組所受最大應(yīng)力為19.267 MPa,遠(yuǎn)小于材料的許用應(yīng)力110 MPa。因此采摘器強(qiáng)度滿足要求。
為了驗(yàn)證采摘器的性能,根據(jù)設(shè)計(jì)參數(shù)制作樣機(jī)并進(jìn)行采摘試驗(yàn),具體樣機(jī)及試驗(yàn)如圖8、圖9所示。樣機(jī)制作總成本為736元。裁剪與夾爪內(nèi)側(cè)面大小一樣的海綿塊,用膠水粘在夾爪內(nèi)側(cè)面上,防止夾爪在夾持過(guò)程中夾壞梨的表面。
采摘試驗(yàn)于2017年9月22—27號(hào)在湖南邵陽(yáng)市新寧縣木山梨園進(jìn)行,梨品種為鴨梨,成熟度為C等級(jí),梨樹(shù)高度在3~4.5 m。試驗(yàn)人員通過(guò)操縱操作手柄就可以把果實(shí)采摘下來(lái),操作簡(jiǎn)單;松開(kāi)操作手柄,自動(dòng)復(fù)位功能使刀具和夾爪松開(kāi),果實(shí)通過(guò)布袋落入果籃中。采摘過(guò)程中,通過(guò)調(diào)節(jié)伸縮部件,可以實(shí)現(xiàn)不同高度梨的采摘。采摘試驗(yàn)中,選擇2棵高度、掛果率基本一致的梨樹(shù),選取2.5、3.3、4.1 m三個(gè)高度,分別采用人工采摘和采摘器采摘的方式,記錄采摘20 min后所采得梨的個(gè)數(shù)。按照式(1)計(jì)算果實(shí)損壞率,每個(gè)高度重復(fù)試驗(yàn)5次,取平均數(shù),結(jié)果如表2所示。
式中為同一高度采摘試驗(yàn)損壞梨的個(gè)數(shù),為同一高度采摘試驗(yàn)所得梨的個(gè)數(shù)。
1.采摘頭部件 2.桿件組 3.收集布袋 4.背帶 5.驅(qū)動(dòng)操作部件
1.Picking head component 2. Rod set 3. Collecting bag 4. Strap 5. Drive operating part
圖8 手動(dòng)背負(fù)式梨采摘器樣機(jī)
Fig.8 Hand-operated piggyback pear picker prototype
圖9 采摘試驗(yàn)
表2 采摘試驗(yàn)結(jié)果
由表2可知,人工采摘,平均采摘效率4.2個(gè)/min;采摘器采摘,平均采摘效率6.6個(gè)/min。采用采摘器采摘,采摘效率比人工采摘的效率提高了57.1%。人工采摘的平均損壞率為0.9%,采摘器采摘的平均損壞率為1.0%,損壞率較低。分析采摘器采摘過(guò)程損壞果實(shí)的原因,主要是因?yàn)閭€(gè)別梨直徑大于100 mm,導(dǎo)致刀片誤觸。
1)本文設(shè)計(jì)了一款手動(dòng)背負(fù)式梨采摘器,將夾持機(jī)構(gòu)、果柄切斷機(jī)構(gòu)和拉索手柄控制機(jī)構(gòu)有效結(jié)合,通過(guò)拉索手柄控制機(jī)構(gòu)控制夾持機(jī)構(gòu)和果柄剪切機(jī)構(gòu)的開(kāi)合,在采摘時(shí)先后進(jìn)行果實(shí)夾緊和果柄切斷,實(shí)現(xiàn)果實(shí)與果樹(shù)的分離。
2)對(duì)關(guān)鍵部件采摘頭進(jìn)行仿真,結(jié)果顯示果柄最大剪切力為13.5 N,大于5.4 N,滿足剪切梨果柄所需剪切力;對(duì)采摘器桿件組進(jìn)行強(qiáng)度分析,結(jié)果表明:采摘器桿件組最大變形位置位于采摘頭安裝處,最大變形量為0.072 571 mm,小于0.1 mm,在允許的變形范圍內(nèi);采摘器桿件組最大應(yīng)力位置在兩桿件的連接處,所受最大應(yīng)力為19.267 MPa,遠(yuǎn)小于材料的許用應(yīng)力110 MPa,所設(shè)計(jì)的采摘器強(qiáng)度滿足要求。
3)樣機(jī)成本低,易于推廣。試驗(yàn)表明:梨采摘器能采摘梨,其伸縮功能增大了采摘器的采摘范圍,達(dá)到了預(yù)期的設(shè)計(jì)要求,采用采摘器采摘,采摘效率比人工采摘的效率提高了57.1%,幫助果農(nóng)提高采摘效率。采摘器采摘果實(shí)直徑大于100 mm時(shí),會(huì)產(chǎn)生誤觸,損傷果實(shí),后期的優(yōu)化工作還需解決這一問(wèn)題。
[1] 趙俊曄,武婕. 2014—2023年中國(guó)水果市場(chǎng)形勢(shì)展望[J]. 農(nóng)業(yè)展望,2014,10(4):14-18. Zhao Junye, Wu Jie. Prospects of China's fruit market from 2014 to 2023[J]. Agriculture Outlook, 2014, 10(4): 14-18. (in Chinese with English abstract)
[2] 散鋆龍,牛長(zhǎng)河,喬圓圓,等. 林果機(jī)械化收獲研究現(xiàn)狀、進(jìn)展與發(fā)展方向[J]. 新疆農(nóng)業(yè)科學(xué),2013,50(3):499-508. San Yunlong, Niu Changhe, Qiao Yuanyuan, et al. Current situation, progress and development direction of mechanized harvest of forest fruits[J]. Xinjiang Agricultural Science, 2013, 50(3): 499-508. (in Chinese with English abstract)
[3] 張最,肖宏儒,丁文芹,等. 振動(dòng)式枸杞采摘機(jī)理仿真分析與樣機(jī)試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(10):20-28. Zhang Zui, Xiao Hongru, Ding Wenqin, et al. Simulation analysis and prototype test of vibrating picking mechanism[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(10): 20-28. (in Chinese with English abstract)
[4] 蔡健榮,王鋒,呂強(qiáng),等. 基于SBL-PRM算法的柑橘采摘機(jī)器人實(shí)時(shí)路徑規(guī)劃[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(6):158-162. Cai Jianrong, Wang Feng, Lü Qiang, et al. Real-time path planning of citrus picking robot basedon SBL-PRM algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(6): 158-162. (in Chinese with English abstract)
[5] 蔡健榮,周小軍,王鋒,等. 柑橘采摘機(jī)器人障礙物識(shí)別技術(shù)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2009,40(11):171-175. Cai Jianrong, Zhou Xiaojun, Wang Feng, et al. Impact recognition technology for citrus picking robots[J]. Transactions ofthe Chinese Societyfor Agricultural Machinery, 2009, 40(11): 171-175. (in Chinese with English abstract)
[6] 宋健,孫學(xué)巖,張鐵中,等. 開(kāi)放式茄子采摘機(jī)器人設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2009,40(1):143-147. Song Jian, Sun Xueyan, Zhang Tiezhong, et al. Design and experiment of open eggplant picking robot[J]. Transactions of the Chinese Society for Agricultral Machinery, 2009, 40(1): 143-147. (in Chinese with English abstract)
[7] 李國(guó)利,姬長(zhǎng)英,顧寶興,等. 多末端蘋(píng)果采摘機(jī)器人機(jī)械手運(yùn)動(dòng)學(xué)分析與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(12):14-21,29. Li Guoli, Ji Changying, Gu Baoxing, et al. Kinematics analysis and experiment of multi-terminal apple picking robot manipulator[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(12): 14-21, 29. (in Chinese with English abstract)
[8] 呂繼東,趙德安,姬偉,等. 蘋(píng)果采摘機(jī)器人對(duì)振蕩果實(shí)的快速定位采摘方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(13):48-53. Lü Jidong, Zhao De'an, Ji Wei, et al. A rapid method for picking and oscillating fruit picking by apple picking robot[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(13): 48-53. (in Chinese with English abstract)
[9] 錢(qián)少明,楊慶華,王志恒,等. 黃瓜抓持特性與末端采摘執(zhí)行器研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(7):107-112. Qian Shaoming, Yang Qinghua, Wang Zhiheng, et al. Study on cucumber grip characteristics and end picking actuator[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(7): 107-112. (in Chinese with English abstract)
[10] 姚天曙,丁為民. 機(jī)械手采摘黃瓜的振動(dòng)特性試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2006,22(9):250-253. Yao Tianshu, Ding Weimin. Experimental study on vibration characteristics of manipulator picking cucumber[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(9): 250-253. (in Chinese with English abstract)
[11] 楊小慶,時(shí)磊,王娜,等. 基于單片機(jī)的仿人多指番茄采摘機(jī)械手設(shè)計(jì)[J]. 農(nóng)機(jī)化研究,2016,38(7):80-84. Yang Xiaoqing, Shi Lei, Wang Na, et al. Design of a human-like multi-finger tomato picking robot based on single-chip microcomputer[J]. Journal of Agricultural Mechanization Research, 2016, 38(7): 80-84. (in Chinese with English abstract)
[12] 王糧局,張鐵中,褚佳,等. 大容差高效草莓采摘末端執(zhí)行器設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(增刊1):252-258. Wang Liangju, Zhang Tiezhong, Chu Jia, et al. Design and experiment of high tolerance strawberry harvesting end effector[J]. Transactions of the Chinese Societyfor Agricultural Machinery, 2014, 45(S1): 252-258. (in Chinese with English abstract)
[13] 王糧局,張立博,段運(yùn)紅,等. 基于視覺(jué)伺服的草莓采摘機(jī)器人果實(shí)定位方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(22):25-31. Wang Liangju, Zhang Libo, Duan Yunhong, et al. A fruit positioning method for strawberry picking robot based on visual servo[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(22): 25-31. (in Chinese with English abstract)
[14] 高自成,李立君,李昕,等. 齒梳式油茶果采摘機(jī)采摘執(zhí)行機(jī)構(gòu)的研制與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(10):19-25. Gao Zicheng, Li Lijun, Li Xin, et al. Development and experiment of picking and executing mechanism of tooth combing camellia picking machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(10): 19-25. (in Chinese with English abstract)
[15] 高自成,李立君,劉銀輝. 油茶果采摘機(jī)采摘機(jī)械臂的機(jī)構(gòu)設(shè)計(jì)及運(yùn)動(dòng)仿真[J]. 西北林學(xué)院學(xué)報(bào),2012,27(2):266-268. Gao Zicheng, Li Lijun, Liu Yinhui. Mechanism design and motion simulation of picking machine arm of camellia fruit picking machine[J]. Journal of Northwest Forestry University, 2012, 27(2): 266-268. (in Chinese with Englishabstract)
[16] 高自成,王朋輝,王勇樺,等. 油茶果采摘機(jī)器人機(jī)械臂伺服系統(tǒng)選型設(shè)計(jì)[J]. 農(nóng)機(jī)化研究,2015,37(5):140-144,150. Gao Zicheng, Wang Penghui, Wang Yonghua, et al. Selection and design of robotic arm servo system for camellia fruit picking robot[J]. Journal of Agricultural Mechanization Research, 2015, 37(5): 140-144, 150. (in Chinese with English abstract)
[17] 高自成,李立君,王朋輝,等. 油茶果采摘機(jī)器人采摘頭設(shè)計(jì)與分析[J]. 中南林業(yè)科技大學(xué)學(xué)報(bào),2016,36(2):114-118. Gao Zicheng, Li Lijun, Wang Penghui, et al. Design and analysis of picking head for camellia fruit picking robot[J]. Journal of Central South University of Forestry and Technology, 2016, 36(2): 114-118. (in Chinese with English abstract)
[18] 葉敏,鄒湘軍,羅陸鋒,等. 荔枝采摘機(jī)器人雙目視覺(jué)的動(dòng)態(tài)定位誤差分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(5):50-56. Ye Min, Zou Xiangjun, Luo Lufeng, et al. Analysis of dynamic positioning error of binocular vision of litchi picking robot[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(5): 50-56. (in Chinese with English abstract)
[19] 熊俊濤,葉敏,鄒湘軍,等. 多類(lèi)型水果采摘機(jī)器人系統(tǒng)設(shè)計(jì)與性能分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(增刊1):230-235. Xiong Juntao, Ye Min, Zou Xiangjun, et al. Design and performance analysis of multi-type fruit picking robot system[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44 (S1): 230-235. (in Chinese with English abstract)
[20] 陳燕,蔡偉亮,向和平,等. 荔枝采摘器優(yōu)化設(shè)計(jì)與仿真[J]. 農(nóng)機(jī)化研究,2013,35(8):84-87. Chen Yan, Cai Weiliang, Xiang Heping, et al. Optimization design and simulation of litchi picker[J]. Journal of Agricultural Mechanization Research, 2013, 35(8): 84-87. (in Chinese with English abstract)
[21] 陳燕,蔣志林,李嘉威,等. 基于機(jī)器人采摘的柑橘果柄切割力學(xué)特性研究[J]. 河南農(nóng)業(yè)科學(xué),2017,46(4):147-150. Chen Yan, Jiang Zhilin, Li Jiawei, et al. Study on mechanical properties of citrus fruit handle cutting based on robot picking[J]. Journal of Henan Agricultural Sciences, 2017, 46(4): 147-150. (in Chinese with English abstract)
[22] 陳燕,蔡偉亮,向和平,等. 面向機(jī)器人采摘的荔枝果梗力學(xué)特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(21):53-58. Chen Yan, Cai Weiliang, Xiang Heping, et al. Mechanical characteristics of litchi fruit stems for robotic picking[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(21): 53-58. (in Chinese with English abstract)
[23] 何家成,汪洋,劉宏博,等. 便攜式果園采摘機(jī)設(shè)計(jì)[J]. 農(nóng)機(jī)化研究,2018,40(5):83-87. He Jiacheng, Wang Yang, Liu Hongbo, et al. Design of picking machine for portable orchard[J]. Journal of Agricultural Mechanization Research, 2018, 40(5): 83-87. (in Chinese with English abstract)
[24] 曹成茂,詹超,孫燕,等. 便攜式山核桃高空拍打采摘機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(3):130-137. Cao Chengmao, Zhan Chao, Sun Yan, et al. Design and experiment of portable pecan high-altitude picking machine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(3): 130-137. (in Chinese with English abstract)
[25] 莊逸鋒,嚴(yán)斌,李曉錕,等. 背負(fù)式水果采摘機(jī)設(shè)計(jì)[J]. 林業(yè)機(jī)械與木工設(shè)備,2018,46(5):41-44,48. Zhuang Yifeng, Yan Bin, Li Xiaokun, et al. Design of a piggyback fruit picking machine[J]. Forestry Machinery & Woodworking Equipment, 2018, 46(5): 41-44,48. (in Chinese with English abstract)
[26] 何家成,段文婷,李鳳佳,等. 手持式電動(dòng)水果采摘機(jī)設(shè)計(jì)[J]. 安徽農(nóng)業(yè)科學(xué),2013,41(25):10557-10559. He Jiacheng, Duan Wenting, Li Fengjia, et al. Design of handheld electric fruit picking machine[J]. Journal of Anhui Agricultural Sciences, 2013, 41(25): 10557-10559. (in Chinese with English abstract)
[27] 牟順海,李少華. 茶葉采摘機(jī)器手采摘剪刀設(shè)計(jì)及仿真[J]. 西南師范大學(xué)學(xué)報(bào):自然科學(xué)版,2014,39(6):55-58. Mou Shunhai, Li Shaohua. Design and simulation of hand picking scissors for tea picking machine[J]. Journal of Southwest China Normal University: Natural Science, 2014, 39(6): 55-58. (in Chinese with English abstract)
[28] 杜小強(qiáng),李黨偉,王丹,等. 小型側(cè)翼折展式林果收集裝置的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(14):11-17. Du Xiaoqiang, Li Dangwei, Wang Dan, et al. Design and experiment of small-wing flank-type forest fruit collection device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(14): 11-17. (in Chinese with English abstract)
[29] B Vijaya Ramnath, K Venkataraman, Selvaraj Venkatram. Powered two-wheeler with integratedsafety using recurdyn multi-body dynamics[J]. Applied Mechanics and Materials, 2014, 591: 193-196.
[30] Li Yunwang, Dai Sumei, Zheng Yuwei, et al. Modeling and kinematics simulation of a mecanum wheel platform in RecurDyn[J]. Journal of Robotics, 2018(1): 1-7.
Design of hand-operated piggyback jaw gripper type simplified picker for pear
Gao Zicheng, Pang Guoyou, Li Lijun※, Zhao Kaijie, Wang Xiaochen, Ji Chengcai
(410004,)
In order to solve the problem of low efficiency and high labor intensity of pear picking, a hand-operated piggyback jaw type simplified pear picker was designed in this paper. The characteristics of pears were analyzed by selecting 3 kinds of pears commonly found in the market: 'Xuehua' pear, 'Yali' pear, and 'Apple-pear', the pear maturity was divided into A, B and C grades according to the fruit diameter size and the growth period. Referring to the previous research results on the shear mechanical properties of citrus and litchi fruit handles, the shear force measurement bench was constructed. Shearing tests of the fruit stem were carried out on the 3 kinds of pears with different maturity according to the lever principle. In the test, 60 fruits of each grade of maturity of each pear were taken and the average value of the measurement results was obtained. The result showed that the shearing force of the stems of the 3 varieties was different, with the increase of the fruit maturity level, the shearing force of the pear stems increases first and then decreases, the maximum shearing force of the fruit stem was 5.4 N among the 3 varieties. The picking device was composed of driving operating parts, picking head parts, adjustable straps and carrying "Z" type collecting bag. The length and position of the strap picker could be adjusted by pulling up the handle of the strap and pressing down the handle after moving the clamp block to the appropriate position according to personal use. The driving operating unit was connected to the picking head through the hollow aluminum tube through the dragline.The other components on the picking head were connected by cylindrical pins. The pear picking process was divided into 3 steps: in the first step, the operator placed the picking head near the pear and puted the pear into the tray of the picking head, so that the pear was accurately positioned. In the second step, the operator pulled the operating handle to hold the fruit and cuted off the handle. In the last step, after the picking, the operator released the operating handle, the clamping claw and blade automatically return to the position under the action of the reset spring, and the fruit slides into the fruit basket through the "Z" type collecting sack. The movement simulation of the picking head was conducted based on the software Recurdyn. The simulation result showed that the average shear force was 13.5 N, it was greater than the maximum shear force of 5.4 N which was the required shear force of the pear stem. The main stressed parts were analyzed based on ANSYS Workbench 15.0 software. The results demonstrated that the maximum deformation of the picker was located at the installation place of the picking head, and the maximum deformation was 0.072 571 mm, which was less than the maximum allowable deformation of the picker 0.1 mm. The maximum stress position of the picker was at the joint of the 2 rods. The maximum stress of the group was 19.267 MPa, which was much smaller than the allowable stress of the material 110 MPa, the strength of the picking device met the requirements. In order to verify the rationality of the design, the field experiments were carried out in the summer of 2018 at Mushan pear orchards in Shaoyang, Hunan Province. The test results demonstrated that the hand-held picker was simple and comfortable to operate. The picking efficiency was 57.1% higher than that of manual picking. The average damage rate was 1.0%. The reason of fruit damage during the picking process was maily that the diameter of the pear was more than 100 mm, which leaded to the wrong touch of the blade. The hand-operated piggyback pear picker improved the picking efficiency and the operational safety of picking process.
fruits; picking; hand-operated; piggyback; pear
2018-07-07
2018-12-02
湖南省科技計(jì)劃重點(diǎn)研發(fā)項(xiàng)目(2016NK2142);湖南省高??萍紕?chuàng)新團(tuán)隊(duì)資助項(xiàng)目(2014207)
高自成,博士,副教授,研究方向?yàn)楝F(xiàn)代林業(yè)技術(shù)及裝備。 Email:gzc1968@126.com
李立君,博士后,教授,博士生導(dǎo)師,研究方向?yàn)楝F(xiàn)代林業(yè)技術(shù)及裝備。Email:junlili1122@163.com
10.11975/j.issn.1002-6819.2019.01.005
S225.93
A
1002-6819(2019)-01-0039-07
高自成,龐國(guó)友,李立君,趙凱杰,王曉晨,吉成才. 手動(dòng)背負(fù)夾爪式簡(jiǎn)易梨采摘器研制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(1):39-45. doi:10.11975/j.issn.1002-6819.2019.01.005 http://www.tcsae.org
Gao Zicheng, Pang Guoyou, Li Lijun, Zhao Kaijie, Wang Xiaochen, Ji Chengcai. Design of hand-operated piggyback jaw gripper type simplified picker for pear[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(1): 39-45. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.01.005 http://www.tcsae.org